
Chapter 4

Human Behaviour Traits aware

Action Recognition

Human actions recognition is a complicated task in real-world videos, as it often further

requires the understanding of human with involved emotion and gesture cues. For

instance, identifying whether two persons are “talking“ or “quarreling“ with each other

can only be distinguished through emotions, though actions may look similar in terms

of gesture. Similarly, two different actions, like “chopping“ and “frying“ in the kitchen,

may have similar emotions but have different gesture. However, ambiguous actions,

like “crying“ and “happy tears“ are indistinguishable, even focusing on gestures and

emotion. These actions are recognized only through long-term temporal context. Thus,

identifying complex human actions is still in its rudimentary phase to the best of our

knowledge.

Complex and ambiguous actions that are shown in Figure 4.1 have not been well ad-

dressed in the literature. This motivated us to propose an effective framework, known

as Human Action Attention Network (HAANet) for action recognition. It can effec-

tively distinguish complex human actions in videos considering attention on emotion,

gesture, and long-term temporal context. Although our HAANet is illustrated for the
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Figure 4.1: Video-based human actions can be understood through reasoning on mul-
tiple traits, such as ‘what is the facial expression?’, ‘what is the pattern of gesture?’,
and ‘what has been happening?’. These aspects help in recognizing ambiguous actions.
Video frames are from our VALC dataset.
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applications of action recognition, it may also be extended to other applications un-

der domain of computer vision, such as action localization [155, 156] and salient visual

detection [157,158].

4.1 Our Contribution

The major contributions of our work are briefly abstracted as follows:

1. We present a joint trainable multi-attention network to capture visual saliency

along with long temporal context for action recognition in videos. Our network

addresses ambiguous action classes which can distinguish only by learning se-

mantic information in terms of facial expressions and gestures. We also capture

motion cues over long-duration videos to exploit the temporal correlations.

2. We design a new shallow backbone network (SBN) that integrates 3D convolution

layers with lateral connections to merge low, mid, and high-level spatio-temporal

feature tensors. Our backbone network acquires the short-term finer details and

high-level semantics to output spatio-temporal features. It addresses the degra-

dation problem and requires an optimal number of training parameters.

3. We incorporate a visual attention network (VAN) to extract visual saliency fea-

tures from salient regions related to emotion and gesture in a video. It helps to

add clarity in identifying complex and ambiguous actions in a video and enhance

the performance of recognition. Feature tensor obtained from backbone network

is supervised using learned weights in RAVDESS and IsoGD datasets to produce

the attention scores.

4. We devise a long-term attention network (LAN) consisting of spatial and tem-

poral attention module to capture action features in long-duration videos. LAN

identifies salient spatio-temporal contextual cues using attention mechanism in

ConvLSTM. Spatial and temporal attention are designed to assign an attentive

score to each pixel location and different frames, respectively. We reformulate
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ConvLSTM to mitigate the ambiguity of recognizing classes, which can be classi-

fied precisely only through long-term temporal context.

5. We propose a temporal attention pooling (TAP) that incorporates class-aware

attentional pooling to capture discriminative semantic features. The class-aware

attentional pooling is a trainable layer that extracts a class-aware feature vector

over the time. It classifies the video segments into the related action class based

on generated spatio-temporal feature tensor. In addition, we estimate a regular-

ized objective function in the joint training model for efficiently training overall

architecture.

6. We perform an extensive set of experiments on five benchmark datasets to mani-

fest efficiency of HAANet. An abundant ablation studies is performed to highlight

the impact of different modules of our network. As per knowledge, no dataset

exist in the literature that contains ambiguous actions pairs that can only be clas-

sified based on important visual saliency cues and long-term temporal context.

We therefore create a new dataset, named as Visual Attention with Long-term

Context (VALC), that contains 32 complex and ambiguous action classes with

about 100 videos per class.

4.2 Organization of the Chapter

The subsequent section summarizes the SOTA literature for action recognition in videos

and visual cues. In Section 4.4, we embellish our HAANet. We examine the results ob-

tain from different experiments and ablation studies in Section 4.5. Lastly, we conclude

the chapter and related publication in Sections 4.6 and 4.7, respectively.
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4.3 Literature Survey

In [159], authors have proposed hardware-efficient model where a part of channels are

shifted along temporal dimension. Distillation mechanism with 3D convolutions in [146]

is used to recognize human actions. Authors have illustrated global diffusion network

that intends to learn local and global representations in unified fashion [160]. In [137],

non-local operations are used as an attention mechanism to capture long-term depen-

dencies for video classification. In [143], the authors have introduced network that in-

cludes long-term content to nimble relationships within the actions. Timeception [121]

layer is designed to learn long-term temporal dependencies and variations in temporal

extents of complex actions. SlowFast Network [150], consists of two-path way, i.e., one

for low frame rate and other for higher ones. Quan et al. [161] have proposed LSTM

network with an attention mechanism for action recognition. FactorNet [162] focus at-

tention to separate activity of person performing action from the relevant objects and

co-occurring background bias.

In [163], authors introduce global and local knowledge-aware attention network to

recognize action classes. R(2+1)D BERT [164] is combination of late temporal modeling

and 3D convolutions to recognize action in video. Authors in [165, 166] have proposed

a vision transformer that achieves SOTA without any convolution layers for image

classification and action recognition tasks. In [167], single-stage continuous gesture

recognition framework is proposed for detecting and classifying multiple gestures in

a video. In [168–170], the authors perform gesture recognition tasks using machine

learning algorithms.

