Chapter 2

Energy Management: Frameworks

and Solution Approaches

2.1 Introduction

A large number of controllable DERs, such as DG units, EVs and D-BESS, and de-
mand responsive loads, require effective and efficient control schemes for DNO to operate
and exchange information with local operators (MGO or/and other aggregators). In the
new scenario, consumers now play an important role in energy trading because of their
demand-response characteristics and they can also act as seller due to the excess of energy
generated from RES installed in their premises or stored in battery storage. Therefore,
to fulfill the above trading arrangement, optimal pricing scheme would be required. This
chapter gives an overview of the energy management frameworks reported in the subse-
quent chapters. The management frameworks are in context of distribution system with
multiple operating agents. First, the energy scheduling problem is described with the
coordination schemes that can be implemented via the EMS interface. Later, the chapter
presents the solution methodologies that will be followed in the simulation studies carried

out in the subsequent chapters.

2.2 Energy Management Frameworks

The main function of EMS is to optimally balance load and supply to achieve the given

objectives. This work presents the integrated scheduling of different DERs (dispatchable
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generators, RESs, PHEVs, D-BESSs, and consumer loads with demand response) con-
trolled by different operators/aggregators, taking into account the restructuring of the
distribution network and the active involvement of multiple operating agents with some
conflicting and some non-conflicting goals. Different technical and economic objectives,
such as cost minimization, GHG reduction, real power loss minimization, bus voltage
profile improvement, and optimal power exchange with main grid are considered in the
proposed framework. Three different energy management frameworks are examined based
on the ownership and control of the DERs by different operating agents. Energy manage-

ment frameworks can be described as follows.

2.2.1 Centralized energy management framework

In this framework, the central controller such as Distribution Utility (DU) is responsible
for scheduling and controlling the flow of electricity from energy producers to consumers.
It is assumed that the central controller is empowered to operate and control all DERSs.
To optimize all DERs and supply power to consumers, the central controller accumulates
all the information, such as RESs generation availability, consumer demand, parameters
related to PHEVs (arrival time, departure time, owner energy requirement), SOC level
of D-BESS, cost functions of dispatchable generator, electricity tariff. The solution of
the scheduling problem depends on the certain objectives considered in the proposed

framework. The centralized energy management framework is depicted in Figure 2.1.
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Figure 2.1: Centralized energy management framework

A two-way communication link must exist between central controller and DERs. The

central controller sends the controlling signals to all the resources and consumers. This
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framework needs a large amount of information exchange.

2.2.2 Distributed energy management framework with multiple

operating agents

Aggregation and communication infrastructure of distributed energy management system

is depicted in Figure 2.2.
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Figure 2.2: Energy management framework with multiple operating agents

In this framework, the various DERs are aggregated by a controller usually called as
MGO, which is treated as a single entity. The MGO has autonomy to control and operate
the DERs in its designated domain. Multiple network-connected MGs are considered in
this framework. All MGOs operate in a cooperative manner to collectively act as a single
entity in relation to Distribution Utility (DU). This co-operation is enabled by an entity
called as MGs aggregator (MGA). The DU imposes certain power exchange limits and
provides information regarding electricity tariff to the MGA. The MGA is regarded as
an intermediary between the MGOs and the DU, and is responsible for power allocation
among MGs and generates a price signal for power trading among the MGOs. All MGOs
schedule their assets independently with some power exchange constraints and they are
coordinated via price signal for economic benefits. Therefore all the MGOs can oper-
ate in a decentralized manner to optimize MGO-owned energy resources and prosumers
with minimum mandatory information sharing. The proposed framework eliminates the

joint scheduling of all MGs for cooperative operations. Further, PHEVs and D-BESSs
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are aggregated by PL operators and D-BESS aggregators within a MG. MGO uses time-
varying tariffs to coordinate the PL operators and D-BESS aggregators, and to encourage
the flexibility and contribution of PLs and D-BESSs in MG’s energy management. The
aggregation (of different agents) and decentralized scheduling reduces the amount of in-

formation exchange required and addresses some privacy issues.

