
Chapter 6

CLP-MUL: Clustering-based Link

Prediction in Multiplex Networks

In the previous chapter, an attempt was made to merge local information-based edge

quantification and global information-based node centralities. This centrality calculation

process involves possible discerning paths in a graph which is a computationally

expensive operation for large graphs. In order to improve upon this issue, in this chapter,

we attempt to use community detection to enhance link prediction in multiplex networks.

Community detection in social networks minimizes local intra-community similarity and

maximizes global inter-community information. Hence, such methods follow the

quasi-local information template, which attempts to find a trade-off between local and

global information. Community-based link prediction on multiplex networks

(CLP−MUL) is based on the fact that even if the types of links between nodes may

change depending on the specific layer of a multiplex network, the nodes represent the

same entities and share some fundamental structures (communities). Some communities

may change from layer to layer, but there exist more rigid communities (superimposed

on the whole network structure) whose influence is felt across layers. In this chapter, it is

suggested that nodes belonging to such a community have a greater likelihood of having
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connections between them (in various layers) and that this may be exploited for more

accurate link prediction.

6.1 Introduction

When all the information contained in different layers is considered in the context of

multiplex networks, communities/clusters common across layers of the given network

can be identified. The inspiration for the CLP−MUL method is based on the fact that

even though some communities may change from layer to layer, there exist other more

rigid communities (superimposed on the whole network structure) whose influence is felt

across layers. The basic argument in this chapter is that the nodes belonging to such

a community have a higher chance of having multiple links between them (in different

layers for different interaction types), and this fact can exploit for more efficient link

prediction.

The main motivations behind the CLP−MUL method are (1) creating a method for

community detection in multiplex networks that uses information from all layers; and (2)

using these superimposed communities for link prediction in a manner that is not

layer-dependent. This chapter presents a link prediction method based on

clustering/community detection on multiplex networks. An additional advantage of the

CLP−MUL approach is that after performing community detection and link prediction

on a single weighted graph, the link prediction probabilities can directly be transferred to

specific layers without any added processing, using a simple scalar multiplication of

probability matrix.

6.1.1 Information Diffusion

In this framework, an algorithm is used to detect network communities, which combines

the flow of information with detachability and label propagation. Information diffusion
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FIGURE 6.1: CLP−MUL Framework

can be defined as the ”study of how a piece of information is propagated in a network

through edges and how nodes can influence each other” [75]. Information diffusion helps

bring out communities’ shape within the network by maximizing influence spread. A

probabilistic method to model the diffusion process as a Markov random field was

proposed by Domingos and Richardson [166]. Kempe et al. [167] were the first to

reformat this problem based on information cascade and linear threshold models. Other

concepts such as sub-modularity [168] and influence paths [169] has also been used for

enhancing the information diffusion process. A recent survey of information

diffusion-based community detection was undertaken by Das and Biswas [170].

6.2 Proposed Work

This section discusses the proposed framework of CLP − MUL, which takes

multi-interaction networks and uses a clustering-based link prediction framework to

predict links in the layers of these multiplex networks. The proposed framework is

shown in Figure 6.1. First, the algorithm forms a weighted summarized network from

multi-interaction networks then it performs network clustering using information

diffusion [162]. It then computes the individual and collective impact of node x to their
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neighbors y. After this, the algorithm calculates the features (common relevant nodes)

for final likelihood computation. Finally, the algorithm computes the likelihood score of

each non-existing link to predict missing links. The framework consists of the following

modules -

6.2.1 Network Integration

Multi-interaction (multiplex) networks are merged into a single weighted network in the

network integration phase. To create such a weighted network, a topological

information-based strategy for layer integration is developed, which is also beneficial in

implementing any single weighted network link prediction algorithm. Therefore, the

weight of an edge between nodes x&y, i.e., AM(x,y) can be computed using Equation 6.1

(where n is the number of layers in multiplex network).