In [171–173] 3D-CNNs are adopted to learn appearance and motion features in

gesture videos. Some works are related to video-based emotion recognition in [174,175].

These works have evaluated deep features extracted from different CNNs, including

AlexNet, VGGNet and GoogleNet for emotion recognition in videos. In [176] authors

have improved representation capacity of an architecture and reduced confusion between
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pairs of ambiguous action classes using discriminative filter bank. Nevertheless, to the

best of our knowledge, there is scarcely any feature fusion of human traits methods

developed for improving recognition of actions in videos.

Many challenging public datasets were proposed, such as UCF101 [1], HMDB51 [2],

and Kinentics400 [133] that focused on capturing a broad diversity in terms of the single

unambiguous classes of human activities and their motion patterns. This motivates us

to create a novel video-based action dataset containing only ambiguous actions.

4.4 Proposed Approach

We propose a deep neural network, known as HAANet, for action recognition in videos.

Figure 4.2 depicts block diagram of the overall network. Firstly, we design a backbone

network for capturing short-term video spatio-temporal features. Secondly, we intro-

duce a visual attention network that focuses on selective regions of video to capture

visual saliency features related to facial expression and gesture. Thirdly, we propose a

long-term attention network to learn contextual features over long-term temporal de-

pendencies of actions in video. Finally, reformulate the optimized objective function

for joint training that can train the overall architecture.
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Figure 4.2: Overall architecture of our HAANet. “deconv”, “conv”, and “m pool”
depict deconvolution, convolution, and max-pooling operations, respectively.



4.4. Proposed Approach 71

Table 4.1: Architecture of proposed SBN. ↑ and ↓ indicate up-sampling and down-
sampling, whereas S and T mean spatially and temporally, respectively.

Layers
Backbone Network LCs

Blocks Output Size [Out]
conv 1 [3× 3× 3, 64] T × 112× 112× 64 -
max pool 1 1× 2× 2 T × 56× 56× 64 -
conv 2(a,b)

[
3× 3× 3, 128]× 2 T × 56× 56× 128 conv2b (2× ↓ ST)

max pool 2 1× 2× 2 T × 28× 28× 128 -
conv 3(a,b,c)

[
3× 3× 3, 256]× 3 T × 28× 28× 256 conv3b (2× ↓ T)

max pool 3 2× 2× 2 T/2× 14× 14× 256 -
conv 4(a,b)

[
3× 3× 3, 512]× 2 T/2× 14× 14× 512 conv4b (2× ↑ S)

output tensor M of size T/2× 28× 28× ζ (all LCs are concatenated)

4.4.1 Backbone Network

Video-based human actions are spatio-temporal signals comprising of visual appear-

ance that dynamically progress over time. To differentiate several action categories,

3D convolutions learn spatio-temporal kernels over spatial, temporal, and semantic

channel subspace. 3D kernel W ∈ Rt×x×y with ζ filters learns spatio-temporal pat-

terns by convolving with an input RGB video segment V ∈ R†′×X ′×Y ′×C′ as follows:

M = V ∗W, where ∗ denotes a 3D convolution operator and M ∈ R†×X×Y×C is resul-

tant spatio-temporal feature tensor. {X ′,Y ′} and {X ,Y} are spatial resolution of input

and output tensors whereas †′ and † are input and output temporal length, respectively.

An input video segment has RGB channels. Inspired by [12], we have implemented a

shallow backbone network, named as SBN that contains eight 3D convolutional layers

(conv 1−conv 4b) and three max pooling layers (max pool 1−max pool 3). The main

design criteria of SBN is to reduce the number of parameters as compared to other

backbone networks such as C3D, 3D ResNet, 3D ResNet34, 3D ResNet101. Accord-

ing to experimental observation, parameters in C3D, 3D ResNet, 3D ResNet34, 3D

ResNet101 are too high as compare to SBN, shown in Table 4.5. SBN takes as input

a group of RGB frames, denoted by segment. The convolution layers are used to ex-

tract complex features of these segments to improve recognition accuracy. In backbone
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network, pooling layers gradually pools reduced features to have fewer parameters and

computations in network. These layers are utilized after first, third, and sixth convolu-

tional layers. Size of kernel of the first and second maxpool layers is 1×2×2, while third

layer is of size 2× 2× 2. Purpose to merge features of the temporal domain later is to

conserve long-term temporal span. The early convolution layer conv 2a,b of the back-

bone network detects low-level features, such as moving edges, blobs or corners. The

middle convolution layer conv 3a,b,c of network detects mid-level features. The deep-

est layer conv 4a,b learns complex moving patterns, such as moving circular objects,

face related motion, and biking-like motion. Low-level and mid-level spatio-temporal

features are essential for capturing the finer details of human actions. Therefore, SBN

also learns spatio-temporal features inherited from lower, middle, and higher layers to

obtain the output tensor M using lateral connections (LCs). The output feature tensor

of the lower layer (conv 2b) is 2× downsampled by strided convolution and higher layer

(conv 4b) is 2× upsampled through deconvolution. Mid-level feature tensor extracted

from conv 3b is temporally downsampled using temporal pooling with the kernel of

size 2 × 1 × 1 and merged with the other two tensors of same size T/2× 28× 28× ζ.

