Chapter 3

Action Recognition in Presence of

Representation Bias

The ability to recognize human actions in a video is challenging due to the complex
nature of video data and the subtlety of human actions. Human activities often get
associated with surrounding objects and occur in specific scene contexts. The video-
based recognition of human actions involves not only the individual actions themselves
but also the interaction between the person and their surroundings. Human actions are
like an Italian salad, with various components such as gestures, background scenes, sur-
rounding objects, camera movement, lighting conditions, facial expressions, and body
movements, all contributing to the overall action. Some components may have little
effect on action classification, while others serve as contextual cues that frequently ac-
company a specific action class. For example, a workout exercise is typically performed
in a gym, making the underlying gym scene a relevant contextual cue, as illustrated in
Figure 3.1. A noise factor like a cat chasing a mouse in a gym might not greatly impact
the classification of a workout activity. However, co-occurring contextual elements can
create confusion for the recognition system. For example, if the action being performed

is actually eating or drinking in the gym, there may be a lack of focus on the actual

21

activity. Noise and context have different effects on the recognition process, with noise
hindering performance while context can provide crucial cues. Representation bias can
arise from underlying scenes, background noise, or surrounding objects and can lead to
inaccuracies in recognition. Objects associated with action also play a crucial role in
recognition. For instance, if a person is sitting on a boat with oars nearby, they might
be mistakenly recognized as rowing the boat due to similarities in the background if the
relevance of the moving oars is not taken into consideration, as illustrated in Figure 3.1

(third and fourth rows).

In this study, we tackle the challenge of recognizing subtle human actions amidst
noise, background context, and surrounding objects. The traditional approach over-
looks the separation of representation biases from the action and trains a classifier
using supervised learning, which can only distinguish between positive and negative
examples. This method may reduce noise but fails to address the impact of irrelevant
objects and background context. The dominance of co-occurring objects and other
contextual elements in a video makes it difficult to perform accurate classification of
similar action classes that share similar representation biases. As a result, the classifier

struggles to be applied in real-world situations.

In this work, we aim to tackle the challenge of separating human actions from
associated objects and contextual elements. A straightforward solution is to train sep-
arate classifiers for each element, including recognizing the human action, identifying
surrounding objects, and considering contextual components. However, this approach
requires a large amount of annotated training data to differentiate the human action,
objects, context, and unrelated noise. The manual annotation process for this level
of detail can be time-consuming, if not unfeasible. Additionally, this method is not

scalable for large systems recognizing multiple video-based human actions.

The existence of representation bias is due to the interaction between the performer

and objects in specific scene contexts. As seen in the first two rows of Figure 3.1, even

22

Figure 3.1: The video frames from various video clips of the FactNet dataset are shown
in the first row, with the second row showing actor-masked frames. Despite this, actions
like working out, cooking, and batting can still be identified, indicating the significance
of the background context in action classification. The third and fourth rows depict the
actions of sitting on a boat with oars nearby and rowing a boat, respectively. These
frames showcase a pair of ambiguous actions that are different in terms of objects
and subtle action patterns but share similar contextual elements. The last two rows
show the chopping and slicing activities, which can only be distinguished through the
long-term temporal context.

3.1. Our Contribution 23

when actors are masked in the videos, the actions can still be easily inferred. This
suggests that deep neural network models can pick up biases during action recognition
training, leading to a lack of generalization in the classification process. Moreover, some
actions, such as “chop with a knife” and “slice with a knife” shown in the last two rows
of Figure 3.1, are similar in terms of motion patterns, objects, or scenes, making it
necessary to capture the action over a longer time frame to differentiate them.

The aforementioned analysis has motivated the development of an efficient architec-
ture for human action recognition that separates actions from co-occurring objects and
contextual elements. This work introduces FactorNet, a deep network that factorizes

actions into three components: the performer, associated objects, and scene cues.

3.1 Our Contribution

To summarize, the key contributions of this chapter are as follows:

e First, we explore the problem of extracting dense, discriminative and semantically
enrich spatiotemporal features from videos. To solve this problem, we design a
multi-scale deformable backbone network that consists of eight 3D convolution
layers with top-down pathway and lateral connections to merge low-resolution, se-
mantically strong features with high resolution. Finally, we utilize 3D deformable
convolution layers to capture the actors and objects of different sizes.

e Second, we introduce an actor-object-scene attention network that separates an
the activity performed by an actor, co-occuring objects, and underlying back-
ground. This helps to tackle the ambiguity that occurs in action recognition task
due to co-occurring objects and scene in a video.

e Third, we capture long-range temporal dependencies for actor-object and scene
branches using ConvLSTM. We also incorporate spatiotemporal attention in actor-
object and temporal attention in scene branch respectively for improving the

recognition accuracy.

24 3.2. Organization of the Chapter

e Next, we utilize the concept of attention mechanism in temporal feature pooling
to extract semantic information that changes over time in a video clip. We also
design a regularized objective function to accelerate the joint training mechanism
in training the overall architecture in end-to-end fashion.

e Finally, we analyze the results affected by different parameters in ablation study
section on six benchmark datasets. Existing datasets may capture and leverages
representation bias during training, which may mitigate the impact of supervised
representation for new action classes. Hence, we design a new dataset, denoted
by FactNet, with 38 classes that composed of activity-object-scene related actions
occur in daily life. None of the benchmark datasets has ambiguous conjugate

action pairs, considering co-occurring objects.

3.2 Organization of the Chapter

The rest of this work is organized as follows. The next section summarizes state-of-the-
art literature for action recognition architectures for videos. In Section 3.4, we describe
the proposed architecture for action recognition. We present the experimental results
and the ablation study in Section 3.5. Finally, we conclude the chapter with related

publication in Sections 3.6 and 3.7, respectively.

3.3 Literature Survey

We describe the literature of the action recognition related to presence of representation
bias are as follows:

Attention-based Action Recognition: Motivated by the incredible success of at-
tention mechanism in deep networks, several action recognition architectures [114-116]
have included attention networks to improve the performance. Attention pooling [114]

mechanism has used the low-rank approximations of bilinear pooling models based on

3.3. Literature Survey 25

the derivation from top-down and bottom-up attention. It however only considers the
spatial locations of adjacent frames in a video. It has focused on only short-range
temporal relationships among consecutive frames. To obtain a low-cost 13D network,
a gating based attention mechanism is incorporated to improvise the balance between
accuracy and speed [115]. In [116], the authors have proposed a local feature integra-
tion framework based on attention clusters. They also introduced shifting operation to
achieve more diverse action classes. PIC [117] has focused on modeling and recognizing
the action performed by a human for a long duration by incorporating self-attention,

convolution aggregation respectively.

Human-Object Interaction based Action Recognition: Recently, impressive progress
has been made by utilizing pre-fixed graph structures to extract contextual relation-
ship between human and objects. In [118], the authors utilized end-to-end trainable
graph neural network (GNN) to detect and recognize activity-object interactions in im-
ages and videos. However, the method requires additional annotations of interactions
to recognize the action and unable to distinguish ambiguous action occurred due to
contextual information. In [119], the network learns ‘interaction hotspot’ maps, i.e.,
“how humans interact with different objects” directly from videos of people naturally
interacting with objects, with weaker modes of supervision. However, it ignores the

contextual cues for action anticipation.
Action Recognition with Representation Bias:

eMotivation of this Chapter: The aforementioned methods, however, are still not
able to address the ambiguities in action where the actor performs an action in a
similar scene, but with a different object, shown in Figure 3.1 (third and fourth rows).
Thus, the factorization of action with co-occurring scene without considering associated
objects is incomplete. Furthermore, consideration of long duration temporal context is
also essential. Therefore, we are motivated to design a deep network that can address

the issue of factorization of action into actor with co-occurring objects and underlying

26 3.4. Proposed Approach

scene and also span over a long temporal duration.

3.4 Proposed Approach

(o) ™\ Long—Range Context
) = E#{O _, Conv— A” el/ement—wise addition
15} - ,

g 2 ‘ Al t .LSTIY[Class: sitting on

Az o L *" |CTAP| ~ 4boat
) o 2 H, , He 1sha.red weights + _>S 085
X |§ é t—\\ ? ? GAP core: 0.