AM(x,y)← 1
n

n

∑
j=1
{A j|A j = a j

xy} (6.1)

where (E j is the edge set of jth layer of multiplex network),

a j
xy←

1 if ∃(x,y) ∈ E j, j ∈ [1,n]

0 otherwise
(6.2)

6.2.2 Network Clustering

To incorporate the collective impact of an individual on another, a network clustering

method [162] using information diffusion and trust formation is utilized to identify

community structure. This method works in two phases: partitioning and stabilization.

• Partitioning. In this phase, the transformed multiplex network (weighted simple

graph) is divided into sub-networks based on information propagation. This
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depends on trustingness and trustworthiness along with the diffusion model.

Trustingness τ
p
z measures the propensity of an individual z to trust someone while

trustworthiness τ I
xz measures the user’s x outlook about others z. A node x belongs

to a community CL(x) in which node x has the maximum influence (l is the total

number of communities). An individual’s influence is calculated under the

independent cascade model (here N.C j are neighbors of node x, which belong to

the same community k with label C j).

CL(x)← argmsmax1≤k≤l{1− ∏
z∈N.Ck

(1− τ
p
z × τ

I
xz)} (6.3)

• Stabilization. Now, the algorithm stabilizes the community structure using a

stabilizing index. Therefore, unstable communities will be merged with more

suitable and stable communities. Stabilizing index is the ratio of intra-influence to

the overall influence of a community, given as follows.

SI(Ci)←
∑x,y∈Ci τ

p
x × τ I

xy

∑x,y∈Ci τ
p
x × τ I

xy×∑
y/∈Ci
x∈Ci

τ
p
x × τ I

xy

(6.4)

6.2.3 Individual Impact Calculation

Some studies suggest that the influence of an individual is limited to their local area,

such as small world phenomena, three-degree theory, etc. The three-degree theory [171]

states that a node x influence is not propagated beyond the three-hop area. Therefore, an

individual influence will decrease exponentially with respect to the number of hops. So,

an individual impact II(x,y) of x to y can be computed by Equation 6.5 (here ds(x,y) is

shortest distance between x&y).
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II(x,y)←



1, i f ds(x,y)≤ 1

(τ I
xz× τ

p
x + τ I

zy× τ
p
z )× exp1−ds, i f ds(x,y) = 2

(τ I
xz1
× τ

p
x + τ I

z1z2
× τ

p
z1 + τ I

z2y× τ
p
z2)× exp1−ds, i f ds(x,y) = 3

0, i f ds(x,y)≥ 4

(6.5)

6.2.4 Measuring Collective Impact

Nodes that are more closely related to each other have more influence on each other.

This relationship can be quantified using different approaches, such as the number of

common neighbors, shortest path length between nodes, etc. In the community-based

approach, a node is more closely related to nodes belonging to the same community than

inter-community nodes. So, a node has more influence on nodes that belong to the same

community. The collective impact (x,y) of a node x on y can be defined as follows (here

α is the weightage assigned to a node pair when they belong to the same community

and CL(x),CL(y) are the community labels for nodes x&y which is calculated in network

clustering in Section 6.2.2). α has a fixed value of 1 in this chapter.

CI(x,y)←

α if CL(x) =CL(y)

0 otherwise
(6.6)

6.2.5 Feature Selection

Now, the proposed algorithm identifies the feature set γ(n1,n2) for each non-existing

edge (n1,n2) based on topological features. There are different topological features

which are utilized, the proposed variations being CLP M CN, CLP M PA, CLP M CAR,
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CLP M CC, defined as follows. This feature set will be used to calculate the final

likelihood score between nodes which are not directly connected to each other.

1. Common Neighbors (CN). Nodes in the actual world are heavily clustered locally

due to small world phenomena, meaning they are more likely to be connected if they

have more common neighbours [16]. The common neighbors feature set γ(n1,n2)

for a non-existing pair (n1,n2) is defined as,

γ(x,y)←{z|z ∈ {N(n1)∩N(n2)}} (6.7)

where N(n1) and N(n2) denotes the neighbors of node n1 and n2 respectively.