Hence, SBN preserves low-level, mid-level, and high-level spatio-temporal information.

The output feature of the proposed shallow network is M ∈ RT/2×28×28×ζ . 3D-batch

normalization [126] is stacked immediately over each convolution layer to improve the

performance and optimize our backbone network. The backbone network architecture

is ablated in Table 4.1. SBN learns spatio-temporal features from a given video seg-

ment. However, it is incapable of emphasizing action-specific semantic information of

a video segment. Hence, to capture visual saliency information from a video segment,

we have incorporated a visual attention network.
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4.4.2 Visual Attention Network (VAN)

We humans consider various spatial features, like textures, color, and shape, along with

our cognitive visual mechanism that provides selective attention to relevant regions

for correctly recognizing actions in a video segment. The selectively attended regions

could correspond to either interesting activities or prominent objects in a video segment

that are most attractive to viewers. Visual attention mechanism significantly narrows

the search term by giving the hierarchical priority within a target video segment to

perform further activity analysis on these regions. The visual attention mechanism is

incorporated in HAANet to extract relevant information from various parts of the video

segments.

In this section, we incorporate a visual attention network, denoted by VAN, to focus

on action-specific visual saliency information, such as, gesture and facial expression.

The main aim of VAN is emphasizing action-specific semantic information of a video

segment to recognize human action more precisely. For instance, the ambiguous actions,

like “chopping“ can be distinguished from “slicing“ in terms of gesture. These two

action videos must be classified into two different classes. Gesture are different, but

have similar facial expression. Our visual attention network takes feature tensor M

of backbone network as an input. This tensor is initially supervised separately in two

parallel branches, i.e., facial expression and gesture with learned weights, as shown in

Figure 4.2. First, we have squeezed channel information of M globally with respect to

spatial resolution to reduce the number of parameters. Formally, R is computed by

shrinking M as follows:

R =
1

ζ

∑

j∈ζ
mi,j,k, (4.1)

where mi,j,k is an element of M. T = T/2 and H × W is spatial resolution with ζ

channels. Next, we have formulated facial expression and gesture supervised attention
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maps Pepr and Pgst, which are given by:

[Pepr, Pgst] = [
M̂epr

Φ(M̂epr)
,

M̂gst

Φ(M̂gst)
], (4.2)

[M̂epr, M̂gst] = [σ(ω2ReLU{ω1R}), σ(ω4ReLU{ω3R})], (4.3)

where {σ(·),Φ(·)} are sigmoid and standard deviation functions. The sigmoid function

is used as a gating mechanism and the standard deviation function is used for normal-

ization. {ω1, ω2, ω3, ω4} are the weights for facial expression (epr) and gesture (gst)

branches, respectively. ReLU represents a ReLU activation function [177], which is

applied to the feature tensor M for generating output with positive region predictions

in both cases. Pepr represents the activation maps with respect to facial expression,

whereas Pgst has important score values of gesture. The output tensors for expression

and gesture branches are aggregated, reshaped, and then recalibrated with the original

feature tensor M through element-wise product to obtain R ∈ RT/2×28×28×ζ , which is

computed by:

li = Wepr
i × pepri + Wgst

i × pgsti , (4.4)

R = [l1 m1, · · · , lT ×H×W mT ×H×W ], (4.5)

where {li,mi} are i−th elements of L and M, respectively. L is the feature tensor obtain

by element-wise addition of facial expression and gesture branches. {Wepr,Wgst} are

the learnable parameters. The output of VAN module is the feature tensor A, which is

obtained by element-wise addition of tensors R and M. SBN and VAN focus on spatio-

temporal features with detailed visual understanding of the actions but still incapable of

capturing long temporal context which lasts for several seconds. The cues of evaluating

actions in long-duration helps in obtaining “what is happening in the present“ and

“what’s gonna happen next“ based on “what has happened earlier. In such a scenario,

sophisticated mechanism like LSTM can be introduced.
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4.4.3 Long-term Attention Network (LAN)
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Figure 4.3: Architecture of Long-Range Attention Network (LAN).

The importance of short- to long-term temporal dynamics varies in classifying dif-

ferent actions. Actions like talk or quarrel can be recognized by short-term temporal

dependencies in only a few frames. However, other actions like happy tear or cry, long-

term temporal dependencies provide more discriminative cues for classification, as these

actions last long in time. Nevertheless, such variations of temporal patterns have not

been fully exploited in most existing methods. Therefore, we need to capture long-term

temporal dynamics for improving the performance of recognizing actions accurately. In

order to preserve long-term temporal and spatial dependencies of video-based actions,

we have utilized ConvLSTMs in our network. ConvLSTM [130] has input tensor Xt,

future state of a cell Ct, and hidden state Ht−1 at time t and t−1, respectively. ConvL-