— Q \‘ - -
= = a — Conv— AVG. = average (eq. 32)
X

= \ | LSTM CTAP = Class—aware Temporal|
=P —/ i : Attention pooling
X nput Video Actor-Object— _/ |GAP = global average pooling
= Segment Scene Attention R.= Z, « tanh(Zg * ©f + Z,+H]_,) |0 = element—wise multipliction

Figure 3.2: Overview of FactorNet. This architecture consists of multi-scale de-
formable backbone (MDB), actor-object-scene attention (AOSA), long-range context
(LRC), and class-aware temporal attention pooling (CTAP) networks. We model fac-
torization of action into actor with co-occurring objects and underlying scene and also
span over a long temporal duration in FactorNet.

In video-based action recognition, the architectures [11,54] mostly learn short dura-
tion action representations of a human in a video clip that range from 1 to 16 frames. In
a real-life scenario, yet, there are ambiguous human actions, like ‘chop with a knife’ and
‘slice with a knife’ that often lasts for several seconds [120,121] and need to capture long
temporal duration for precise recognition. Furthermore, the underlying scene plays an
important role in action recognition. Figure 3.1 (first two rows) depicts that even if the
actor is masked in a video clip the scene bias helps to recognize the action accurately.
Moreover, there are still many human actions that are ambiguous when the associated
objects are not given proper attention. For instance, ‘rowing a boat’ and ‘sitting on a
boat (with oars alongside)’, Figure 3.1 (third and fourth rows) have similar underlying
scenes but different human actions due to the movement of oars by the actor to drive
the boat. The action performed by an actor with or without an object (or different
objects) helps to recognize the actions precisely.

We propose a deep network, known as FactorNet, for video-based action recogni-

3.4. Proposed Approach 27

tion. The block diagram of the overall architecture is shown in Figure 3.2. In this
work, firstly, we propose a multi-scale deformable backbone network consisting of 3D
convolution layers to capture short-range spatiotemporal features of a video clip, which
are enriched in both finer-details and semantic knowledge. 3D deformable convolu-
tion helps to capture size variations in spatiotemporal extents. Secondly, we design an
actor-object-scene attention (AOSA) network that factorizes the action into an actor,
co-occurring objects, and scene cues. This focuses on salient parts in visual space to
capture spatiotemporal features related to the action performed by an actor and su-
pervise the impact associated object including the underlying scene on classification.
Thirdly, we propose a long-range spatial-temporal context (LRC) network that helps to
learn the long temporal context of an action for both actor-object and scene branches.
We incorporate a layer of attentive ConvLSTM to extract salient features for each
branch over time. Finally, we integrate the concept of class-aware temporal feature
pooling to reduce the processing time for videos with long duration. Recent literature
has utilized 3D deformable convolution for MRI classification [122] and video super
resolution [123]. For super-resolution, the authors have incorporated 3D deformable
convolution to extract spatiotemporal information from both spatial and temporal di-
mensions in videos. In addition, 3D deformable convolution also achieves adaptive
motion compensation efficiently. Similarly, 3D deformable convolution is implemented
for significant improvement in classification performance for unprocessed and skull-

stripped brain images. However, it is not explored in the field of action recognition.

3.4.1 Multi-scale Deformable Backbone (MDB) Network

A video is decomposed into spatial and temporal components that capture information
about the actor, surrounding objects, and underlying scene over time to identify an
action. The spatiotemporal features are learned from a video sequence using a deep

network to classify actions into different categories. 3D convolutional neural networks,

28 3.4. Proposed Approach

namely C3D, is a well-suited deep network for encoding spatiotemporal features by
convolving 3D kernel over spatial, temporal, and semantic channel subspace. The
spatiotemporal feature tensor B € R7*#*WxCout ig ghtained by convolving 3D filter
K € R™! gyer the video clip V € R7*HxWxCin which is defined by: B = K x V,
where * denotes a convolution operator, and {d,[,l} are the temporal depth (d < T)
and spatial resolution of a filter, respectively. {T, H,W,C,,;} are the number of frames,
height, width, and the number of channels of the output tensor. For an input video

clip, the value of C;, is 3, which denotes the RGB channels.

conv_5 2x8TT H/87W/87C)
(a,b)
max_pool_4

Fish—-tail

d_con_1

I
a 2x ST

conv_4
(a,b)

max_pool_3

d_con_2
2xX ST
y

conv_3
(a,b) y
max_pool_2

pPeay-ysiy

conv_2
(a,b)
max_pool_1

SEEVEVEvENEE

stride = (1,2,2) , Kernel = (3,3,3)
“stride = (1,2,2) , kernel = (1,2,2)

Apoq-ysiq

A —_
Video Clip (7,H,W,3) =1x1x1 conv

Figure 3.3: Overview of multi-scale deformable backbone network that consists of
Fish-tail, Fish-body, Fish-head block. A video clip of size T x H x W x 3 is given
as input to Fish-tail block to obtain spatiotemporal features. conv_1 to conv_5b are
the 3D convolution layers with kernel size 3 x 3 x 3. max_pool_1 to max_pool_4 are
max-pooling layers and BN is batch normalization layer. The kernel size of the first two
max-pool layers are 1 X 2 X 2 and the remaining layers have size 2. d_con_1 to d_con_3
are feature tensors obtained after concatenating the high-, mid-, and low-level feature
tensors. T depicts upsampling operation, which is performed on spatiotemporal feature
tensor either spatially or spatial-temporally. deform_1 to deform_3 in Fish-head block
is the deformable convolution layers with kernel size 3 x 3 x 3. The stride of deform_1
is 1 x 2 x 2 and the stride of remaining deformable convolution layers are set to 2. B
is the spatiotemporal feature tensor obtained from MDB.

In this section, we propose a multi-scale deformable backbone (MDB) network, which

3.4. Proposed Approach 29

is inspired by C3D [12] and FishNet [124], to extract spatiotemporal high-level semantic
features. In addition, we have incorporated deformable convolution [125] layers to ex-
tract fine-scale action features that involve an actor and associated objects of different
size precisely. Our backbone network is divided into three blocks: fish-tail, fish-body,
and fish-head, as shown in the Figure 3.3. The fish-tail block consists of eight 3D convo-
lution layers (conv_1 to conv_5b) and four maxpool layers (max_pool_1 to max_pool_4).
The three upsampling mechanism are incorporated in fish body block and three 3D

deformable convolutions (deform_1 to deform_3) layers in fish head block, respectively.

Formally, the original video is partitioned into L non-overlapped video clips which
is a set of 7 RGB frames with spatial size H x W. A video is denoted as V = {V,|k €
{1,2,---,L}}, where V), € RT*H>W>3 i 3 video clip. The network is set up to take
a video clip as an input to extract spatiotemporal features that help in enhancing the
accuracy of recognition. The video V} is fed into fish-tail block to extract spatiotemporal
feature tensor. The size of kernel is 3 x 3 x 3 for all the convolution layers and the value
of stride and padding is 1. The number of filters of first two convolutional blocks are
64 and 128, whereas remaining two blocks have 256, 512, and 1024 filters, respectively.
The max-pooling layers progressively pools reduced feature tensors in the fish-tail block
to reduce the number of training parameters, which is utilized after every convolution
blocks. The first one maxpool layers have kernel size 1 x 2 x 2 and the remaining layer
has 2x2x 2 size. The intention to merge temporal features gradually is to preserve long-
range temporal extent. We have removed the fifth pooling layer of the C3D network.
The details of fish-tail block of the backbone network is presented in Table 3.1. We
have stacked 3D-batch normalization [126] immediately after each convolutional block

to accelerate the learning process.

3D convolutions are insufficient to detect smaller object features with respect to
time. Thus, we have combined low-resolution, semantically strong features with high

resolution via top-down pathway and lateral connection to our backbone network for

30 3.4. Proposed Approach

capturing smaller objects. Please note that the combined feature tensors are represented

as d_con_1, d_con_2, and d_con_3, respectively (as shown in Figure 3.3).

In fish-body block, the high-level features are upsampled and merged with low-level
elements to preserve the features from the tail and the previous layer of the body by
concatenation. We upsampled the output feature tensor of conv_5b by 2x both spatially
and temporally. The upsampled feature tensor is concatenated with the output feature
tensor of conv_4b which is (-d channel-wise reduced using a 1 x 1 x 1 convolution
to produce the feature tensor (d_con_1). Similarly, we have concatenated output of
conv_3b layer after applying 1 x 1 x 1 convolution filter with d_con_1, which is 2x
upsampled both spatially and temporally. The output from d_con_2 is 2x upsampled
spatially using nearest neighbors upsampling and add them element-wise with the (-
d channel-wise reduced output from conv_2 to obtain the enriched feature tensor at
d_con_3 layer. The output produces by fish-body block at every layer is given as an
input to fish—head block, as shown in Figure 3.3. However, we observe that there is
still an unsatisfactory aspect in the extracted feature maps. For example, in Figure 3.4
(first row), the badminton racket is not captured completely using 3D convolution and
in Figure 3.4 (second row), the cigar is partially occluded due to presence of fingers,
which is not identified wholly in obtained feature map by 3D convolution. Thus, to
tackle this tactful problem, we have incorporated deformable convolution in fish-head

block to capture the co-occurred objects of different size accurately.

