Chapter 6

CLP-MUL: Clustering-based Link

Prediction in Multiplex Networks

In the previous chapter, an attempt was made to merge local information-based edge
quantification and global information-based node centralities. This centrality calculation
process involves possible discerning paths in a graph which is a computationally
expensive operation for large graphs. In order to improve upon this issue, in this chapter,
we attempt to use community detection to enhance link prediction in multiplex networks.
Community detection in social networks minimizes local intra-community similarity and
maximizes global inter-community information. Hence, such methods follow the
quasi-local information template, which attempts to find a trade-off between local and
global information. Community-based link prediction on multiplex networks
(CLP —MUL) is based on the fact that even if the types of links between nodes may
change depending on the specific layer of a multiplex network, the nodes represent the
same entities and share some fundamental structures (communities). Some communities
may change from layer to layer, but there exist more rigid communities (superimposed
on the whole network structure) whose influence is felt across layers. In this chapter, it is

suggested that nodes belonging to such a community have a greater likelihood of having
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connections between them (in various layers) and that this may be exploited for more

accurate link prediction.

6.1 Introduction

When all the information contained in different layers is considered in the context of
multiplex networks, communities/clusters common across layers of the given network
can be identified. The inspiration for the CLP — MUL method is based on the fact that
even though some communities may change from layer to layer, there exist other more
rigid communities (superimposed on the whole network structure) whose influence is felt
across layers. The basic argument in this chapter is that the nodes belonging to such
a community have a higher chance of having multiple links between them (in different
layers for different interaction types), and this fact can exploit for more efficient link

prediction.

The main motivations behind the CLP — MUL method are (1) creating a method for
community detection in multiplex networks that uses information from all layers; and (2)
using these superimposed communities for link prediction in a manner that is not
layer-dependent. This chapter presents a link prediction method based on
clustering/community detection on multiplex networks. An additional advantage of the
CLP — MUL approach is that after performing community detection and link prediction
on a single weighted graph, the link prediction probabilities can directly be transferred to
specific layers without any added processing, using a simple scalar multiplication of

probability matrix.

6.1.1 Information Diffusion

In this framework, an algorithm is used to detect network communities, which combines

the flow of information with detachability and label propagation. Information diffusion
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FIGURE 6.1: CLP — MUL Framework

can be defined as the ”study of how a piece of information is propagated in a network
through edges and how nodes can influence each other” [75]. Information diffusion helps
bring out communities’ shape within the network by maximizing influence spread. A
probabilistic method to model the diffusion process as a Markov random field was
proposed by Domingos and Richardson [166]. Kempe et al. [167] were the first to
reformat this problem based on information cascade and linear threshold models. Other
concepts such as sub-modularity [168] and influence paths [169] has also been used for
enhancing the information diffusion process. = A recent survey of information

diffusion-based community detection was undertaken by Das and Biswas [170].

6.2 Proposed Work

This section discusses the proposed framework of CLP — MUL, which takes
multi-interaction networks and uses a clustering-based link prediction framework to
predict links in the layers of these multiplex networks. The proposed framework is
shown in Figure 6.1. First, the algorithm forms a weighted summarized network from
multi-interaction networks then it performs network clustering using information

diffusion [162]. It then computes the individual and collective impact of node x to their
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neighbors y. After this, the algorithm calculates the features (common relevant nodes)
for final likelihood computation. Finally, the algorithm computes the likelihood score of
each non-existing link to predict missing links. The framework consists of the following

modules -

6.2.1 Network Integration

Multi-interaction (multiplex) networks are merged into a single weighted network in the
network integration phase. To create such a weighted network, a topological
information-based strategy for layer integration is developed, which is also beneficial in
implementing any single weighted network link prediction algorithm. Therefore, the
weight of an edge between nodes x&y, i.e., Ay(x,y) can be computed using Equation 6.1

(where n 1s the number of layers in multiplex network).

1 & .
Ap(x,y) - Y {4jlA;=al} (6.1)
j=1

where (E; is the edge set of j " layer of multiplex network),

aj - 1 ile(xay>€Ej7j€[1,n] (62)

Xy
0 otherwise

6.2.2 Network Clustering

To incorporate the collective impact of an individual on another, a network clustering
method [162] using information diffusion and trust formation is utilized to identify

community structure. This method works in two phases: partitioning and stabilization.