STM is a variant of LSTM which learns the spatio-temporal features due to its inherent

convolutional structure [130]. The hidden states, the inputs, and the cell outputs are
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{H1, · · · ,Ht}, {X1, · · · ,Xt}, and {C1, · · · ,Ct}, respectively. It also contains the for-

get gate ft, output gate ot, input gate it, and memory cells gt. It has state-to-state

and input-to-state transitions to extract correlation information of spatio-temporal fea-

tures. The spatial and temporal resolution of output feature tensors M and A are

down-sampled by using pooling with a kernel of size 1×2×2 to obtain F ∈ RT ×14×14×ζ

and A ∈ RT ×14×14×ζ , respectively, as shown in Fig 4.3. The inputs of ConvLSTM is

reformulated to compute the discriminative features over several video segments. Fea-

ture tensor FAφ
t is utilize to encode the spatial and temporal cues of video segments,

where φ represents either Ft or At for t-th video segment. This helps to capture un-

derlying background context cues with respect to space and time. The input FAφ
t at

each timestep t is given by:

FAφ
t = {FAφ

t (1),FAφ
t (2), · · · ,FAφ

t (T ×X × Y )}. (4.6)

The feature tensor FAφ
t (k) ∈ Rζ is a set of feature tensors at k-th spatial locations,

where k = {1, 2, · · · , T × X × Y }. We introduce a novel attention mechanism to

identify important long-term spatial and temporal contextual information. An atten-

tion is given to spatial features for capturing key regions followed by computation of

the segment-score of each spatial feature to project attention on temporal features.

FAφ
t (n, k) is a feature tensor at k-th location of n-th feature tensor which is used to

estimate essential regions spatially. The current input FAφ
t (n, k) and previous hidden

state Hφ
t−1 are convolved with kernel Wφ

fa and Wφ
h, respectively, to generate tensor with

spatial attention. The salient spatial locations in the feature tensor FAφ
t (n, k) at t-th

time step is calculated by:

Υφ
t (n, k) = Wφ

Υ ∗ tanh(Wφ
h ∗Hφ

t−1 + Wφ
fa ∗ FAφ

t−1(n, k)), (4.7)

where {Wφ
Υ,W

φ
h,W

φ
fa} are spatial attention parameters. Υφ

t (n, k) is un-normalized spa-
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tial location score of FAφ
t (n, k). The normalized Υ̂φ

t (n, k) is computed by:

Υ̂φ
t (n, k) =

exp{Υφ
t (n, k)}λΥ̂

∑K2

j=1 exp{Υφ
t (n, j)}λΥ̂

, (4.8)

where λΥ̂ is a parameter to control the sharpness of location-score map. The spatial

attention score Bφ
t (n, k) of n-th feature tensor at k-th location is formulated by:

Bφ
t (n, k) =

K2∑

k=1

Υ̂φ
t (n, k) ◦ FAφ

t (n, k), (4.9)

where ◦ is Hadamard product and K2 is spatial resolution. The aforesaid analysis

elaborates that the motion of a human in a video can be observed through spatial

relationships within the successive segments of video. An attention method is further

applied over the temporal features for selectively tracking the actions in video segment.

The spatial tensor Bφ
t (n, k) is given as input to temporal attention mechanism for

estimating clip score Γφt (n). The n-th temporal tensor Γφt (n) at t-th time step can be

formulated by:

Γφ
t (n) = Wφ

Γ ∗ tanh(Wφ
h ∗Hφ

t−1 + Wφ
b ∗Bφ

t−1(n, k)), (4.10)

where temporal attention parameters are {Wφ
Γ,W

φ
h,W

φ
b } and Bφ

t (n) is the n-th spatial

attention feature tensor. We normalize Γφ
t (n) to obtain the temporal score Γ̂φ

t (n), which

is calculated as follows:

Γ̂φ
t (n) =

exp{Γφ
t (n)}λΓ̂

∑T
j=1 exp{Γφ

t (j)}λΓ̂

, (4.11)

where λΓ̂ is a parameter to control sharpness for normalization. The temporal score

Γ̂φ
t (n) reflects the temporal importance of n-th temporal feature tensor at t-th time

step. The spatial and temporal score use Υ̂φ
t (n, k) and Γ̂φ

t (n) as the shared weights to

reduce the computations and model complexity. Further, it is summarized to obtain
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spatial-temporal tensor Sφt (n), which is defined by:

Sφt (n) =
T∑

n=1

Bφ
t (n) ◦ Γ̂φ

t (n). (4.12)

The dimensionality of Sφt (n) is same as of FAφ
t , where ζ is 512. We therefore con-

clude that Sφt is a spatio-temporal feature tensor that capture the salient spatial and

temporal cues. Our spatial-temporal attention method captures the essential context

at spatial and temporal feature tensors that help in the prediction of human action

significantly. Xt is an input to ConvLSTM, which is the feature tensor obtained from

FAφ
t . To preserve spatial and temporal correlation with respect to time, Sφt is fed as an

extra input into ConvLSTM. Therefore, our variant of ConvLSTM, known as modified

ConvLSTM, is reformulated as:

ft
φ = σ(Zφ

xf ∗Xφ
t + Zφ

hf ∗Hφ
t−1 + Zφ

sf ∗ Sφt + bφf ), (4.13)

it
φ = σ(Zφ

xi ∗Xφ
t + Zφ

hi ∗Hφ
t−1 + Zφ

si ∗ Sφt + bφi ), (4.14)

ot
φ = σ(Zφ

xo ∗Xφ
t + Zφ

ho ∗Hφ
t−1 + Zφ

so ∗ Sφt + bφo ), (4.15)

gφt = tanh(Zφ
xc ∗Xφ

t + Zφ
hc ∗Hφ

t−1 + Zφ
sg ∗ Sφt + bφc ), (4.16)