The 3D deformable convolution with input signal X € R7*#*W and convolution

kernel Q0 € R¥**>k ig defined as:

Yt how)=> YN WkX[(t, h,w) + E + Gk, (3.1)

teT he H weW

where ¢y € RTIWXW represents the deformation offsets of deformable convo-

lution. These offsets are learned from another convolution with X', which is given as

3.4. Proposed Approach 31

Gthwk = Hk x X(t, h,w, k), where H is a different kernel.

Table 3.1: Architecture of fish-tail block of backbone network. Convolutional blocks
are shown in square brackets, with number of blocks stacked. The filter size of con-
volutional layers is given as (temporal lengthx width x height), number of channels.
Similar for pooling layers, kernel size is (temporal lengthx width x height) and output
shape is (temporal lengthx width X height x output channels).

Layers Fish-tail block
Blocks Output Size

input raw input videos: T x 112 x 112 x 3

conv_1 [3 x 3 x 3,64] T x 112 x 112 x 64
max_pool_1 1 x2x2 T x 56 x 56 x 64

conv_2 3 x 3 x 3,128] T x 56 x 56 x 128
max_pool_2 1x2x2 T x 28 x 28 x 128
conv_3 (a,b) | [3x3x3,256] x2 | T x 28 x 28 x 256
max_pool_3 2X2x2 T/2 x 14 x 14 x 256
conv4 (a,b) | [3x3x3,512] x2 | T/2x 14 x 14 x 512
max_pool 4 2x2x2 T/4xT7x7Tx512
conv_5 (a,b) | [3x3x3,1024] x 2 | T/4x 7 x7x1024

In fish-head block, we have incorporated deform_1 to deform_3 layers with kernel
size 3 x 3 x 3 and ¢ number of channels. The stride of deform_1 layer is {1,2,2} and
remaining two are set to {2,2,2} in all dimension. First, we fed the output of d_con_3
layer into deform_1 to handle the geometric transformations. Next, the output obtained
from first deformable convolution layer is element-wise concatenated with the output
from d_con_2. Similarly, we fed the concatenated feature tensor to deform 2 layer and
then merged using element-wise addition with the output tensor obtained at d_con_1 to
produce the output of size 7 /2 x H/8 x W/8 x (. Finally, a deform_3 is appended on
the merged tensor to generate down-sampled feature tensor and merged with output
of conv_5b that produces B € RT/4xH/8xW/8xC where we kept ¢ = 1024 to maintain a
trade-off between accuracy and training parameters. In this way, the salient features
from every layer in backbone network are directly connected to the final layer through
concatenation and skip connection.

Our backbone network is used to extract dense, discriminative and semantically

32 3.4. Proposed Approach

original w/o deformable w/ deformable
convolution convolution

Figure 3.4: Video frames from ‘playing badminton’ (first row) and ‘smoking with
cigar’ (second row) video clips of FactorNet dataset. These frames show attention map
w/ and w/o deformable convolution in backbone Network.

enrich spatiotemporal features from videos. However, it is incapable to highlight the
different relevant parts of visual space to acquire contextual features of action and object
components in a video clip for recognizing human action more precisely. Therefore, we
stacked a spatiotemporal attention network on the backbone network that factorize the

actor with co-occurring object and scene information.

3.4.2 Actor-Object-Scene Attention (AOSA) Network

Humans focus on essential parts of visual space to process action relevant regions,
instead of exploring an entire scene at a glimpse. This capability of actor, the human
performing the action, is referred as visual cognition [127]. The property of visual
cognition in action recognition is replicated by incorporating attention mechanism for
selecting the pertinent parts in a video sequence. We therefore propose an attention
mechanism that extracts associated object and background scene-related information

from several parts of the video clip along with capturing the activity performed by an

3.4. Proposed Approach 33

actor.

We incorporate the actor-object-scene attention (AOSA) network that factorizes a
video into an action performed by an actor, co-occurring objects, and underlying scene
to supervise representation biases. For example, action like ‘playing a saxophone’ will
be ambiguous with ‘playing a bagpiper’ due to the similarity in the pattern of action,
as shown in Figure 3.5. These two actions belong to two different classes in terms of

contextual cues and relevant objects.

Figure 3.5: Video frames from two different video clips of FactorNet dataset. These
frames show a pair of ambiguous actions which are dissimilar in terms of associated
object. The first row shows the action of ‘playing a saxophone” and second row depicts
‘playing a bagpiper’ action. Both have similar action pattern with different contextual
elements.

AOSA network is used for encoding the 3D feature maps related to three branches, i.e.,
actor, object, and scene. It exploits the different degrees of importance of being actor
who performs the activity, object, and scene components. Each component within a
clip is assigned with class-aware attention weights to adaptively focus on discriminative
cues.

Actor-Object branch. In actor branch, we have calculated the score value of being

actor component by utilizing sigmoid and softmax separately as shown in Figure 3.6.

34 3.4. Proposed Approach

First, we have channel-wise pooled the feature from the input feature tensor B to obtain

spatial and temporal features. Formally, the pooled feature map of actor is calculated

by:

go_l > " B(i), (3.2)

¢
Da : : T H w
where B is the output pooled map of size X & x % x 1. Next, we have used fully

connected layer which is followed by softmax and sigmoid functions simultaneously.
We have exploited softmax with sigmoid function in separate branch as to eliminate
irrelevant actor component present in video clip. The score value of being an actor

component is calculated by element-wise multiplication as follows:

S* = ReLU(w, B¢ + b,), (3.3)

A* = 5(w,) 8" +b,,) 00(w,!S* +b,), (3.4)

where S® is a vector with actor components and A® is score of being an actor in a video
clip. {wg, Wy, Wy, bs, by, b, } are the learnable parameters and {o(-),d(-)} are sigmoid
and softmax functions to calculate the attention values that ranges between 0 and
1. ReLU is the non-linearity function and o represents element-wise multiplication.
Finally, we have recalibrated the obtained attention map with feature tensor B, which

is formulated by:

0 = [alll + atl1 X b17 T 7a%'><H><W + a%’xHxW X b7'><H><W]7 (35)

where ©¢ is the actor-attended spatiotemporal feature tensor.

We have observed that the regions where objects are present contain useful informa-
tion for action recognition. However, small objects create ambiguity and leads to predict

wrong action class. For instance, peeler and knife must leads to perform peeling and

3.4. Proposed Approach 35

cutting action respectively. Therefore, we have incorporated the attention mechanism
to focus on object-based contextual information. In object branch, we have pooled 3D
feature map B temporally and channel-wise to obtain the spatial information of objects

present in video clip. The score value of being an object element is formulated by:

A° = o(w]ReLU(B°) + b,), (3.6)
5o L g
B° = T*ng;B(j,z), (3.7)

where A° is the confidence score of being object component present in video clip. B°
is the pooled feature vector for object component. {w,, b,} are learnable parameters.
Finally, we have recalibrated the attended maps A° with the original feature tensor to

reflect the features of objects, which is given by:
0% = [atlj+a(1) X by, 7a10LI><W+a?{><W XbHXW]’ (38>

where ©° is the object-attended spatiotemporal feature tensor.

Further, we have infer that which object is co-occur with actor and leads to perform
the action by utilizing activity-object interaction mechanism. The obtained feature
tensor from actor and object branches are given as the inputs to the interaction function
for extracting associated object information that co-occur with actor. An interaction
between j — th object and ¢ — th actor is obtained through the relation functions as

follows:

Q! =01+ 0" (3.9)

Q1 = B[} TO°(),0°(), H]], (3.10)

where @1 is the actor-object attended feature tensor and @1 is feature representa-

tion of activity-object interaction. {®]-],I'[-]} are MLP layers to obtain two 1D feature

36 3.4. Proposed Approach

representations. This represents whether an object and an actor have maximum in-
teraction value given the knowledge of action class. H is feature representation of the
prior likelihood of an activity-object interaction class that appear in a video, which is

obtained from pretrained model on ImageNet, similar as in [128].

o(-) =Sigmoid !
0(-) = Softmax i Channel-wise

@q

pooling

..........................

