TABLE OF CONTENTS

		Page No.
	List of Figures	i-iv
	List of Tables	v-vi
	Symbols Used	vii-viii
	Abbreviations Used	ix
	Preface	x-xi
Chapter 1	Introduction	1-12
1.1	Immunosuppressants	1
1.2	Approval of rapamycin as immunosuppressant	4
1.3	Rapamycin as compared with other immunosuppressants	5
1.4	Other roles of rapamycin	6
1.4.1	Treatment of tuberous sclerosis	8
1.4.2	Reduction in occurrence of skin cancer	8
1.4.3	Treatment of Psoriasis	8
1.4.4	Anti-tumor effect	8
1.4.5	Anti-ageing property	9
1.4.6	Potent role against Human Immunodeficiency Virus (HIV)	9
1.5	Use of rapamycin in coronary stents	10
1.6	Nano-rapamycin	10
1.7	Side effects associated with rapamycin	11
1.8	Manufacturers of rapamycin	11
Chapter 2	Review of Literature and Objectives	13- 45
2.1	Rapamycin	13

2.2	Chemical Structure and Nature of Rapamycin	14
2.3	Immunosuppressive action of rapamycin	16
2.4	Producer microorganism	17
2.4.1	Biosynthetic gene cluster of S.hygroscopicus for	17
	production of rapamycin	
2.4.2	Precursors for rapamycin biosynthesis	18
2.4.3	Overall biosynthetic pathway of rapamycin	19
2.5	Production of rapamycin	21
2.5.1	Chemical production of rapamycin	21
2.5.2	Microbial production of rapamycin	21
2.5.3	Strain Improvement	22
2.5.4	Optimization of production parameters	24
2.5.4.1	Classical approach	24
2.5.4.2	Statistical optimization	25
2.6	Strategies for modulation of production process	28
2.6.1	Immobilization of producer organism	28
2.6.2	Production in Air Lift Reactor	29
2.6.2.1	Use of airlift reactors for antibiotic production	32
2.6.3	Co-culture of competitor species	33
2.6.3.1	Co-culture for antibiotic production	34
2.6.4	Fed batch strategy	36
2.7	Purification of rapamycin	39
2.8	Stability of rapamycin	44
	Objectives	45

Chapter 3	Materials and Methods	46- 72
3.1	Materials	46
3.1.1	Chemicals and Reagents	46
3.1.2	Microorganisms	46
3.1.3	Instruments and Equipments used	46
3.1.4	Media	48
3.1.4.1	Maintenance media	48
3.1.4.2	Seed Culture medium	49
3.1.4.3	Production medium	49
3.1.5	Staining Reagents	50
3.1.5.1	Gram Staining	50
3.1.6	Software used	50
3.2	Methods	51
3.2.1	Maintenance of cultures	51
3.2.2	Visualization under microscope	51
3.2.2.1	Light microscopy	51
3.2.2.2	Scanning Electron Microscopy	52
3.2.3	Production of Rapamycin	54
3.2.3.1	Inoculum Preparation	54
3.2.3.2	Shake Flask Studies	54
3.2.3.4	Production in Stirred tank Bioreactor	55
3.2.3.5	Production of rapamycin in 3L airlift bioreactor	55
3.2.4	Optimization of media components	59
3.2.4.1	Study of interactive effect of parameters with Central	59
	Composite Design (CCD)	

3.2.4.2	Artificial neural network (ANN)	59
3.2.4.3	Genetic algorithm	62
3.2.5	Study of immobilization of Streptomyces hygroscopicus	63
3.2.5.1	Measurement of porosity of carriers	65
3.2.5.2	Pre-treatment of carriers	65
3.2.5.3	Cell Immobilization Study	66
3.2.5.4	Cell Release Study	66
3.2.6	Co-culture Technique	66
3.2.6.1	Co-culture on agar media	67
3.2.6.2	Co-culture in liquid media	67
3.2.7	Analytical Techniques	67
3.2.7.1	Estimation of reducing sugar concentration	67
3.2.7.2	Estimation of dry cell mass	68
3.2.7.3	Estimation of rapamycin concentration	69
3.2.7.3	Estimation of k _L a	69
3.2.7.4	Estimation of broth viscosity	71
3.2.7.5	HPTLC analysis	72
3.2.7.6	Silica column chromatography	72
3.2.7.7	FTIR analysis	72
Chapter 4	Results and Discussion	73-140
4.1	Optimization of medium components using statistical	73
	design tools	
4.1.1	CCD based experimental design	73
4.1.1.1	Regression analysis of the interactions between the media	75

components

4.1.2	Use of Artificial Intelligence tool for optimization	77
4.1.2.1	Development of ANN based model for rapamycin	77
	production	
4.1.2.2	Optimization by genetic algorithm using ANN model	79
4.2	Rapamycin production in 3 L bioreactor	81
4.2.1	Modeling of cell growth, rapamycin production and	81
	substrate utilization	
4.2.2	Evaluation of the kinetic parameters	89
4.2.2.1	Evaluation of growth kinetics parameter	89
4.2.2.2	Evaluation of product formation kinetics	91
4.2.3	Dissolved oxygen profile during rapamycin production in	95
	3L fermentor	
4.2.4	Studies on broth rheology in 3L stirred tank reactor	98
4.3	Different strategies for rapamycin production	106
4.3.1	Immobilization of S. hygroscopicus using different carriers	107
4.3.1.1	Growth of S. hygroscopicus on different carriers	107
4.3.1.2	Scanning Electron microscopy of immobilized carriers	108
4.3.1.3	Study of release of cells by immobilized carriers during	108
	production	
4.3.1.4	Production of rapamycin using different carriers for	110
	immobilization	
4.3.1.5	Production of rapamycin by S.hygroscopicus immobilized	110
	on PUF for repeated batches	
4.3.2	Study of rapamycin production in an internal loop airlift	113

4.3.2.1 Variation of rapamycin production at different aeration 115 rates 4322 Rapamycin production, biomass generation and substrate 115 depletion 4.3.2.3 Determination of kinetic parameters for rapamycin 116 production in ALR 4.3.2.4 Estimation of dissolved oxygen concentration for 120 rapamycin production in ALR 4.3.3 Study of rapamycin production when *S.hygroscopicus* was 122 grown with a competitor strain 4.3.3.1 Adaptation of *S.hygroscopicus* for growth in co-culture 122 condition 4.3.3.2 Study for optimization of inoculum size of *C.albicans* 124 4.3.3.3 Study for optimization of inoculation time 124 4.3.4 Fed batch fermentation strategy using pulse feeding 126 4.3.4.1 Study of fed-batch fermentation parameters 127 4.3.4.2 Evaluation of fed batch kinetics 129 4.3.4.3 Study of broth rheology during fed-batch fermentation 131 4.4 Purification of rapamycin 133 4.4.1 Solvent extraction 133 4.4.2 Purification using silica gel column chromatography 135 4.4.3 Qualitative characterization of purified sample using FTIR 137 4.4.4 Quantitative analysis of the purified sample using HPLC 137

bioreactor

Chapter 5	Conclusion	141- 145
	Summary and Conclusions	
	References	146- 168
	List of Publications	169
	Appendix 1	