* Partitioning. In this phase, the transformed multiplex network (weighted simple

graph) is divided into sub-networks based on information propagation. This
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depends on trustingness and trustworthiness along with the diffusion model.
Trustingness 7/ measures the propensity of an individual z to trust someone while
trustworthiness T){Z measures the user’s x outlook about others z. A node x belongs
to a community Cz(x) in which node x has the maximum influence (I is the total
number of communities). An individual’s influence is calculated under the

independent cascade model (here N.C; are neighbors of node x, which belong to

the same community k with label C;).

Cr(x) < argmsmax; <x<;{1 — H (1—1Px ”L')fz)} (6.3)
ZGN.Ck

* Stabilization. Now, the algorithm stabilizes the community structure using a
stabilizing index. Therefore, unstable communities will be merged with more
suitable and stable communities. Stabilizing index is the ratio of intra-influence to

the overall influence of a community, given as follows.

4 1
Zx,yeCi Tx X Txy

Pl yE¢Ci P, I
Yayee, T X Ty X Xy, T X Tyy

S](Ci) < (6.4)

6.2.3 Individual Impact Calculation

Some studies suggest that the influence of an individual is limited to their local area,
such as small world phenomena, three-degree theory, etc. The three-degree theory [171]
states that a node x influence is not propagated beyond the three-hop area. Therefore, an
individual influence will decrease exponentially with respect to the number of hops. So,
an individual impact I;(x,y) of x to y can be computed by Equation 6.5 (here d;(x,y) is

shortest distance between x&y).
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(

17 lf ds(X,y) S 1

(L x ¥ + 1L x 10) x exp' =%, if  ds(x,y)=2
Ly) < =07 @0 T ! 6.5)

(T){ZI X Tf + Tzllzz X TZpl + Tzlzy X szz) X eXpl_d‘% lf ds(x7y) = 3

K07 if ds(x7y) 24

6.2.4 Measuring Collective Impact

Nodes that are more closely related to each other have more influence on each other.
This relationship can be quantified using different approaches, such as the number of
common neighbors, shortest path length between nodes, etc. In the community-based
approach, a node is more closely related to nodes belonging to the same community than
inter-community nodes. So, a node has more influence on nodes that belong to the same
community. The collective impact (x,y) of a node x on y can be defined as follows (here
« is the weightage assigned to a node pair when they belong to the same community
and Cr,(x),Cr(y) are the community labels for nodes x&y which is calculated in network

clustering in Section 6.2.2). « has a fixed value of 1 in this chapter.

if Cr(x) =C
Ci(x,y) < @ fam=a0) (6.6)

0 otherwise

6.2.5 Feature Selection

Now, the proposed algorithm identifies the feature set y(nj,n;) for each non-existing
edge (ny,n) based on topological features. There are different topological features

which are utilized, the proposed variations being CLP_M _CN, CLP_M _PA, CLP_M CAR,
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CLP_M_CC, defined as follows. This feature set will be used to calculate the final

likelihood score between nodes which are not directly connected to each other.

1. Common Neighbors (CN). Nodes in the actual world are heavily clustered locally
due to small world phenomena, meaning they are more likely to be connected if they
have more common neighbours [16]. The common neighbors feature set y(ny,n)

for a non-existing pair (n,n;) is defined as,

Y(x,y) < {z|lz€ {N(n1)NN(n2)}} (6.7)

where N(n;) and N(ny) denotes the neighbors of node n; and n; respectively.

2. Preferential Attachment (PA). [90] formulated that nodes with more connections
overall were more likely to get new connections. Therefore, the preferential

attachment feature set y(ny,n,) for a non-existing pair (ny,n;) is defined as,

y(ni,nz) « {zlz€ {N(n1) UN(ny)}} (6.8)

3. CAR. [20] stated that nodes which belong to the same local community are more
likely to have a connection. CAR attempts to find connections within the common
neighbors themselves. Essentially two common neighbors of nodes ny&n, ehich
have common connections amongst themselves are considered as part of this feature
set. Therefore, CAR feature set y(ny,n;) for a non-existing pair (ny,n,) is defined
as follows.

y(ni,np) < {zlz€ {N(n1) "NN(na) NN(Z)}} (6.9)

where 7’ is another common neighbor of nodes n;&n,

7« {N(n1)NN(n2)} (6.10)

4. Clustering Coefficient (CC). The degree to which nodes tend to cluster together

is measured by the clustering coefficient [42]. Therefore, The clustering coefficient
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feature set y(x,y) for a non-existing pair (ny,n;) is defined as the set of neighbor

nodes that tend to form triangles.
Y(ni,n2) < {zlz € An} 6.11)
where A,, denotes set of nodes which forms triangles passing through node m, where

m € {N(n;)NN(ny)}.