.......................

' Temporal and
i |channel-wise
pooling

interaction

4 = Inverse

@ = sum of product

@ = element—wise) S
addition
O =eclement-wise 5 S

multiplication

B[, 3, T[O°(3), ©°(j), H]]

Figure 3.6: Architecture overview of AOSA network. Feature tensor B is given as
an input to actor-object and scene branch. Channel-wise pooling is performed in ac-
tor branch to extract spatiaotemporal features. Temporal and channel-wise pooling is
performed in object branch to extract visual saliency information. Green and yellow
vertical rectangle depicts ReLLU activation function and fully-connected layer respec-
tively. 8 is thresholdedReLU layer followed by point-wise convolution operation.

Scene Branch. Contextual cues also play a vital role to recognize the action in a video
clip. However, the classifier may get confused to draw a decision boundary if an action
and scene cues are different. For example, a person is smoking in a cricket field and
due to large contextual information an action classifier will ignore the actual action
(smoking). Thus, we have focused on the underlying background irrespective of the
actor and object. In scene branch, first we have added attention maps obtained from
actor and activity-object interaction branches to obtain actor-object attention map,

which is calculated as follows:

3.4. Proposed Approach 37

A% (i) = A%(i) + A°(4), (3.11)

where A* is an output attention map with the features of actor-object and i € {1,--- |, T HW/256}.
We obtained an attention map of activity-object interaction through thresholdedReLLU

and point-wise convolution operation:

— —

Ao = B(@q)7 (312)

B3(+) represents thresholdedReLU function with point-wise convolution operation to one

channel.

The attention map in the scene branch is formulated by:
A°=1- A, (3.13)

where A° € [0, 1] represents the probability of each location being a contextual compo-

nent in a video clip and 1 € [1]1XHW/256

is the vector with all ones. The score map A€
is recalibrated with original feature tensor B to reflect the scene information, which is
given by:

—

Ac=[af +af X by, - af .y + afay X brw] (3.14)

where A° is the scene attended feature tensor. Further, we have calculated the score
values of class-aware attention map to assign a higher weight to the relevant regions
that possess high discriminant contextual-based information. The class-aware attention

map is calculated by:

YT = §(w] ReLU(A) + b,), (3.15)

38 3.4. Proposed Approach

where Y is class-aware attention map and {w., b,} are learnable parameters. Finally,

we have calculated the scene feature representation of a video clip, which is formulated

by:

0° = [7(1:—’_7(1: X by, 77(;{><W+7(1:'{><W XbHXW]’ (316)

where ©¢ is feature representation of scene cues and ¢ is the i —th element of attention
map Y¢.

We obtained spatiotemporal features with detailed information of the action, ob-
ject, and contextual cues from our backbone network and attention network. However,
the long temporal context that lasts for more than a second is not captured by our
network. For example, ‘bating in cricket’ and ‘bating in baseball’ can only be distin-
guished by considering long-range temporal context since the action of the actor and
the underlying background including the associated object ‘bat’ appear almost simi-
lar in a short duration video. To include the knowledge of interpreting actions for a
long temporal duration including valuable context information depending on ‘what has

happened earlier’, we need to incorporate more sophisticated schemes, like LSTM.

3.4.3 Long-Range Context (LRC) Network

In previous works [116,129], fully-connected LSTM (FC-LSTM) is incorporated to learn
the long-range temporal relationships within the frames of the videos. The vectorized
features are given as an input to learn temporal features. However, it depletes the
spatial information over time. Therefore, the long-range temporal and spatial cues of
human actions in videos is preserved by utilizing ConvLSTMs in the proposed deep
network. ConvLSTM [130] is an extension of FC-LSTM that captures the relationship
between the features spatially and temporally. The inherent convolutional trait helps in

obtaining the features in both the input-to-state and state-to-state transition. Formally,

it consists of the hidden states {H;, Hy, - - - , H;}, the inputs {X;, Xy, - -+ , X;}, and the

3.4. Proposed Approach 39

cell outputs {Cq, Cy, - -+ , C;} with four gates. The forget, input, output, and memory
cells are represented by f;, i, oy, g;, respectively. Each input, cell output, hidden state,
and gate are 3D tensors whose last two dimensions are spatial information. The input
tensor X; and hidden state H, ; at time ¢ and ¢ — 1, respectively, are given as input to
ConvLLSTM, which determines the future state of a cell C;.

In LRC network, we have reformulated inputs of ConvLSTM to estimate the salient
features from different video clips and preserve long temporal extent of actions. The
actor-object @7 and context ©¢ feature tensors, which are obtained from AOSA network
are given as an input to modified ConvLSTM, as shown in Figure 3.2. The feature tensor
O/ and ©f are used for encoding the actor-object and context cues of the video clips

at time t, respectively, is given by:

O = {Gf(l)v @f(2)7 T ’®f<H/8 X W/8 X g)}v (317)

where @7 is feature tensor and ¢ represents either ¢ or ¢, at each time steps t.
t =1,2,---, 7" and T' = T /4 is the recurrent time step of modified ConvL.STM.
In case of learning long-range temporal extents of @ feature tensor, we have reinforced
ConvLLSTM with spatiotemporal attention mechanism. Similarly, we have reformulated
the equations of ConvLSTM for context feature tensors ©f by including temporal atten-
tion mechanism. Note that ConvLSTM share the similar weights in both actor-object
and scene branches.

ConvLSTM remembers the past sequence at time t as it accumulate the previous
information in memory cell. However, the motion of objects are not taken into con-
sideration that happens from time ¢ to ¢ 4+ 1, as it may leads to noisy prediction in
spatiotemporal action recognition. For instance, ‘chopping’ and ‘slicing’” can be recog-
nized only after tracking consecutive timesteps of a knife. Therefore, we reformulated
inputs of ConvLSTM spatially and temporally to capture motion of object and actor

simultaneously.

40 3.4. Proposed Approach

In actor-object branch, first we estimate the relevant locations of @7 in space and
time by incorporating a spatiotemporal attention mechanism with the guidance of H} |,

which is given by:
R; = Z, xtanh(Zg * O + Z;, x H] | +1,), (3.18)

where R; is the un-normalized spatiotemporal attention weight map of @7 at ¢ steps.
{Z,,Z¢,7Z,b,.} are spatiotemporal attention parameters. Second, we normalize R, by

using standard softmax function, which is formulated by:

exp(%, (i, 5))
[T exp(Rii,)

A0 j) = (3.19)
where 217 is normalize attention weight map that reflects the spatial and temporal
importance. Next, we apply 2f on feature map @7 to obtain spatiotemporal attended

video-level features is estimated by:
0! = Ao O (3.20)

where G/)\? is the feature tensor with attention in space-time dimension and o is element-
wise multiplication.

In context branch, the temporal attention is incorporated with ConvLSTM to es-
timate video-level weights of underlying background over time. The un-normalize at-
tended weights of context feature tensors ®f under the guidance of previous hidden

state Hy | is estimated as:
3 =7, +tanh(Zg « O + Z;, x H | +b,), (3.21)

where 3; is the un-normalize feature tensor with attended weights and {Z,, Zeg, Zy, b, }

are temporal attention parameters. Next, we use softmax to normalize 3;, which is

3.4. Proposed Approach 41

computed by:

0:(i) = —2PGD) (3.22)

ST exp(34(i))

where Of is normalize attention weight map that reflects the temporal importance
of spatiotemporal features. Of is element-wise multiply with ©¢ to obtain temporal

attended video-level feature tensor, is given by:
e = 05 0 O, (3.23)

where @g is the video-level feature tensor with attention weights.