2.2.3 Hierarchical energy management framework

The Integrated Energy Management Framework based on hierarchical decision making

for ADNs with network-connected MGs is depicted in Figure 2.3.
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Figure 2.3: Hierarchical energy management framework

The different levels of this hierarchical model in order of hierarchy are DU, MGOs
and EUAs. In this energy management framework with multiple operating agents, the
objectives of different agents may or may not be same. However, the decisions of all
the agents are inter-related with each other. The optimization problem of the leader
agent consists of nested optimization that corresponds to the optimization problem of the
follower agent. For example, the DU optimization contains the optimality conditions of
the MGO optimization problem and similarly MGO optimization includes the optimality
conditions of the EUA. In this framework, the leader makes the first move, and then
the follower reacts optimally to the leader’s action. For the interaction between different

leader-follower stages, the framework uses a game-theoretic dynamic pricing strategy to

make use of the follower’s flexibility to improve the technical and economic aspects.
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2.3 Methodologies

Energy management frameworks examined in this thesis are introduced in the previous
section. Depending on the objectives, coordination schemes and operational constraints
of different operating agents, there is a need for dedicated solution approaches. The
basic concepts of the methods implemented to develop the solution approaches for energy

management framework are as follows.

2.3.1 Dantzig-Wolfe decomposition method

Dantzig—Wolfe Decomposition (DWD) method is a technique for efficient solution of lin-
ear and integer programming problems, with embedded substructures, in a decentralized
manner [118,119]. The DWD method can be used to divide the original problem into
sub-problems and a master problem. The master problem, which is equivalent to the orig-
inal problem in some respects, coordinates the sub-problems and ensures the satisfaction
of the coupling constraints. As the problems of different operating agents are associated
with certain constraints (coupling constraints), the optimal solution for the original prob-
lem cannot be achieved independently. Therefore, the DWD method can be adopted to
deal with such optimization problems without the need to share privacy data. The basic
mathematical structure of DWD method can be described as follows.

Consider the original problem as
min {c'x : Ax =b, x > 0}, (2.1)

where, constraint matrix Ax = b has structure as follows.

Ao Aal AaN Xo o
0 B, 0 Xa, _ @ (2.2)
0 0 ... BaN_ | Xay | _ba,N_
T
Here, ¢ = |:Co Cay - Caw] is the vector of cost coeflicients. The column vectors c,

and c,, are the cost coefficients of main operating agent (i.e., MGO or DU) and the a'*
operating agent (i.c., PHEVs, D-BESSs, or end-users), respectively. Similarly, the vectors

X, and x,, are associated with the variables of main operating agent and a‘* operating
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agent, respectively. The dimension of the matrices and the sub-matrices given in Equa-
tions (2.1) and (2.2) are as follows.
b = number of constraints in original problem x 1
x = number of variables in original problem x 1
A = number of constraints x number of variables in original problem
A, = number of coupling constraintsxvariables associated with main operating agents
A, = number of coupling constraints x variables associated with at* operating agents
B, = number of constraints x variables associated with a* operating agents
From the above said dimension, B,, X,, = b, represents the set of constraints for the a'*
operating agent, while A x, + A, X4, + -+ AyyXay = b, represents the set of coupling
constraints. According to DWD method, the original problem can be decomposed into a
master problem and ay subproblems in the following manner.

The Master-problem contains restructured objective function, all the coupling con-

straints and constraints associated with only main operating agent. The Master-problem

can be written as!

an W
min ¢l x, + Z Z(caTnxamw)uamw, (2.3)
an=1w=1
subject to
any W
AOXO + Z Z(Aanxan,w)uamw = bO A’ (24)
an=1w=1
w
Ugyw = 1 Oa, for a,=1,2 ..ap, (2.5)
w=1

Expression (2.3) can be expanded as,

ual,l
To1 Ta;1,1 -+ Taylaw .-+ Tal,W
. Lo2 Lay2,1 e T 2w e La 2 W
min [Col Co2 .- c(,p} + [Cm 1 Cay2 .- ca]q:| ) ] ] Uqy w
Lop Tayg,l -+ Taqw -+ TajqW
LUay,W
uaN,l
Lanl,1 e Tanlaw  o--- LTanl,W
Tan2,1 -+ Ta,22w -+ Tany2,W
+...+ [caNl Can2 -+ caN,n] . . . Ugpw |
Lapnr,l coo Tanraw oo Tanr,W
[Yan,W |
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Uy > 0. (2.6)

Here, variables u,, ., assign weights to the w'™ proposal of aﬁf" operating agents. A and
Oa, are the dual variables. The coupling constraints are enforced by Equation (2.4) and
convexity constraints are represented by Equation (2.5).