[Cφ
t , Hφ

t ] = [fφt ◦Cφ
t−1 + iφt ◦ gφt , oφt ◦ tanh(Cφ

t )], (4.17)

where Zφ
θ and bφϑ are the shared parameters of our ConvLSTM network. The sigmoid

activation, tanh function, forget, input, and output gates, memory cells, cell output

state at t-th time step, the current input, previous the hidden state, spatio-temporal

attention feature tensor are represented by σ, tanh, {fφt , iφt ,oφt ,gφt }, Cφ
t , Xφ

t , Hφ
t−1, and

Sφt , respectively. The combination of both inputs Xφ
t and Sφt allows ConvLSTM to

determine discriminative actions at each time step. Finally, we obtain current hidden

state in both SBN and VAN, i.e., Hf
t and Ha

t , respectively. The hidden states are

combined using element-wise addition to get Q ∈ RT/2×14×14×ζ and is given as input in
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the temporal pooling layer. This will diminish the dimension of Q.

4.4.4 Temporal Attention Pooling (TAP)

In recent literature, concept of feature pooling in temporal dimension has been widely

used for reducing the time to process the long-range videos. It performs statistical

operations within multiple regional windows with respect to time to capture motion

information of videos. In HAANet over the time steps, the temporal pooling layer

is stacked on above the LAN module, as depicted in Figure 4.2. We exploit atten-

tion pooling in temporal dimension that can capture discriminative semantic aspects.

Qt ∈ R14×14×ζ is a feature tensor of a video segment at time step t ∈ {1, · · · , T/2}.

These tensors are given as input to temporal pooling at t-th time step. Weight matrix

Wt is incorporated to produce weighted feature tensors Ω
(att)
t using temporal pooling

operator.

We design a temporal attention pooling model that can capture class-aware spatio-

temporal discriminative features. A video has the ability to distinguish complex human

actions. It extracts important semantic information in t-th time step by computing

attentive scores on tensor Qt. The obtained attention tensor Ω
(att)
t (k) of k-th class is

formulated by:

Ω
(att)
t (k) = [1TEk]

T, (4.18)

where Ek = Nk ◦WT, (4.19)

Nk = Qtßk, (4.20)

W = QtΨ, (4.21)

where k indicates action classes. 1 ∈ RT ×η is a tensor of all ones, where η = 14×14× ζ

and {ßk,Ψ} ∈ Rη×1 are class-specific attention features vectors. The class-specific

tensor is extracted using a fully-connected layer followed by sigmoid activation. In
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most deep neural networks, vectorized feature maps are first fed to dense layers and

then to a softmax layer. Since the dense layers are susceptible to overfitting, we thus

use the global average pooling (GAP) layer to reduce overfitting and the number of

model parameters.

4.4.5 Joint Training Mechanism

HAANet consist of SBN, VAN, and LAN for action recognition in a video. It is difficult

to optimize the overall architecture. Therefore, we introduce a joint training mechanism

to train overall architecture.

1) Computation of VAN learned weights: In case of VAN, we have used the

method of pseudo-label to estimate the true labels from the prediction of classifier. We

have used the pseudo labels as a ground-truth of facial expression and gesture, which

are unavailable with action classes. The loss function for computing pseudo-labels with

the given set of unlabeled instances Z ′ and labeled instances Z are formulated as:

£epr =
1

Z
∑

i∈Z

∑

fj∈F
£(pifj ,q

i
fj

) + µ1
1

Z ′
∑

i∈Z′

∑

fj∈F
£(p̂ifj , q̂

i
fj

), (4.22)

£gst =
1

Z
∑

i∈Z

∑

gj∈G
£(pigj ,q

i
gj

) + µ2
1

Z ′
∑

i∈Z′

∑

gj∈G
£(p̂igj , q̂

i
gj

), (4.23)

where {µ1, µ2} are weights to control the contribution of unlabeled instances to the

overall loss and value are computed similar as [178]. {pifj ,pigj} are the predicted values

of Z instances and {qifj ,qigj} are labels of facial expression and gesture in labeled data.

The predicted values of Z ′ instances are {p̂ifj , p̂igj} and pseudo-label are {q̂ifj , q̂igj} of

facial expression and gesture in unlabeled data. We have obtained the pseudo facial

expression labels by running pre-trained 3D ResNet-18 on RAVDESS dataset [179].

Similarly, the pseudo gesture labels are obtained through pre-trained 3D ResNet-18 on
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IsoGD dataset [180]. The overall loss of VAN is given by:

£VAN = β1£epr + β2£gst, (4.24)

where {β1, β2} are regularization parameters that balance the contribution of both facial

expression and gesture branch.