Finally, we feed the attended feature maps into ConvLSTM as an attended input

at time t, is given by:

f7 = o(Z3, é\f + Zj « HY | +0%), (3.24)
if = 0(Z%, « OF + Z¢, « HY ,+17), (3.25)
of = 0(Z%, «OF + Z1 «HY | + 1Y), (3.26)
gf = tanh(Z%, * ©F + Z¢, « HY | + 1), (3.27)
C/=1f0Cl,+1i] og/, (3.28)
H; = o] o tanh(CY), (3.29)

where ¢ is either actor-object or scene branch and {*, o} denotes convolution operator
and Hadamard product. The sets of Z and b are shared the parameters of ConvLLSTM
both in actor-object and scene branch to reduce the computational cost including model
complexity. o(-) and tanh(-) are sigmoid and tanh functions, and {i;, o7, g{ } are input,
output gates, and memory cells respectively. C{ is cell output state at ¢t —th time step,
HY , is previous the hidden state, and (:)E” is current spatiotemporal input feature

tensors. Inspired by [131], we have used initialization strategy for faster convergence of

42 3.4. Proposed Approach

hidden state and ConvLSTM cell state. The initial hidden state and cell output of the
ConvLLSTM are calculated by an average of the feature tensor given by two layer CNNs

followed by batch normalization (BN), given by:

o°
Cl=9:>_ 7). (3.30)
€T’
o°
HY = n(>_ =), (3.31)
€T’

where Cj and HY are initial cell output and hidden state. {g.,gn} are represented by
conv 1 x1x1—=convlxlxl-— BN. We obtain current hidden state in both
branches, i.e., Hf and Hf at each recurrent time step. The output of the hidden state
H} and H¢ over the time 7' are summarized to obtain the actor-object and context

information simultaneously. These summarized hidden states are formulated by:

T Hf

"= 2 (3.32)
t=1

where H¥ is the summarized hidden states of actor-object or context feature ten-

sor. These hidden states are fused through element-wise addition to obtain Q €

RT/4xH/8xW/8xC and is fed into temporal pooling layer to reduce the dimension of the

output feature tensor.

3.4.4 Class-aware Temporal Attention Pooling (CTAP) Network

The recurrent layers can capture temporal information with hidden states however these
temporal cues contain redundant information. For instance, ‘a person is sitting on a
boat’, there are only minor differences in a series of consecutive frames of a video.
Therefore, the idea of temporal feature pooling has been extensively incorporated to
minimize the redundancy and processing time for videos with long time period [37].

In temporal pooling, statistical methods are implemented within various local windows

3.4. Proposed Approach 43

over time to apprehend motion information of videos. In our architecture, we have
incorporated temporal pooling on the top of the LRC network over the time steps, as

shown in Figure 3.2.

We propose class-aware temporal attention pooling mechanism to extract class-
aware spatiotemporal feature tensors and concentrate on relevant information over time.
This is useful for discriminating complex human actions in long sequence of a video.
We have used the concept of attention pooling to extract semantic information which

is given as follows:

ATTENTION POOLING: It extracts important semantic information that changes over
time on the video clip by calculating attention of feature tensor £; in t — th time step.

The attention feature tensor Q%att)(k) of k — th class is given by:

(k) = 1R, (3.33)
Ex = Yo U, (3.34)

Yy = Qipi, (3.35)

U = Qq, (3.36)

where k denotes the number of classes and the attention feature tensors {Yy, U} €
R™1. 1 € R™" is a tensor of all ones, where n = H/8 x W/8x ¢ and {uy,s} € R7*! are
class-specific and class-agnostic tensors. The class-specific is deduced via a dense layer
with sigmoid classification and recalibration. The class-agnostic tensor is computed
by adding non-linearity using ReLU activation. Most deep learning models fed the
vectorized feature of the last convolution layer into fully-connected layers followed by
a softmax layer. The fully-connected layers, however, are prone to overfit the overall
network. Therefore, GAP layer is utilized to minimize overfitting by reducing the total
number of parameters in the model. Finally, we have cascaded a softmax classification

layer for supervised training. The layer calculates the probability score of predicted

44 3.4. Proposed Approach

action class, which is given as:

vi = p(WQ+b), (3.37)

where w, b are learnable parameters and ¢(-) is softmax function. y; is probability

distribution that indicate the likelihood of a video belong to each i — th action class.

3.4.5 Joint Training Model

Our FactorNet consist of MDB, AOSA, and LRC networks to recognize action in a
video clip. The optimization of overall architecture is difficult, thus we introduce a joint
training mechanism in end-to-end fashion. We have formulated the overall objective
function of our proposed architecture with categorical cross entropy loss for video clip,

given as follows:

Loverall - Lcls + >\1Ls +)\2L07 (338)

where {Lgs, Lg, L,} are the loss functions of classification, scene, and object. {\.}
are the regularization terms and balance the contribution of two regularization terms.
We have used the categorical cross entropy loss function to measure the compatibility
between the obtained distribution and ground-truth action class labels for calculating

classification loss:

.- log ¥il, (3.39)

cls

|
||Mz

where, — sign ensures that the loss gets smaller when the distributions get closer to each
other. N is the number of training videos. {y,y} are ground-truth action class labels
and predicted labels. Further, we have calculated scene loss function, which is defined

as the log probability of features obtained from backbone network. The function to

3.5. Experimental Results 45

obtain scene loss is given by:

S

L,=— {p; log pis,}. (3.40)
=1

Big, = 5(WO" 1 b), (3.41)

where, {6,,,w,b} are model parameters and S is number of scene classes. Py, is
the distribution of each i — th class given the parameters (6,,) of scene branch and
0(+) is softmax operation. However, scene labels are not present with our given action
class labels. Therefore, we have obtained a pseudo scene label p, by running Places365
dataset pre-trained ResNet-50 [132] on the Kinetics dataset. Similarly, object loss
function is defined as the log probability of features obtained from backbone network,

which is given by:

O

L,=—) {p,-log Pis,}, (3.42)
=1

Dig,, = 0(WO’ +b). (3.43)

However, object labels are not present with our given action class labels. Therefore,
we have obtained a pseudo object label p, by running MS-COCO dataset pre-trained

ResNet-50. o(-) is sigmoid function and O is number of object classes.

3.5 Experimental Results

n this section, we perform an exhaustive set of experimentation and briefly report the
implementation details of our FactorNet for training and testing. Then, we compre-
hensively examine the effect of different networks of our architecture to determine their
impact on classification. We also extensively examine the different variation of hyper-

parameters in our network. Finally, we compare with the state-of-the-art methods

46 3.5. Experimental Results

on both temporal-related benchmark datasets (i.e., Something-Something V1, Activi-
tyNet, and Breakfast Action) and scene-related publicly available datasets (i.e., Kinet-
ics400, UCF101, and HMDB51). We also proposed a new dataset, denoted by FactNet,

which contains 38 action classes.

3.5.1 Datasets and Metrics

In our experiment, we elect six challenging, accessible, and publicly available video-
based action recognition benchmark datasets, i.e., UCF101, HMDB51, Kinetics400,
Breakfast-Actions, Something-Something V1, and ActivityNet. The statistics of all the
dataset is shown in Table 3.2. We also examine the performance of our architecture on

FactNet dataset.

Table 3.2: Statistics of the datasets used in experimentation.

avg. avg.

dataset #classes #videos| #clips/| temporal resolution| fps
F#classes| length

© UCF101 101 13K 100 7.21s 320 x 320 | 25
g HMDB51 51 7K 101 Is 240 x 240 30
» Kinetics400 400 28K 137 10s 340 x 340 | 25
5 Breakfast-Action| 48 1K 10 2.3m - 15
g SSV1 174 100K 620 4.03s 240 x 240 | 15
s ActivityNet 203 27K 137 Sm 1280 x 720 30
Ours FactNet 38 8K 80 60s Multi-scale| 30

UCF101 [1]. It consists of 101 action classes that include 13k clips and 27 hours of video
data. It covers a broad range of actions, such as, sports, human-human interaction, and
activity-object interaction. The video instances include variation in the background,
viewpoints, and severe camera motion including object appearance, scale, and pose.

HMDB51 [2]. This dataset consists of 51 different action classes with 7K videos col-
lected from movies and Youtube. The actions classes are grouped into 5 sub-categories:
general facial actions, facial actions with object manipulation, general body movements,

body movements with object interaction, and body movements for human interaction,

3.5. Experimental Results 47

respectively. HMDB51 contains 4.9K training and 2.1K testing videos.

Kinetics400 [133]. This human action video dataset have trimmed videos of 400 action
classes taken from YouTube. Each class consists of at least 400 video clips with an
average temporal length of 10 seconds. It covers a broad scope of classes, i.e., activity-
object interactions and human-human interactions. It is split into 240K training, 20K

validation, and 40K test videos.

Something-Something V1 (SSV1) [134]. It is a large group of 100K densely-labeled
video clips that show humans performing predefined necessary actions with everyday

objects. It contains 174 action classes with training, validation, and test videos.

ActivityNet [135]. This dataset covered a large range of complex human daily living
actions. It includes 203 classes of action with 193 video clips/class on average and 849
hours of video data. The average length of videos is between 5 and 10 minutes. The
dataset consists of 27.8K trimmed videos. We split 50% of data into training, 25% for

validation, and 25% for testing.