2. Preferential Attachment (PA). [90] formulated that nodes with more connections

overall were more likely to get new connections. Therefore, the preferential

attachment feature set γ(n1,n2) for a non-existing pair (n1,n2) is defined as,

γ(n1,n2)←{z|z ∈ {N(n1)∪N(n2)}} (6.8)

3. CAR. [20] stated that nodes which belong to the same local community are more

likely to have a connection. CAR attempts to find connections within the common

neighbors themselves. Essentially two common neighbors of nodes n1&n2 ehich

have common connections amongst themselves are considered as part of this feature

set. Therefore, CAR feature set γ(n1,n2) for a non-existing pair (n1,n2) is defined

as follows.

γ(n1,n2)←{z|z ∈ {N(n1)∩N(n2)∩N(z′)}} (6.9)

where z′ is another common neighbor of nodes n1&n2,

z′←{N(n1)∩N(n2)} (6.10)

4. Clustering Coefficient (CC). The degree to which nodes tend to cluster together

is measured by the clustering coefficient [42]. Therefore, The clustering coefficient
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feature set γ(x,y) for a non-existing pair (n1,n2) is defined as the set of neighbor

nodes that tend to form triangles.

γ(n1,n2)←{z|z ∈ ∆m} (6.11)

where ∆m denotes set of nodes which forms triangles passing through node m, where

m ∈ {N(n1)∩N(n2)}.

6.2.6 Likelihood Score Computation

The likelihood can be determined by individual and collective impact of a node onto

other. The likelihood score LI(x,y) of non-existing link x,y to predict missing link can

be computed as follows (here γ(x,y) is calculated using different measures as shown in

Section 6.2.5).

LI(x,y)← ∑
z∈γ(x,y)

CI(x,z)× II(x,z)+CI(z,y)× II(z,y)
∑w∈N(z)CI(z,w)× II(z,w)

i f f ∑
w∈N(z)

CI(z,w)× II(z,w) ̸= 0

(6.12)

6.2.7 CLP−MUL Algorithm with an illustrative example

The Algorithm 4 takes multi interaction networks as input and produce likelihood scores

of non-existing links to predict missing links. Line 2 generates a summarized and

weighted multiplex network representation from multi interaction networks of common

nodes using topological coupling. Line 4 identifies the community structure based on

independent cascade propagation model using trustingness and trustworthiness of an

individual. The algorithm, by applying lines 6-8, iteratively computes importance of a

node and community. Line 7 computes individual impact to others using three degree

theory. Line 8 computes collective impact of an individual corresponding to associated
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Algorithm 4: CLP−MUL: Clustering-based Link Prediction in Multiplex Network
Input: Social Networks: Gi(Vi,Ei)
Output: Likelihood Index: LI

1 ▷ Network Integration
2 Create a multiplex network AM from n different interaction networks on same user

set using AM(x,y)← 1
n ∑

n
j=1 A j

3 ▷ Network Clustering
4 Identify community structure based on independent cascade propagation model using

propensity to trust and influence probabilities
5 ▷ Individual & Collective Impact Computation
6 for each edge (x,y) ∈ E do
7 Compute individual influence of x to others y using II(x,y)
8 Compute collective influence of x to y using CI(x,y)

9 ▷ Feature Selection
10 for each non-existing edge (u,v) /∈ E do
11 Select features set of a pair of individuals based on CN, PA, CAR, & CC

12 ▷ Likelihood Index Computation
13 for each non-existing link (u,v) /∈ E do
14 Compute likelihood score of each non-existing pair (u,v) using LI(u,v)

15 Return LI;

community. The algorithm, by applying lines 10-11, iteratively obtains the features of a

pair of individuals using CN, PA, CAR, and CC. The loop in lines 13-14 computes the

likelihood score of each non-existing link to predict missing links. Finally, line 15

returns the likelihood index of non-existing links.