6.2.6 Likelihood Score Computation

The likelihood can be determined by individual and collective impact of a node onto
other. The likelihood score L;(x,y) of non-existing link x,y to predict missing link can
be computed as follows (here y(x,y) is calculated using different measures as shown in

Section 6.2.5).

Ci( Ii(x,2)+C I
Li(ey) o Z 1(x,2) X I(x,2) + C1(z,y) x I1(z,)

ZWGN CI(Z7 W) X II(Z7 W)
eEY(x (6.12)

iff Y, Ci(z.w) xIi(z,w) #0

WEN(z)
6.2.7 CLP— MUL Algorithm with an illustrative example

The Algorithm 4 takes multi interaction networks as input and produce likelihood scores
of non-existing links to predict missing links. Line 2 generates a summarized and
weighted multiplex network representation from multi interaction networks of common
nodes using topological coupling. Line 4 identifies the community structure based on
independent cascade propagation model using trustingness and trustworthiness of an
individual. The algorithm, by applying lines 6-8, iteratively computes importance of a
node and community. Line 7 computes individual impact to others using three degree

theory. Line 8 computes collective impact of an individual corresponding to associated
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Algorithm 4: CLP — MUL: Clustering-based Link Prediction in Multiplex Network
Input: Social Networks: G;(V;,E;)
Output: Likelihood Index: L;

> Network Integration
Create a multiplex network Ay, from n different interaction networks on same user
set using Aps(x,y) < %27:1 Aj
> Network Clustering
Identify community structure based on independent cascade propagation model using
propensity to trust and influence probabilities
> Individual & Collective Impact Computation
for each edge (x,y) € E do
Compute individual influence of x to others y using I;(x,y)
L Compute collective influence of x to y using Cy(x,y)

> Feature Selection
for each non-existing edge (u,v) ¢ E do
L Select features set of a pair of individuals based on CN, PA, CAR, & CC

> Likelihood Index Computation
for each non-existing link (u,v) ¢ E do
L Compute likelihood score of each non-existing pair (u,v) using L;(u,v)

Return L;;

community. The algorithm, by applying lines 10-11, iteratively obtains the features of a
pair of individuals using CN, PA, CAR, and CC. The loop in lines 13-14 computes the
likelihood score of each non-existing link to predict missing links. Finally, line 15

returns the likelihood index of non-existing links.

To explain the working of CLP — MUL, a multi interaction network consisting of graphs
G1, Gy, and G3 is used for demonstration purposes as shown in Figure 6.2. Firstly,
algorithm generates a summarized multiplex network representation by integrating multi
interaction networks and computes connection strength as Ays(x,y) < %Z;f: 1Aj. For
examples, connection strength of (A,B) in multiplex can be calculated as
Au(A,B) + $(1+1+1) = 1. Individual impact and collective impact both will be 1
because A and B have direct connection to each other and belongs to same community.
Similarly, we can compute for other existing edges as shown in Table 6.1. After

computing individual impact and collective impact for existing edges, the likelihood for
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FIGURE 6.2: Example Graph for CLP — MU L framework

non-existing edges to predict missing links is computed. For example, non-existing link
(A,E) can compute individual and collective impact as 0.588 and 1 by Equation 6.5 and
6.6 respectively. Next feature set is evaluated using CN, PA, CAR, and CC. Therefore.
CN,=N(A)NN(E ={B,C,D}N{B,H,D}) = {B,D} and L; — CN = 0.163. Similarly,

likelihood scores for other non-existing edges can be computed (as shown in Table 6.1).