2) Regularized objective function: The backbone network along with VAN and

LAN is trained to predict accurate probability of action classes. The main objective

function £main of the overall architecture is formulated by:

£main = £SBN + λ1£VAN + λ2£LAN, (4.25)

where {£SBN,£VAN, £LAN} are loss function of backbone, visual attention and long-

term attention networks, respectively. {λ1, λ2} are regularization parameters that bal-

ance the contribution of both VAN and LAN. The objective function for classification

is given by:

£SBN = − 1

Nb

∑

i

âi,j log (ai,j), (4.26)

where Nb stand for batch size and i is the class of a video segment in a batch. ai,j is the

predicted likelihood of an action on j video instance and âi,j is the ground truth label

of an action. The second loss term consists learned weights £VAN, which is computed

using Eq. (4.24). The last loss function for the LAN is given by:

£LAN = − 1

Ts

1

C

Ts∑

t=1

C∑

c=1

(ŷct log yct) + λΘ ‖Θ‖2 , (4.27)

where Ts is total time steps, C is number of action classes, Θ denotes model parameters,

λΘ is coefficient of weights, yct denotes predicted class, and ŷct is ground truth of action

classes.

3) Joint training of overall architecture. Optimization of SBN, VAN, and LAN is
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rather difficult due to mutual influence on each other. We incorporate a joint training

model to train different modules of HAANet efficiently. To ensure the convergence of

overall architecture, joint training procedure is elaborated in Algorithm 4.1.

Algorithm 4.1: Joint training of SBN, VAN, and LAN.

Input : Model training parameters N1, N2, and N3.
Output: Converge overall architecture.

1 Initialize the network parameters using He.
2 //pretrain SBN: Fine-tune SBN by N1 iterations.
3 //pretrain VAN: With LAN weights being fixed as ones, jointly train SBN

and VAN. Fine-tune SBN and VAN by N1 and N2 iterations.
4 //pretrain LAN: With VAN weights being fixed as ones, jointly train SBN and

LAN. Fine-tune backbone network and long-term attention network by N1 and
N3 iterations.

5 //jointly train HAANet: Fix both VAN and LAN learned in step 3 and 5.
Jointly fine-tune the HAANet N1,N2, and N3 iterations.

4.5 Experimental Results

We discuss the experimental and ablation results in this section.

4.5.1 Datasets and Metrics

UCF101 [1] includes 13.3k video instances with 101 action classes that are clustered

in 25 groups. In each group, there are 4-7 videos of an action. HMDB51 [2] consist

6.8K videos collected from movies and Youtube with 51 action classes. It contains 3.7k

training videos. Kinetics400 [133] consists of 300k videos with 400 action categories,

which is divided into 240k for training and 20k for validation. The rest 40k as test

videos. ActivityNet [135] includes 203 action categories with 193 samples per category

on an average. The trimmed videos present in the dataset is of 27.8k. An average

duration of a video is 3-7 minutes. Breakfast-Actions [136] is a dataset of 10 cooking

activities conducted by 52 individual actors in 18 distinct kitchen scenes. It consist of

1712 videos with 1357 as training data and 335 for testing purpose.
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Figure 4.4: Mean accuracy of individual modules in VALC dataset.

Visual Attention with Long-term Context (VALC) is a dataset with 32 am-

biguous action classes with 107 videos in each action class. We have addressed the

ambiguous actions pairs and classify them based on important visual saliency cues.

However, existing datasets such unambiguous class pairs. This motivated us to create

a new dataset, named as VALC dataset. The ambiguous videos are collected from

movies, YouTube, and web series, which are recorded in the presence of large variations

in viewpoint, camera motion, illumination conditions, cluttered background, human ap-

pearance and pose, and object scale. VALC dataset mainly addresses the action class

pairs which are ambiguous in nature in terms of facial expression and/or gesture of the

actor in an action or long-term temporal context of the action video. Crowdsourcing is

utilized for annotating videos. The statistics of the dataset are shown in Table 4.2.

Table 4.2: Statistics of VALC dataset.

Attributes Values Attributes Values
Actions 32 Min clip length 2 sec
Clips 3520 Max clip length 71 sec

Mean clip length 10 sec Frame rate 30
Total duration 10 hour Min. Resolution 320× 240
Camera motion Yes Resources YouTube and movies
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We have shown the accuracy with respect to individual modules of HAANet in

Figure 4.4. We observe that HAANet performs better in terms of accuracy but con-

tains larger parameters as compared with I3D method as shown in Table 4.3 on VALC

dataset. Moreover, overhead brought by HAANet is actually little larger i.e., it occupies

only +17.5 computation effort as compare to I3D. We report Top-1 and Top-5 metrics

for Kinetics400 dataset, Top-3 for ActivityNet dataset, and mean accuracy (Acc.) met-

rics for rest of the benchmark datasets for performance evaluation of actions. The

computational complexity of the HAANet is computed in respect to flop counts and

number of training parameters, denoted by params. Figure 4.5 depicts confusion matrix

for few classes.

Table 4.3: Performance of current SOTA methods on VALC dataset with computa-
tional complexity. Here parameters of HAANet is calculated after freezing SBN.

Methods VALC params
(Acc.) (in millions (M))

C3D [12] 70.2 78.41
I3D [140] 73.85 12.70

3D-ResNet-34 [15] 75.1 65.50
3D-ResNext-101 [15] 77.0 48.34

LGD [160] 79.35 46.40
HAANet 80.9 30.20

argue 87.5 12.0 0.0 0.0 0.5 0.0
gossip 11.1 88.1 0.0 0.0 0.4 0.4
hug 0.1 0.0 89.3 10.0 0.0 0.6
grab 0.0 0.0 10.5 89.1 0.4 0.0
cry 1.4 0.0 0.0 0.0 86.2 12.4

happytear 0.0 0.0 0.0 0.0 15.0 85.0
argue gossip hug grab cry happytear

Figure 4.5: The confusion matrix of VALC dataset.
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4.5.2 Implementation Details

RGB inputs. We divide videos into K segments and randomly choose 1 frame from

each segment. This selection furnishes robustness to variations and allows HAANet to

exploit all RGB fully. HAANet directly extracts features and performs predictions on

16-frame clips, which are simultaneously processed by stacking 3D ConvNet. VAN.