To explain the working of CLP−MUL, a multi interaction network consisting of graphs

G1, G2, and G3 is used for demonstration purposes as shown in Figure 6.2. Firstly,

algorithm generates a summarized multiplex network representation by integrating multi

interaction networks and computes connection strength as AM(x,y) ← 1
n ∑

n
j=1 A j. For

examples, connection strength of (A,B) in multiplex can be calculated as

AM(A,B)← 1
3(1+ 1+ 1) = 1. Individual impact and collective impact both will be 1

because A and B have direct connection to each other and belongs to same community.

Similarly, we can compute for other existing edges as shown in Table 6.1. After

computing individual impact and collective impact for existing edges, the likelihood for
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FIGURE 6.2: Example Graph for CLP−MUL framework

non-existing edges to predict missing links is computed. For example, non-existing link

(A,E) can compute individual and collective impact as 0.588 and 1 by Equation 6.5 and

6.6 respectively. Next feature set is evaluated using CN, PA, CAR, and CC. Therefore.

CNz = N(A)∩N(E = {B,C,D}∩{B,H,D}) = {B,D} and LI −CN = 0.163. Similarly,

likelihood scores for other non-existing edges can be computed (as shown in Table 6.1).

6.2.8 Complexity Analysis

In this section, the time complexity of the proposed algorithm CLP−MUL is analyzed.

Here Davg is the average degree of graph and Cavg is the average clustering coefficient of

graph. Line 1 generates multiplex network in O(V + E) time. Line 2 identify the

community structure of multiplex network using label propagation based clustering [75]

in O(Davg(E + τV + l2
cCavg)) time. The for loop in lines 3-5 computes individual and

collective impact in O(V Davg +E) and O(1) time respectively. The for loop in lines 6-7

computes common neighbors feature set in O(V Davg +E) time. Finally, algorithm in

lines 8-9 computes likelihood score of non-existing links in O(E) time. The combined

complexity of CLP − MUL approach would be

O(V + E + Davg(E + τV + l2
cCavg) + 2(V Davg + E) + E). Taking the most significant

term into account, overall time complexity of CLP−MUL is O(DavgE).
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6.3 Performance Analysis

6.3.1 Feature Set Comparison

The relationship between the algorithm’s performance based on different feature sets

(CLP M CN, CLP M PA, CLP M CAR, CLP M CC) is investigated in this section.

Three metrics in these experiments: AUC, F1 Score and Balanced Accuracy Score have

been used. Five different ratios (0.1, 0.2, 0.3, 0.4, 0.5) are also used where each ratio is

of testing set edges to total edges of graph datasets while the remaining ones are

considered training data sets. Each of these tests is performed on six real-world

networks. For the sake of simplicity in performing comparisons between different

feature sets, the value of α at 1 is fixed. This helps in streamlining the results such that

only differences caused due to change of feature sets can be measured.

6.3.1.1 AUC Pattern among different feature sets

Fig. 6.3 presents the comparison of different feature sets on six datasets. In first five

datasets it is observed that CLP M CN is either the best performing algorithm or it

narrowly misses the best position. The only sizable difference is observed in the dataset

Xenopus-Genetic where CLP M PA is the best performing algorithm. But this is not a

general pattern as in all other datasets as the PA based variation can be considered the

worst performing one. CLP M CAR is the second best performing algorithm in 4

datasets. The exceptions are CKM-Physicians-Innovation and Xenopus-Genetic where it

becomes close to the worst performing algorithm. CLP M CC can be considered to be

algorithm with the most middle-of-the-pack performance. The exception is

CKM-Physicians-Innovation where it performs just worse than CLP M CN.
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FIGURE 6.3: AUC comparison of CLP−MUL algorithm for different feature sets on
datasets
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FIGURE 6.4: F1 Score comparison of CLP−MUL algorithm for different feature sets on
datasets
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6.3.1.2 F1 Score Pattern among different feature sets

Fig. 6.4 presents the comparison of different feature sets on six datasets. CLP M CN is

observed to be one of the best performing algorithm across all datasets. The overall

pattern of variation is increase of F1 score as the training edge set becomes smaller and

the testing edge set becomes bigger i.e., increase in Ratio variable. But it is evident that

the quantum of increase of F1 score decreases with the increase of Ratio variable.

