LIST OF FIGURES

		Page No.
1.1	Classification of immunosuppressants available in the market	2
1.2	Therapeutic functions of rapamycin	7
2.1	Structure of Rapamycin	15
2.2	Biosynthetic pathway of polyketide antibiotics	20
2.3	Route of precursors biosynthesis for rapamycin production	20
2.4	Variation of performance ratio with oxygen-transfer rate in	31
	different types of ALRs versus an agitation tank	
2.5	Steps of purification of rapamycin	42
3.1	Microorganisms grown on agar plates	47
3.2	Microscopic image of S.hygroscopicus	53
3.3	Schematic diagram of internal loop airlift reactor	57
3.4	Schematic diagram of set up of Internal Loop Air lift Reactor	58
3.5	Different carriers used for immobilization	64
3.6	Standard curve for reducing sugar estimation using DNS method	70
3.7	Standard HPLC plot	70
4.1	Result of training of data set with 619 epoch using ANN	78
4.2	Graph showing training epoch cycles vs. calculated mean square	78
4.2	error of the supervised training for the designed ANN	20
4.5	Fitness plot snowing the GA iterations based on fitness function	80
4.4	Production of rapamycin in 3L Stirred tank reactor	82

4.5A	Model fitting of experimental observations of dry cell mass, reducing sugar concentration and rapamycin production during	87
	batch production at initial mannose concentration 15 g/L	
4.5B	Model fitting of experimental observations of dry cell mass, reducing sugar concentration and rapamycin production during batch production at initial mannose concentration 20 g/L	87
4.5 C	Model fitting of experimental observations of dry cell mass, reducing sugar concentration and rapamycin production during batch production at initial mannose concentration 25 g/L	88
4.5D	Model fitting of experimental observations of dry cell mass, reducing sugar concentration and rapamycin production during batch production at initial mannose concentration 30 g/L	88
4.6	Plot for determination of maximum specific growth rate (μ_{max}) at different initial mannose concentration	90
4.7	Graph between γ and θ at initial sugar concentrations	94
4.8	Variation of rapamycin production, dry cell mass, dissolved oxygen and reducing sugar concentration with time	97
4.9	Variation of dissolved oxygen concentration and volumetric oxygen transfer coefficient (k_La) with respect to time	97
4.10 A	Shear stress (τ) vs Shear rate (γ) for Newtonian Fluid Model	99
4.10 B	Shear stress (τ) vs Shear rate (γ) for Power Law Model	99
4.10 C	Shear stress (τ) vs Shear rate (γ) for Casson Fluid Model	100
4.10 D	Shear stress (τ) vs Shear rate (γ) for Bingham Plastic Model	100

4.11	Variation of apparent viscosities with time at different shear rates	104
4.12	Comparison of flow behavior index and consistency index with variation in biomass concentration	104
4.13	Plot of Residual Shear Stress vs independent variable	105
4.14	Variation of dry cell weight of <i>S. hygroscopicus</i> per unit weight of different carriers	109
4.15	SEM image of different immobilized carriers	109
4.16	Cell Release Study in different immobilized systems	111
4.17	Production of rapamycin in different immobilized carriers	111
4.18	Rapamycin production and cell release during repeated batch fermentation using <i>S.hygroscopicus</i> immobilized on PUF	112
4.19	Fermentation set up of internal loop ALR	114
4.20	Variation of gas hold up at different gas velocities	117
4.21	Variation of rapamycin concentration with aeration rate in an internal loop airlift reactor	118
4.22	Variation of Rapamycin production, dry cell mass and reducing sugar concentration with time during batch production of rapamycin in air lift reactor	118
4.23	Variation of specific growth rate (μ) and specific product formation rate (q_p) in an ALR	119
4.24	Variation in dissolved oxygen concentration and k_L a during batch production of rapamycin in airlift reactor	121
4.25	Co-cultured plates of S.hygroscopicus and C.albicans	123
4.26	Variation in rapamycin production with different inoculum size of <i>C.albicans</i> in the co-culture study	125

4.27	Effect of time of inoculation of C.albicans on rapamycin	125
	production in co-culture	
4.28	Fed- batch profile for rapamycin production based on pulse-	128
	feeding	
4.29	Variation of pulse feeding on growth rate (dx/dt) and product	130
	formation rate (dp/dt) during fed-batch fermentation	
4.30	Comparison of flow behavior index (n) and consistency index (k)	132
	for fed-batch fermentation	
4.31	Summary of steps followed for rapamycin purification	134
4.32	HPTLC chromatogram	136
4.33	Elution profile of rapamycin by silica gel column	136
	chromatography	
4.34	Overlay diagram of FTIR spectra of standard rapamycin and the	138
	purified sample	
4.35	HPLC chromatograms (A) Standard rapamycin (B) Ethyl acetate	139
	extract (C) Purified sample	