The Sub-problems (Pricing problems) enforce the constraints associated with indi-
vidual operating agents and are solved independently by operating agents considering the

dual values of master-problem. One of such sub-problem can be written as

min (¢ — X"A,,)Xa, — T, (2.7)

subject to
Banxan = bG«n? (28>
Xa, 2 0. (2.9)

Whenever the objective value of the sub-problem (Equation (2.7)) is negative the proposal

*

Xan

(optimum solution of (2.7)) is added to the Master-problem, otherwise no master
problem variable exists to improve the current solution. The schematic of DWD method
is shown in Figure 2.4 [120] and the basic algorithm of DWD method is depicted in flow
chart of Figure 2.5. If there is no optimal solution to any problem at any stage, the

process will be aborted at that stage.
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Figure 2.4: Schematic of Dantzig-Wolfe decomposition method

27



A 4

Initialization with 4 = 0 and 6, = 0

v

Solve Subproblem (2.7) for all
ay agents and share proposals

A 4

Set phase = 1

A 4

Add positive artificial variable x,, in Equation (2.4) as
b0—>b0 + Xar

<

A\ 4

Solve Problem to get dual variables 4 and o,
Minimize X,

Subject to: Equation (2.4) - (2.6)

broadcast dual variables 4 and o,

Yes No

\ 4

A4

Set phase =2 and xqr = 0 Solve Subproblem (2.7) for all ay agents

. considering ¢, = 0, and share proposals
an

broadcast dual variables 4 and o,

\ 4

Solve Subproblem (2.7) for all
ay agents and share proposals

0bj (27) < - No new proposals generated
(Infeasible problem)
Yes
v
Solve Master-Problem (2.3) to get No new proposals generated
dual variables 4 and o, (Optimal Solution)
\ 4

Figure 2.5: Basic algorithm for Dantzig-Wolfe Decomposition Method
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2.3.2 e-constraint method

In multi-objective optimization, optimal solution corresponding to a single objective can-
not optimize all the objectives simultaneously. In contrast to a single optimal solution, the
most preferred decision needs to be made in the presence of trade-offs between two or more
conflicting objectives. The e-constraint method is a technique to deal with multi-objective
optimization problems [121]. In the e-constraint method, there is no need to scale the
objective functions on a common scale. The e-constraint method can be described as

follows.

Assume the following multi-objective problem

min(fi(2), fo(a), oo fy(), (2.10)

subject to,

res.

Here, x is the decision vector, fi(z), fao(2),....,fp(x) are p objective functions to be mini-
mized, and S is feasible region.

In e-constraint method, one of the objective function is optimized and other (p — 1)
objective functions are considered as inequality constraints along with other constraints

of the problem. Now, the problem can be redefined as

minfi(x), (2.11)
subject to,
fg(l’) S €9y euny fn(ﬂ,’) S Ens vees fp(l’) S €p7
x el
where,
e, = max(f,) — [max(f,) — min(f,)] X (%) (2.12)

Here, « is a user defined integer parameter and possible values of 3, are 0,1,2,.....(a — 1).

To find max(f,,) and min(f,,), each function is optimized “individually” and a pay-off
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table is constructed, as shown in Equation (2.13).

Fi@D) R o R o ()

Aay) folzy) o fi@n) o fp(ah) (2.13)

_fl(x;) folay) o fulay) oo fo(ap)
In pay-off table given by Equation (2.13), x

*

* is the optimal value of © when f,(z) is

*
n

considered as an objective function to be optimized in problem (2.10). f¥(z}) represent
the optimum value of f, and f,(x}) is the value of f, when n' function is optimized

individually.

2.3.3 Shapley value method

The Shapley Value Method (SVM) is an appropriate solution concept used in cooperative
game theory to fairly distribute profits/costs to multiple players working in coalition
[122,123]. The Shapley value primarily applies to situations where each player works in
a coalition with unequal contributions to obtain a gain/payoff. The SVM defines the
importance and contribution of the each player in the coalition. For a coalitional game

(1, N), the Shapley value, ¢(1), of the i'" player can be obtained as

o - (CERELED (s - ws - gp). @

|
S n:

Here, N is the set of n players, ¢ is the characteristic function and |S| is the number
of players in coalition S. ¥(S) is the total profit/cost of coalition S and ¢, (S — {i}) is

profit /cost of coalition S without participation of it* player.

2.4 Summary

An overview of different energy management frameworks for a distribution system with
multiple operating agents and coordination schemes has been described in this chapter.
The basic concepts of three methods viz. Dantzig-Wolfe decomposition, e-constraint
method, and Shapley value method has also been described in this chapter. These methods
will be used in the subsequent chapters to develop the problem specific solution approaches

for energy management frameworks.

30