CLP M CAR shows the most erratic behavior unlike the other three algorithms especially

in CKM-Physicians-Innovation and Xenopus-Genetic dataset. In these cases it doesn’t

follow the gradual increasing order pattern. CLP M PA can be seen to be the worst

performing algorithm in all six datasets while CLP M CC can be considered to be the

middle-of-the-pack one.

6.3.1.3 Balanced Accuracy Score Pattern among different feature sets

Fig. 6.5 presents the comparison of different feature sets on six datasets. CLP M CN can

be seen to be either the best perming algorithm or its performance is very close to the

others. The only exception is Xenopus-Genetic dataset where CLP M PA is the best

performing one and shows a minuscule increase in performance. This is contrary to the

gradual decreasing pattern in performance followed by other algorithms. But in all other

datasets, CLP M PA is the worst performing algorithm. CLP M CC shows a

middle-of-the-pack performance in all datasets except Kapferer-Tailor-Shop and

CKM-Physicians-Innovation. In Kapferer-Tailor-Shop it is the worst performing

algorithm while in CKM-Physicians-Innovation it is the best performing one.

CLP M CAR shows very good performance in all datasets except in

CKM-Physicians-Innovation and Xenopus-Genetic. In both these datasets it becomes the

worst performing algorithm.
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FIGURE 6.5: Balanced Accuracy Score comparison of CLP−MUL algorithm for
different feature sets on datasets
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6.3.2 CLP − MUL comparison with link prediction methods on

summarized weighted graph

In this section, the performance of the proposed algorithm with different baseline

algorithms on the weighted graph is compared. From section 6.3.1 it can be concluded

that the best variation of CLP−MUL algorithm with the most consistent performance

across datasets is CLP M CN, from hereon referred as CLP−MUL. Table 6.2 shows the

comparison of the proposed CLP−MUL algorithm with baseline methods with respect

to AUC metric. CLP−MUL is the best performing algorithm in all six datasets. In

CS-Aarhus and CKM-Physicians-Innovation the improvement is quiet drastic. For

Lazega-Law-Firm, Vickers-Chan-7thGraders and Kapferer-Tailor-Shop the performance

improvement is significant. The least improvement is observed in Xenopus-Genetic

dataset. A point to be noted here is that Xenopus-Genetic is the dataset in which the PA

based feature set showed the most promise in Fig. 6.3, 6.4 and 6.5. Table 6.3 shows the

comparison of the proposed CLP−MUL algorithm with baseline methods with respect

to F1 score. CLP−MUL is the best performing algorithm in five datasets. The exception

is Xenopus-Genetic where it is narrowly pushed to second place by JC-WT with CN-WT

as a close third. Table 6.4 shows the comparison of the proposed CLP−MUL algorithm

with baseline methods with respect to Balanced Accuracy score. CLP−MUL is the best

performing algorithm in all six datasets. The least improvement is seen for

Kapferer-Tailor-Shop and Xenopus-Genetic dataset while all others show significant

improvement.

6.3.3 CLP − MUL comparison with multiplex link prediction

methods on individual layers

This section presents the results of the CLP−MUL algorithm on application to specific

multiplex network layers. In order to convert the probability matrix obtained after

processing the summarized weighted graph, for each layer, the probability matrix is
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multiplied by the relative density of the current layer with respect to the overall density

of the summarized graph. This factor is |EM |−|E j|
|EM | . Tables 6.5 and 6.6 show the

comparison of the proposed CLP−MUL algorithm with baseline methods for the AUC

metric. CLP−MUL is the best performing algorithm in datasets Lazega-Law-Firm,

CS-Aarhus, Vickers-Chan-7thGraders and Kapferer-Tailer-Shop for ratios 0.1&0.2 in

most cases. The exceptions are layer 1 of Lazega-Law-Firm, layer 3 of CS-Aarhus, and

layer 1 of Kapferer-Tailer-Shop. Out of these exceptions, the performance of the

proposed CLP−MUL is third best only in layer 3 of the CS-Aarhus dataset, where it is

outperformed by both NSILR−MUL and MADM −MUL because of extremely low

average connectivity. Besides this exception, the proposed algorithm has the second-best

performance in other cases, only marginally behind MADM − MUL. In the

CKM-Physicians-Innovation dataset, the CLP−MUL algorithm is the third best behind