VAN consists of two branches, i.e., facial expression and gesture. We independently

train facial expression and gesture branches on RAVDESS and IsoGD datasets, re-

spectively, to produce weighted scores accordingly after channel-wise global squeezed

operation. Hyper-parameters. We start with learning rate of 0.01 for UCF101 and

HMDB51, which is reduced by factor of 10 for every 30 epochs. Similarly, we train our

model on Kinetic400, Breakfast-Actions, and VALC for 240 epochs except ActivityNet

at 180 epochs. We use Adam optimizer and momentum of 0.9. We adopted weight

decay of 5 ×10−4. We have utilized dropout layer and set dropout to 0.5. Training.

HAANet is implemented based on Pytorch. We have trained model and computed all

parameters with 8GTX 1080TI GPUs. Data augmentation is performed at the time of

training to avoid overfitting through corner cropping and scale-jittering. Input size of

video is N × T × 112 × 112, where N is batch size and T is number of sample frames

per video segment. In our experiment, we have set value of T to 16 and N as 30. In-

ference. We re-scale short side to 112 pixels of RGB frames. Alike [138], we randomly

sample 10 times from full video and estimate individual softmax scores. We averaged

softmax scores of all segments to obtain final prediction.

4.5.3 Ablation Study

Temporal term of video segment. We investigate the consequence of temporal

length in an input video segment in Table 4.4. We have experimented with the number

of frames from 8 to 32 on UCF101 and HMDB51 datasets. As number of frames

increases, the precision and number of parameters increase. Therefore, there is a trade-
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off between accuracy and computational complexity. Although, the parameters in case

of temporal length of 8 frames are less, but it is unable to capture the motion information

accurately. Thus, we have chosen a temporal term of 16 frames as it provides high

accuracy. However, we observe that the performance of HAANet also degrades at

larger temporal length since it may lead to a misclassification problem.

Table 4.4: Effect of temporal length on UCF101, HMDB51, and VALC.

#frames UCF101 HMDB51 VALC FLOPs
(Acc.) (Acc.) (Acc.) (/video)

8 96.9 83.2 78.9 0.5×
16 98.5 86.6 80.9 1×
32 98.0 85.8 81.1 2×

Impact of backbone network. SBN is kept shallow to limit training parameters.

Table 4.5 shows effect of variation in SBN keeping rest of the proposed HAANet same.

As per Table 4.5 SBN is better than other variants with fewer parameters. It is observed

that parameters in 3D ResNet, 3D ResNet34, 3D ResNet101 are too high that leads

to overfit the model and drop test accuracy. We also investigate effect of use of LC on

performance of HAANet. We observe that performance drops after removing LC from

SBN.

Table 4.5: Effect of 3DResNet and C3D network as SBN on UCF101 and Kinetics400
datasets.

Backbone UCF101 Kinetics400
#params Acc. #params Top-1

3DResNet18 33.23M 95.4 33.38M 77.1
3DResNet34 63.50M 96.6 64.00M 80.2
3DResNet101 86.06M 94.6 86.20M 80.2
C3D (1 net) 78.41M 95.1 79.63M 81.3
SBN (with LC) 15.71M 98.5 15.75M 83.0
SBN (w/o LC) 15.71M 97.4 15.75M 81.0

Impact of different branches in VAN module. We have proposed VAN to focus

on action-specific visual saliency information, such as, gestures and facial expression.
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Table 4.6 shows effect of individual and fusion of visual saliency information. It is

observed that fusion model that includes features of facial expression and gesture per-

forms better than other individual models. VAN module performs an essential part in

recognizing action classes with ambiguous pairs.

Table 4.6: Comparison of importance of FE, gesture, and FE + gesture on Breakfast-
Actions and VALC datasets. FE is facial-expression.

Visual Breakfast-Actions ActivityNet VALC
Attention (Acc.) (Top-3) (Acc.)
FE 89.6 86.95 79.5
gesture 93.3 85.4 78.2
FE + gesture 94.8 87.7 80.9

Study on pooling mechanisms. We have exploited different types of pooling mech-

anisms: max, average, standard deviation, and attention pooling in Table 4.7. It is

clear from our experimentation that temporal attention pooling provides better results

for different datasets.

Table 4.7: Impact of temporal pooling mechanisms on HMDB51, BreakFast-Actions,
and VALC datasets.

Temporal HMDB51 BreakFast-Actions VALC
Pooling (Acc.) (Acc.) (Acc.)
max 84.0 92.9 78.7
average 82.4 92.1 76.7
standard deviation 85.5 93.5 79.2
attention 86.6 94.8 80.9

Impact of individual modules and Visual Results. In Table 4.8, we examine

how well an individual module can perform in recognition task. First, we eliminate

visual attention and long-term attention networks from HAANet and name the rest as

SBN only. Similarly, VAN module is only initialized with the backbone network and

named as VAN only. Furthermore, only long-term attention network is initialized with

the backbone network and denoted by LAN only. We also have evaluated impact of

standalone backbone network with the visual attention network, which is represented
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Table 4.8: Effect of backbone network, visual attention, and long-range context mod-
ules on Kinetics400, VALC, and ActivityNet. SBA+LAN is model without using visual
saliency cues.