Breakfast-Actions [136]. It is a dataset for unscripted cooking-oriented human activ-
ities with 10 different cooking activities and 66.7 hours of video data. These activities
are performed by 52 different actors in 18 different kitchen locations. These activities
are composed from various actions, which are annotated manually in 48 different action
classes. Breakfast-Actions consist of 1712 videos with 1357 for training and 335 for

test.

FactNet. Learning long-range spatial-temporal features with respect to objects and
scene are critical for many video analysis tasks. To train a model using publicly avail-
able benchmark datasets certainly may capture and leverages representation bias. The
characterization of supervised learning may not be efficient to new action classes. None
of the publicly available benchmark dataset has ambiguous conjugate action pairs,
especially taking co-occurring objects in consideration. This motivated us to train

our network with sufficient ambiguous conjugate action pairs. We have proposed our

48 3.5. Experimental Results

dataset, which is known as FactNet. It is dataset with 38 classes and each class has an
average of 80 videos. The average length of trimmed videos is 60 seconds, which are
collected from YouTube. The spatial resolution of the videos ranges from 480 x 480 to
1080 x 1080. It covers a large range of classes consisting of activity-object-scene related
actions that occur in daily life. All types of variation are included in our dataset, i.e.,
variations in camera motion, size of objects, background, illumination, and viewpoints,
respectively. We split 50% of the dataset for training, 25% for validation, and 25% for
testing. The annotation is done by crowdsourcing. We have provided the statistic of
our dataset in Table 3.3. The confusion matrix of the dataset is shown in Table 3.4 for

few FactNet action classes, which is performed on our FactorNet.

Table 3.3: Statistics of FactNet dataset.

Specification Values
#action 38
#videos SK
Average #clips/classes 200
Average temporal length 60s
Min resolution 480
Max resolution 1080
Frame rate 30
Total duration 135 hours
Mean video length 25s
Min video length 10s
Max video length 2 min
Audio Yes
Background Yes
Camera Motion Yes

We have used Top-1 and Top-5 metrics for Kinetics400, Top-1 for Something-
Something V1 and Top-3 for ActivityNet datasets. We have used mean accuracy (Acc.)
for UCF101, HMDB51, and BreakFast-Actions datasets. We also measure the compu-
tational complexity of the proposed network in terms of number of training parameters

(in short params) and FLOP counts.

3.5. Experimental Results 49

EA 157 0.0 | 0.0 | 0.0 | 0.0
CA | 182 0.0 | 0.0 | 0.0 | 0.0
SB | 0.0 | 0.0 <l 17.2 | 0.0 | 0.0
RB | 0.0 | 0.0 |20.6 0.0 | 0.0
TL | 0.0 | 0.0 | 0.0 | 0.0 [16.3
T™™ | 00 | 0.0 | 0.0 | 0.0 \ 18.7

EA CA SB RB TL TM

Table 3.4: The confusion matrix of FactNet dataset (performed on FactorNet). We
have used the abbreviations of FactNet classes. EA- eating an apple, CA-cutting an
apple, SB-sitting on a boat, RB-rowing a boat, TL-typing on the laptop, TM-typing
on mobile.

3.5.2 Implementation Detalils

The implementation details of different modules of FactorNet are briefly described as
follows:

RGB inputs. We extract frames of UCF101 and Kinetics400 at 25 fps (frames per
second). In case of ActivityNet, HMDB51, and FactNet datasets, video frames are
fetched at 30 fps and for Breakfast-Action and Something-Something V1 datasets, the
frames are extracted at 15 fps. The purpose for taking different fps is to make sure that
one video clip contains enough information to interpret motion as different datasets
have different motion speeds. We have used 16 consecutive RGB frames in our overall
experiment to maintain reasonable training time. In addition, we have also experi-
mented with temporal length of {8,32,64,128} RGB frames considering the same data
augmentation. We have added padding for videos with shorter length to satisfy the
input given to FactorNet architecture.

Multi-scale Deformable Backbone Network. First, we have initialized the pa-
rameters of eight 3D convolution layers (conv_1 to conv_5b) using a pre-trained model
“C3D” on Sport-1M datasets (similar as in [12]) and fixed them during training. The
parameters of deformable layers from deform_1 to deform_3 are learned using stochastic
gradient descent with momentum during training.

Actor-Object-Scene Attention Network. We have three loss functions that aims

20 3.5. Experimental Results

to encourage the action-object and scene branch to learn the respective feature repre-
sentation. The feature representation of object, scene, and activity-object interaction
are learn through pseudo labels. First, we train AOSA separately and then fine-tune
with the specific dataset to obtain the features of object, scene, and activity-object

interaction respectively. At the time of training, we freeze the MDB network and only

train the AOSA.

Long-Range Context Network. We have included a single convLSTM layer with
1024 hidden state dimensions with a sequence length of 7 /4 in actor-object and scene
branch, respectively. At the initial stage of training, only LTC network is trained, while

the MDB and AOSA networks are frozen.

Training. We develop our FactorNet architecture in Keras API on the top of Tensor-
Flow API. We have resized the extracted frames for all the datasets. At training, data
augmentation is performed to avoid over-fitting by cropping a random clip. We use in-
put spatial resolution of 112 x 112 and temporal length of 7 of 16 during training. The
batch size of 30 clips is considered due to the limitation in GPU memory. We computed
all the parameters and train our model on same machine with a 8 GTX 1080TT GPU.
In our work, we have trained the proposed network in four stages. We first train the
MDB and freeze the AOSA, and LRC modules. In second stage, we train the AOSA
network in a semi-supervised way and freeze the other modules to learn accurate action
information with respect of object and scene. In third stage, we fixed the weights of
MDB and AOSA modules and train LRC to learn long-range temporal dependencies.
Finally, we freeze the learnable weights of backbone, AOSA, and LRC modules and
train the overall architecture respectively. The batch normalization layers are enabled

during training only.

Hyper-parameters In case of scene-related datasets, we start training with a learning
rate of 0.01 and reduce the rate by a factor of 10 for every 45th epochs. For temporal-

related datasets and our dataset we start training with learning rate of 0.001. The

3.5. Experimental Results 51

learning rate is reduced by a factor of 10 at every 30th epoch. We use Adam as
an optimizer with a momentum of 0.9 and a weight decay of 10~*. The weights are
initialized with He initializer. We use the dropout layer between the conv_3b and batch
normalization layer in fish-tail block and set the dropout rate to 0.7. Similarly, a
dropout layer is added on the top of fish-head block and global pooling layer, which is
set to 0.5 to alleviate over-fitting.

Inference. We rescale the shorter dimension of video to 112 pixels, as provided in [137].
In practice, we usually sample 10 clips evenly from the full-length video and compute
the softmax scores individually (similar as [138]). The final prediction is the averaged

modified softmax scores of all clips.

3.5.3 Ablation Study

In this section, we examine abundant ablation studies to estimate recognition accuracy
and computational overhead of the proposed architecture.

Temporal Window Size. The performance of our FactorNet is influenced by temporal
range of a video clip. We analyze the impact of the number of RGB frames in an input
video clip on UCF101, HMDB51, and FactNet datasets. In the Table 3.5, we mutate
our MDB with different number of temporal length from 8 to 128 and depicts the mean
accuracy along with the FLOP count. The conclusion drawn after experiments are as
follows: I.) with the increase in the number of frames, the FLOP counts increase and
I1.) there exist a trade-off between mean accuracy and computational complexity. It is
clear from the table that the temporal range of 16 frames provides high accuracy with
optimal number of parameters.

Effect of different backbone network variants. We have designed a multi-scale
deformable backbone network that extracts rich spatial features with optimal number of
layers. The network is kept shallow in Fish-tail block to restrict the number of training

parameters. Table 3.6 shows the effect of different model, such as 3DResNet, 13D, and

52 3.5. Experimental Results

Table 3.5: Effect of temporal range in our proposed architecture for UCF101 and
FactNet datasets.

#frames Ui]zi(n Fetztlj.et FLOPs (G)
8 96.5 75.1 1 x
16 98.0 87.7 1.2 %
32 96.0 80.7 1.6 x
64 92.0 70.1 2.0 x
128 89.4 68.2 2.1 x

C3D models as our backbone in Fish-tail block and keeping rest of the architecture same.
The importance of the proposed backbone network and its variants in terms of mean
accuracy for BreakFast-Actions and Top-1 for Kinetics400 are reported in Table 3.6. It
is clear from the Table 3.6 that our backbone network outperforms other models with
training parameters approx. similar to 3DResNet-34 [139]. We also investigate the
impact of using top-down skip connection on the performance of the proposed network
in Table 3.7. We have further experimented with number of layer required in Fish-body
and Fish-head blocks, as shown in Figure 3.7. We can therefore conclude that three

layers are adequate for extracting salient feature maps.