6.2.8 Complexity Analysis

In this section, the time complexity of the proposed algorithm CLP — MUL is analyzed.
Here D, is the average degree of graph and C,, is the average clustering coefficient of
graph. Line 1 generates multiplex network in &(V + E) time. Line 2 identify the
community structure of multiplex network using label propagation based clustering [75]
in O(Dayg(E + TV + [2Cpyg)) time. The for loop in lines 3-5 computes individual and
collective impact in &' (VDg,, + E) and €(1) time respectively. The for loop in lines 6-7
computes common neighbors feature set in &'(VDge + E) time. Finally, algorithm in
lines 8-9 computes likelihood score of non-existing links in &'(E) time. The combined
complexity of CLP — MUL approach would be
OV +E+ Dgyo(E+ 1V + ZCZCan) +2(VDgye + E) + E). Taking the most significant

term into account, overall time complexity of CLP — MUL is O(DgygE).
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6.3 Performance Analysis

6.3.1 Feature Set Comparison

The relationship between the algorithm’s performance based on different feature sets
(CLP.M CN, CLP.M_PA, CLP_-M _CAR, CLP_M _CC) is investigated in this section.
Three metrics in these experiments: AUC, F1 Score and Balanced Accuracy Score have
been used. Five different ratios (0.1, 0.2, 0.3, 0.4, 0.5) are also used where each ratio is
of testing set edges to total edges of graph datasets while the remaining ones are
considered training data sets. Each of these tests is performed on six real-world
networks. For the sake of simplicity in performing comparisons between different
feature sets, the value of o at 1 is fixed. This helps in streamlining the results such that

only differences caused due to change of feature sets can be measured.

6.3.1.1 AUC Pattern among different feature sets

Fig. 6.3 presents the comparison of different feature sets on six datasets. In first five
datasets it is observed that CLP_M_CN is either the best performing algorithm or it
narrowly misses the best position. The only sizable difference is observed in the dataset
Xenopus-Genetic where CLP_M _PA is the best performing algorithm. But this is not a
general pattern as in all other datasets as the PA based variation can be considered the
worst performing one. CLP_M_CAR is the second best performing algorithm in 4
datasets. The exceptions are CKM-Physicians-Innovation and Xenopus-Genetic where it
becomes close to the worst performing algorithm. CLP_M_CC can be considered to be
algorithm with the most middle-of-the-pack performance. The exception is

CKM-Physicians-Innovation where it performs just worse than CLP_M CN.
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6.3.1.2 F1 Score Pattern among different feature sets

Fig. 6.4 presents the comparison of different feature sets on six datasets. CLP_M_CN is
observed to be one of the best performing algorithm across all datasets. The overall
pattern of variation is increase of F1 score as the training edge set becomes smaller and
the testing edge set becomes bigger i.e., increase in Ratio variable. But it is evident that
the quantum of increase of F1 score decreases with the increase of Ratio variable.
CLP_M _CAR shows the most erratic behavior unlike the other three algorithms especially
in CKM-Physicians-Innovation and Xenopus-Genetic dataset. In these cases it doesn’t
follow the gradual increasing order pattern. CLP_M_PA can be seen to be the worst
performing algorithm in all six datasets while CLP_M_CC can be considered to be the

middle-of-the-pack one.

6.3.1.3 Balanced Accuracy Score Pattern among different feature sets

Fig. 6.5 presents the comparison of different feature sets on six datasets. CLP_M _CN can
be seen to be either the best perming algorithm or its performance is very close to the
others. The only exception is Xenopus-Genetic dataset where CLP_M _PA is the best
performing one and shows a minuscule increase in performance. This is contrary to the
gradual decreasing pattern in performance followed by other algorithms. But in all other
datasets, CLP_M_PA is the worst performing algorithm. @ CLP_M_CC shows a
middle-of-the-pack performance in all datasets except Kapferer-Tailor-Shop and
CKM-Physicians-Innovation.  In Kapferer-Tailor-Shop it is the worst performing
algorithm while in CKM-Physicians-Innovation it is the best performing one.
CLP M _CAR shows very good performance in all datasets except in
CKM-Physicians-Innovation and Xenopus-Genetic. In both these datasets it becomes the

worst performing algorithm.
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6.3.2 CLP — MUL comparison with link prediction methods on