Models Kinetics400 ActivityNet VALC
(Top-1) (Top-3) (Acc.)

SBA only 78.2 82.5 71.0
VAN only 78.8 82.9 73.6
LAN only 79.1 83.2 74.9
SBA+VAN 79.5 83.8 78.4
SBA+LAN 80.8 85.2 78.6
VAN +LAN 81.8 86.5 79.7
SBA+VAN+LAN 83.0 87.7 80.9

by SBN+VAN. Next, we exclude VAN from HAANet and name the rest as SBN+LAN.

Likewise, we study the impact of visual attention with a long-term attention network,

which is indicated by VAN+LAN. All modules have notable impact on the accuracy

of HAANet but our proposed variant outperforms other variants. We show the visual

results in Figure 4.6.

Figure 4.6: Attention maps of two videos of VALC dataset, which indicate a pair of
ambiguous actions, like ‘grab’ and ‘hug’.
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4.5.4 Comparison with SOTA on benchmark datasets

We compare HAANet with recent literature on five benchmark datasets. By default,

we consider RGB modality, if not mentioned. Table 4.9 shows the performance com-

parison of HAANet with SOTA methods on UCF101 and HMDB51 datasets. Our

model achieves comparable performance on UCF101. On HMDB51, our model achieves

the highest improvement of 1.5% as compared to R(2+1)D BERT. We observe that

HMDB51 datasets have discriminative features of facial expression as well as gesture

due to which our model better than others. Table 4.10 shows the performance score

Table 4.9: Comparison with SOTA methods for short-term videos on UCF101 and
HMDB51 datasets.

Methods UCF101 HMDB51
(Acc.) (Acc.)

C3D [12] 85.2 -
I3D [140] 84.5 49.8
ECO [143] 94.8 72.4
TSM [159] 94.5 70.7
STM [138] 96.2 72.2
MARS [146] 95.6 73.1
LGD [160] 97.0 75.7
Quan et al. [161] 91.84 48.81
Early fusion + I3D [163] 98.2 81.1
R(2+1)D BERT (32f) [164] 98.65 83.99
R(2+1)D BERT (64f) [164] 98.69 85.1
Ours 98.5 86.6

on the Kinetics400 dataset in terms of Top-1 and Top-5 accuracy. Furthermore, we

provide performance comparison of our model on Breakfast-Actions and ActivityNet

datasets considering long-term dependencies in Table 4.11.

4.6 Conclusion of the Chapter

Emotions and gesture are essential elements in improving social intelligence and pre-

dicting real human action. In recent years, recognition of human visual actions using
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Table 4.10: Comparison with SOTA methods on Kinetics400 dataset and extra cues.
Here OF is optical flow and FE is facial expression

Methods Top-1 Top-5 extra cues
I3D [140] 71.1 89.3 RGB+OF
ECO [143] 70.7 89.4 RGB
Non-Local Network [137] 77.7 93.3 RGB
TSM [159] 72.5 90.7 RGB
STM [138] 73.7 91.6 RGB
Slow Fast + NL [150] 79.8 93.9 slow-fast RGB
ir-CSN-152 [151] 82.6 95.3 RGB
MARS [146] 72.8 - RGB
LGD [160] 79.4 94.4 RGB
ViViT [166] 81.7 93.8 RGB
Ours 83.0 96.6 RGB + FE + gestures

Table 4.11: Comparison with SOTA methods for long-term videos on Breakfast-
Actions and ActivityNet datasets.

Methods Breakfast-Actions ActivityNet
(Acc.) (Top-3)

I3D [140] 80.64 -
Non-local [137] 83.79 -
Timeception [121] 86.93 -
C3D [12] - 81.16
Ours 94.8 87.7
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deep neural networks has gained wide popularity in multimedia and computer vision.

However, ambiguous action classes like “praying“ and “pleading“ are still challenging

to classify due to similar visual cues of action. We need to focus on attentive associated

features of facial expression and gestures, including the long-term context of a video

for correct classification of ambiguous actions. We have devised an effective supervised

DNNs for action recognition that captures long-term dependencies of video. HAANet

efficiently distinguishes ambiguous action classes based on emotion and gesture. We

utilize lateral connections in shallow backbone network for learning fine-detail enrich

spatio-temporal features. Emotions and gestures features are learn in visual attention

network. We also extract class-aware spatio-temporal cues in temporal pooling to cap-

ture informative semantic features over the time. We deduce joint training model to

train the HAANet efficiently. HAANet outperforms SOTA literature on ActivityNet,

Breakfast-Actions, and UCF101 datasets.

4.7 Publication related to the Chapter

1. Nitika Nigam and Tanima Dutta, “Emotion and Gesture Guided Action Recogni-

tion in Videos Using Supervised Deep Networks,” in IEEE Transactions on Com-

putational Social Systems, 2022 (Early Access), doi: 10.1109/TCSS.2022.3187198.