Table 3.6: Effect of backbone network variants, like 3DResNet, 13D, and C3D network
as a MDB on Kinetics400 and Breakfast-Actions datasets. Please note that we have
replace MDB with specific backbone network keeping the rest of architecture same.

Kinetics400 | Breakfast-Actions | #params
Backbone Variations Top-1 Acc. (x109)
3DResNet-18 [139] 79.5 87.4 52.2
3DResNet-34 [139] 80.7 88.0 83.5
13D [140] 81.7 88.3 32.5
C3D [12] 80.1 87.7 99
MDB 83.7 93.5 83

Impact on deformable convolution. Table 3.8 shows the comparison results for
utilizing deformable convolution in MDB network. The result concludes that our base-

line model is adequate to extract rich contextual information and enhance performance

3.5. Experimental Results 53

Table 3.7: Performance of our multi-scale deformable backbone network with different
variations on Something-Something V1 and ActivityNet datasets.

Something-Something V1 | ActivityNet
MDB Variations Top-1 Top-3

MDB w/o Fish-body block 54.6 86.3
MDB w /o Fish-head block 53.9 85.9
MDB w/o skip connections 52.7 85.1
MDB 55.3 87.9

> 8:33 . Fish-body —6— o]

S 0.85 ‘Fish-head —K— . —— |

§ 08 . _— o6]

< 075 . e e .

| | | |

number of layers

Figure 3.7: Accuracy vs. number of layers in Fish-body and Fish-head blocks.

to recognize the action for ActivityNet and FactNet datasets. We have also shown the

results in Figure 3.4.

Table 3.8: Comparison of deformable convolution in backbone network on ActivityNet
and FactNet datasets.

MDB Variations ActivityNet FactNet
Top-3 Acc.
w/o deformable convolution 85.5 77.6
w/ deformable convolution 87.9 87.7

Impact on AOSA network. We have shown the comparison results for pooling
mechanism in actor and object branches in Table 3.9. In addition, Table 3.10 shows
the comparison results for different sub-networks implementations on actor, object, and
scene branch. We compare our FactorNet with scores obtained from actor and object
branch. It is clear from the table that channel-wise pooling in actor branch performs
better than temporal and channel-wise pooling.

Impact of LRC network. In Table. 3.11, we demonstrate the comparison results for

54

3.5. Experimental Results

Table 3.9: Comparison of actor and object branches of AOSA network on ActivityNet
and Something-Something V1 datasets.

AOSA Pooling ActivityNet | Something-Something V1
Variations mechanism
Top-3 Top-1
Actor Te@i‘;rgigﬁiznel 87.75 55.0
Branch Channel-wise pooling 87.9 55.3
Object Temporal-channel 87.9 55.3
Branch wise pooling
Channel-wise pooling 85.0 54.7

Table 3.10: Comparison of AOSA on ActivityNet, Breakfast-Actions, and FactNet

datasets.
AOSA ActivityNet | Breakfast-Actions | FactNet
Variations

Top-3 Acc. Acc.

w/o0 actor score 79.2 80.1 75.6

w/o object score 79.8 82.2 80.0

w/o scene score 80.8 85.2 80.1

w/o0 actor-object score 75.8 88.2 79.2

baseline 87.9 93.5 87.7

3.5. Experimental Results 95

ConvLSTM on actor-object and scene branches on Breakfast-Actions and Something-
Something V1 datasets. Our experiments show that spatiotemporal attention in actor-
object branch achieves better accuracy to handle long-range temporal actions. In our
experiment, we found that providing spatiotemporal attention to scene branch, leads to
increase misclassification. Thus, we incorporate temporal attention with ConvLSTM in
scene branch. We also study the usage of different hidden states for learning long-range
spatiotemporal information, as shown in Figure 3.8. We can see 1024 hidden states

perform better as compared to others.

Table 3.11: Comparison of actor-object and scene branch of LRC network on
Breakfast-Actions and Something-Something V1 datasets.

LRC Attention | Breakfast- Something-
variations | mechanism | Actions | Something V1
Acc. Top-1
Spatial 86.2 53.9
Temporal 87.6 53.7
Actor Branch \—— 2 72.6 52.3
Both 93.5 55.3
Spatial 88.1 54.6
Temporal 93.5 55.3
Scene Branch None 75.3 54.2
Both 70.8 51.3
Actor—objedt] scene [N

90 .

Accuracy

64 128 256 512 1024 2048
number of hidden states

Figure 3.8: Accuracy vs. the number of hidden states.

Study on pooling mechanisms. In temporal attention pooling network, we explore

four different temporal pooling mechanisms: max, average, standard deviation, and

o6 3.5. Experimental Results

attention pooling. Table 3.12 shows the comparison results for these four different
implementations. Our experiments show that using temporal attention pooling always
achieves the best performance even on different datasets i.e. UCF101, BreakFast-
Actions, and FactNet.

Table 3.12: Comparison of temporal pooling mechanisms on UCF101, BreakFast-
Actions, and FactNet datasets.

Temporal Pooling variants | UCF101 | BreakFast-Actions | FactNet
Acc. Acc. Acc.
max 93.8 84.9 76.3
average 94.0 85.3 78.7
standard deviation 95.8 89.5 79.2
attention 98.0 93.5 87.7

Impact of individual networks. Our proposed networks in FactorNet are MDB,
AOSA, LRC, and CTAP. In Table 3.13, we investigate the accuracy of how well stan-
dalone networks can perform on the recognition task. We also examine the combination
of our proposed networks on Breakfast-Actions, ActivityNet, and Something-Something

V1 datasets to validate the contribution of each network combination in our FactorNet.

Table 3.13: Effect of individual modules in our architecture for ActivityNet, Breakfast-
Actions, and Something-Something V1 datasets.

Model ActivityNet | Breakfast | Something-
Variations -Actions | Something V1
Top-3 Acc. Top-1
only MDB 79.1 85.3 48.3
only AOSA 79.9 86.1 49.2
only LRC 80.3 86.6 50.7
only CTAP 80.3 87.6 50.6
AOSA + LRC 83.7 88.1 52.7
AOSA + CTAP 84.3 88.2 53.4
LRC + CTAP 85.1 89.4 54.8
MDB+AOSA+LRC+CTAP 87.9 93.5 55.3

Study on different classes of FactNet. In this section, we validate the effectiveness

3.5. Experimental Results o7

of individual networks of our architecture on each action class of FactNet, as shown
in Figure 3.11. It can be seen that different networks have different score values on
a particular action. For instance, ‘AOSA’ works better in case of ‘smoking cigar’ and
‘eating a roll’ actions as compared to other networks, since most of the actions are
focused on temporal context.

Visualization of AOSA network. In this section, we show the effect of each branch
of AOSA network. The heat maps are computed for actor, object, and scene branches
and are shown in Figure 3.9. To recognize a human action, it is important to attend to
the human subjects, and this explains why the attention maps for action have higher
weights on human subjects. However, not all humans in a video frame receive the
same attention, and not all body parts of a human receive attention. To recognize co-
occurring associated objects, it is necessary to deal with the co-occurring objects and
their interaction with the human subject. Only the object which is interacting with
human subjects has a higher weight. On the other hand, the weights of the scene maps
emphasize the background regions with non-uniform distribution. We have visualized

the effect of using softmax, sigmoid, and their combination in Figure 3.9.

3.5.4 Comparison with State-of-the-Art

In this section, we compare our architecture with the state-of-the-art approaches [11,
12,14,30,31,114-117,121,129, 137, 138, 140-152] on six different benchmark datasets.
We also compare with two-stream networks considering both RGB and Optical flow
modalities for action recognition on UCF101 and HMDB51 datasets.