NSIRLP and MADMLP, which are designed specifically for link prediction in multiplex

networks. This dataset is different from all others because of its high average shortest

path length and extremely low average connectivity (which represents the cohesion in

graph structure or relative difficulty of breaking the graph structure) in all layers. In the

Xenopus-Genetic dataset, the CLP−MUL algorithm performs best in layer 3. In layer 2,

all link prediction algorithms have comparable results. In contrast, layer 1 is an

exceptional case where the structure of the actual layer is drastically different from the

summarized weighted graph because of a low number of nodes and edges. PA−WT and

MADM−MUL algorithms show the best performance in such a case.

Tables 6.7 and 6.8 show the comparison of the proposed CLP−MUL algorithm with

baseline methods for F1 score. CLP−MUL is the best performing algorithm in datasets

Lazega-Law-Firm, CS-Aarhus, Vickers-Chan-7thGraders, and Kapferer-Tailer-Shop for

ratios 0.1&0.2. For the CKM-Physicians dataset, the proposed algorithm shows the best

results for layer 3 and is second best in layers 1 and 2. This dataset is characterized by

high average shortest paths and low average connectivity. In the Xenopus-Genetic

dataset, CLP−MUL shows the best performance in layer 2 and is second best in layer 3.

Layer 1 of this dataset presents an interesting edge case where the performance of all
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algorithms falls drastically. This is because of an extremely small number of edges in

this layer which makes it significantly different from the summarized weighted graph.

Tables 6.9 and 6.10 show the comparison of the proposed CLP−MUL algorithm with

baseline methods for the Balanced Accuracy score. CLP−MUL is the best performing

algorithm in datasets Lazega-Law-Firm, Vickers-Chan-7thGraders and

Kapferer-Tailer-Shop for ratios 0.1&0.2. In the CKM-Physicians-Innovation dataset, the

CLP−MUL algorithm is the third best behind NSIRLP and MADMLP, which are

designed specifically for link prediction in multiplex networks. This dataset differs from

all others because of its high average shortest path length in all layers. For Ratio = 0.3

CLP−MUL algorithm shows worse performance than others because the performance

of this algorithm is directly correlated with the task of community detection, which

becomes cumbersome if a complete overall view of the graph and its relationships is not

available. These tables only show networks in which the number of layers is less than

five due to space constraints. This is because it can be assumed that the probabilities for

links on the weighted graph are the same as links on layers for the same pair of nodes, as

in rigid core communities.

6.4 Concluding Remarks

This chapter presents a novel method for link prediction in multiplex networks based on

community detection, CLP−MUL. The proposed algorithm predicts links that are not

specific to a particular layer but are based on communities detected using the

summarized information of all layers. In this approach, a clustering method that uses

information diffusion for label propagation to fit our needs on weighted networks is

formulated. This method determines the region of influence of different central nodes.

These regions are the communities/clusters that have high rigidity across layers. This

approach considers these communities to stretch across layers even if the edge structure

of a particular layer may not agree entirely with it. The detected clusters are used for

calculating intra-cluster and inter-cluster similarity between node pairs for link
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prediction. The experiments are performed on six real-world datasets. The results

indicate that the argument was justified for datasets with low average shortest path length

and relatively higher edge density. CLP−MUL method is compared with the classical

link prediction methods for weighted graphs, demonstrating its superior performance

both on the summarized weighted graph and on the original layers. The algorithm

performance shows a slight deterioration for datasets with a high average shortest path

length compared with the best algorithms in those cases.