Results on UCF101, HMDB51, and Kinetics400 datasets. We compare the
performance of our FactorNet with state-of-the-art methods on UCF101, HMDB51, and
Kinetics400 datasets. Table 3.14 shows the results performed on UCF101 and HMDB51
datasets that consider to have scene-related videos. It is clear from Table 3.14 that our

network outperforms the recent approaches on UCF101 dataset with an improvement of

o8 3.5. Experimental Results

Actor Attention Object Attention Scene Attention

Figure 3.9: Video frames from different video clips of FactNet dataset. Visualizing the
actor, object, and scene attention maps of AOSA network. From top to bottom, the
actions are: rowing boat, batting cricket, cooking, and playing bagpiper. The action
and object maps emphasis attention on the human, object, and their interaction, while
the scene scene maps focus more on the underlying background. In the attention map
red means important region.

3.5. Experimental Results 59

original

sigmoid

actor

softmax

sigmoid+softmax

object

scene

Figure 3.10: Video frames from different video clips of FactNet dataset. Visualizing

the sigmoid, softmax, combination, object and scene attention maps of AOSA network
for cutting apple and riding horse.

60 3.5. Experimental Results

R
)]

AOSA LRC I MDB

¢ Ll

A8 & 0 ‘b & @ 0
m%w R “&:zm & NS

R
<

Accuracy
S N |
S o
T

S oo DS
&Spe‘: SR *2“?' Q% °§zﬁ \s& ED
\.\ >
S < ‘b S ¥ & ‘Q‘g‘,';&Q %Qo
Q

Figure 3.11: Performance of different networks of our architecture on 38 classes of
FactNet dataset.

1.1%. The performance of our model outperforms most of the existing methods except

for ECO [143].

Table 3.15 depicts Top-1 and Top-5 on Kinetics400 dataset. The accuracy improves
1.1% (Top-1) and 1.6% (Top-5) in Kinetics400 dataset, when our network has only RGB
modality. We also report the FLOPs of our method with 16 frames as an input and
112x112 with only 1 crop. The FLOPs of FactorNet is approx. 266G, which is almost
similar to ECO [143]. However, our model surpasses ECO and other model significantly

in term of accuracy.

Results on Breakfast-Actions, ActivityNet, and Something-Something V1
datasets. Table 3.16 depicts the accuracy for Breakfast-Actions, Top-3 for ActivityNet,
and Top-1 for Something-Something V1 datasets. On Breakfast-Actions, we achieve
1.16% gain. There is only small incremental gain (Top-3) for ActivityNet dataset. We
obtain a gain 2.0% (Top-1) from state-of-the-art results on Something-Something V1
dataset, as shown in Table 3.17 and set a new state-of-the-art performance.

Impact of Optical low modality. We also investigate the effect of optical low on
our proposed architecture. We compare the state-of-the-art results on UCF101 and

HMDB51 datasets that includes both RGB and optical flow modalities in Table 3.14.

We compute optical flow using the TV-L1 algorithm [153] to calculate motion within

3.5. Experimental Results 61

the consecutive frames of a video. The optical flow is given as input to temporal stream
which however incur significant computational cost [154] and only capture short-range

temporal cues of actions.

Table 3.14: Comparison with state-of-the-art methods for scene-related dataset on
UCF101 and HMDB51 datasets.

Methods UCF101 | HMDB51 | Modality
Acc. Acc.

C3D [12] 85.2 - RGB
C3D + iDT [12] 00.4 - RGB
Two-stream CNN [11] 88.0 59.4 RGB + Flow
LTC [30] 82.4 - RGB
LTC [30] 91.7 64.8 RGB + Flow
Factorized CNN [31] 88.1 59.1 RGB + Flow
13D [140] 845 198 RGB
Attention pooling [114] - 52.2 RGB
MiCTNet [141] 88.9 63.8 RGB
MiCTNet |[141] 047 705 | RGB + Flow
S3G [115] 96.8 75.9 RGB
S3G + faster RCNN [115] 78.8 - RGB + Flow
VideoLSTM [144] 79.6 133 RGB
VideoLSTM + iDT [144] 92.2 73.7 RGB + Flow
R(2+1)D + Sport1M [149] 93.6 66.6 RGB
STC [145] 03.7 66.8 RGB
ARTNet with TSN [14] 04.3 70.9 RGB
ECO [143] 04.8 72.4 RGB
StNet + ResNet101 [142] 94.3 - RGB
StNet + IRv2 [142] 95.7 - RGB
STM [138] 96.2 72.2 RGB
MARS [146] 95.6 73.1 RGB
MARS [146] 08.1 80.9 | RGB + Flow
3D-LSTM [129] 05.1 - RGB
R(2+1)D + Kinetics [149] 96.8 74.5 RGB
Zhu et al. [147] 96.9 75.7 RGB
Ours 98.0 80.0 RGB
Ours 96.8 80.1 RGB + Flow

62

3.5. Experimental Results

Table 3.15: Comparison with state-of-the-art methods on Kinetics400 dataset. “N/A”
represents that the authors do not report the inference protocol in their work.

Methods Top-1 | Top-5 | FLOPs(G) xcrops
STC [145] 68.7 | 88.5 -

S3D [115] 694 | 89.1 71 x N/A
ECO [143] 70.7 89.4 267 x 1
ARTNet with TSN [14] 70.7 89.3 -
R(2+1)D [149] 72.0 | 90.0 152 x 1
13D [140] 721 | 90.3 108 x N/A
MARS [146] 728 - -
STM [138] 737 | 9L.6 67 x 3
R(2+1)D + SportIM [149] 743 | 914 152 x 1
Attention clusters [116] 75.0 91.9 -

Zhu et al. [147] 75.3 - -
Non-Local Network (I3D) from [148] | 77.7 93.3 359 x 30
Slow Fast [150] 78.9 93.5 213 x 30
ip-CSN-152 [151] 792 | 938 108.8 x 30
Slow Fast + NL [150] 798 | 93.9 234 x 30
ir-CSN-152 [151] 826 | 95.3 108.8 x 30
Ours 83.7 96.9 266 x 1

Table 3.16: Comparison with state-of-the-art methods for long-range videos on
Breakfast-Actions and ActivityNet datasets.

Methods Breakfast-Actions | ActivityNet
Acc. Top-3

C3D [12] - 81.16

P3D - 87.71

ResNet [152]

13D [140] 80.64 -

Non-local [137] 83.79 -

Timeception [121] 86.93 -

PIC [117] 89.84 -

Ours 93.5 87.9

3.6. Conclusion of the Chapter

63

Table 3.17: Comparison with the state-of-the-art methods on Something-Something

V1 dataset.
Method \ Frames \ Backbone Validation FLOPs
Top-1 | Top-5 | (G)xcrops

I3D from [148] 32 3DResNetb0 41.6 72.2 153 x 3
I3D + GCN from [148] 32 3DResNetd0 46.1 76.8 303 x 3
ECO [143] 8 30.6 - 32 x 1
ECO [143] 16 BN Inception | 41.4 - 64 x 3
ECOgn 92 + 46.4 - 267 x 3
Lite [143] 3DResNet18
S3D-G [115] 64 Inception 48.2 78.7 -
STM [138] 8 ResNet50 49.2 79.3 33 x 3
STM [138] 16 ResNet50 50.7 80.4 67 x 3
ir-CSN-152 [151] 8 - 52.1 - -
ip-CSN-152 [151] 8 - 53.3 - -
Ours 16 - 55.3 85.1 266 x 1

3.6 Conclusion of the Chapter

In this work, we have presented a simple yet effective deep network that supervises the
effect of co-occurring objects and the underlying context for action recognition. Our
deep network also captures long-range dependencies of the videos incorporating atten-
tion mechanisms in ConvLSTM. We utilize multi-scale lateral-path connections in the
backbone network to incorporate finer-detailed enriched spatiotemporal features and
prevent the issue of degradation. We also handle the problem of geometric transforma-
tions of smaller objects using deformable convolutions. An actor-object-scene branch
helps to recognize ambiguous actions by factorizing the spatiotemporal feature tensors
with respect to actor, co-occuring object, and underlying background. We explore ex-
tensive ablation studies to evaluate the classification accuracy of the proposed FactorNet
architecture for different publicly available benchmark datasets with both scene-related
and temporal-related videos. FactorNet outperforms state-of-the-art literature in terms
of Top-1 Something-Something V1 datasets. We generate a new dataset FactNet, where

the annotation is performed based on actor-object-scene interaction.

64 3.7. Publication related to the Chapter

3.7 Publication related to the Chapter

1. Nitika Nigam, Tanima Dutta and Hari Prabhat Gupta, “FactorNet: Holistic Ac-
tor, Object, and Scene Factorization for Action Recognition in Videos,” in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 32, no. 3, pp.

976-991, March 2022, doi: 10.1109/TCSVT.2021.3070688.