summarized weighted graph

In this section, the performance of the proposed algorithm with different baseline
algorithms on the weighted graph is compared. From section 6.3.1 it can be concluded
that the best variation of CLP — MUL algorithm with the most consistent performance
across datasets is CLP_M _CN, from hereon referred as CLP — MUL. Table 6.2 shows the
comparison of the proposed CLP — MUL algorithm with baseline methods with respect
to AUC metric. CLP — MUL is the best performing algorithm in all six datasets. In
CS-Aarhus and CKM-Physicians-Innovation the improvement is quiet drastic. For
Lazega-Law-Firm, Vickers-Chan-7thGraders and Kapferer-Tailor-Shop the performance
improvement is significant. The least improvement is observed in Xenopus-Genetic
dataset. A point to be noted here is that Xenopus-Genetic is the dataset in which the PA
based feature set showed the most promise in Fig. 6.3, 6.4 and 6.5. Table 6.3 shows the
comparison of the proposed CLP — MUL algorithm with baseline methods with respect
to F1 score. CLP — MUL is the best performing algorithm in five datasets. The exception
is Xenopus-Genetic where it is narrowly pushed to second place by JC-WT with CN-WT
as a close third. Table 6.4 shows the comparison of the proposed CLP — MU L algorithm
with baseline methods with respect to Balanced Accuracy score. CLP — MUL is the best
performing algorithm in all six datasets. = The least improvement is seen for
Kapferer-Tailor-Shop and Xenopus-Genetic dataset while all others show significant

improvement.

6.3.3 CLP — MUL comparison with multiplex link prediction

methods on individual layers

This section presents the results of the CLP — MU L algorithm on application to specific
multiplex network layers. In order to convert the probability matrix obtained after

processing the summarized weighted graph, for each layer, the probability matrix is
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TABLE 6.2: Comparison of the proposed algorithm CLP — MU L with baseline algorithms in terms of AUC

DATASET | Ratio | CN-WT | PA-WT | JC-WT | AA-WT | RA-WT | LOCALP-WT | CC-WT | CLP-MUL |
0.1 | 0.58119 | 0.54786 | 0.58759 | 0.58379 | 0.58564 |  0.58257 0.5833 | 0.77357

0.2 | 0.58279 | 0.54804 | 0.58557 | 0.58387 | 0.58477 |  0.58164 | 0.56426 | 0.74831

Lazega-Law-Firm 0.3 | 0.58062 | 0.54981 | 0.58363 | 0.58356 | 0.58426 |  0.57756 | 0.52795 | 0.74938
0.4 | 0.58065 | 0.54609 | 0.57991 | 0.58235 | 0.58309 |  0.57272 | 0.55371 | 0.73296

0.5 | 0.58063 | 0.54489 | 0.57832 | 0.58144 | 0.57856 |  0.56801 | 0.53739 | 0.70435

0.1 | 0.64594 | 0.54625 | 0.64706 | 0.64938 | 0.65215 |  0.61883 | 0.47337 | 0.86357

0.2 | 0.64888 | 0.54561 | 0.64867 | 0.64585 | 0.65074 |  0.61696 | 0.48034 | 0.86026

CS-Aarhus 0.3 | 0.64966 | 0.54537 | 0.64859 | 0.65129 | 0.64411 |  0.61727 | 0.48162 | 0.83551
0.4 | 0.64151 | 0.54341 | 0.64551 | 0.64345 | 0.64404 |  0.61916 | 0.50509 | 0.81817

0.5 |0.62513 | 0.544 |0.63206 | 0.63564 | 0.63721 |  0.61488 | 0.48388 | 0.7617

0.1 | 0.59721 | 0.58669 | 0.59699 | 0.5979 | 0.60533 0.6007 0.60887 | 0.78945

0.2 | 0.59586 | 0.5886 | 0.58853 | 0.59535 | 0.60059 |  0.59615 | 0.60457 | 0.73613
Vickers-Chan-7thGraders | 0.3 | 0.59047 | 0.58178 | 0.58859 | 0.59319 | 0.59867 0.5905 0.57297 | 0.72974
0.4 | 059428 | 0.57948 | 0.58143 | 0.59417 | 0.59438 |  0.58812 | 0.57714 | 0.70754

0.5 | 0.59007 | 0.57489 | 0.58028 | 0.5948 | 0.59054 |  0.58235 | 0.55529 | 0.67723

0.1 |0.57943 | 0.55943 | 0.5763 | 0.5822 | 0.5818 0.58412 | 0.58365 | 0.72692

0.2 | 0.57931 | 0.56609 | 0.56945 | 0.57731 | 0.57855 | ~ 0.57708 | 0.55097 | 0.70821

Kapferer-Tailor-Shop 0.3 | 0.58036 | 0.56374 | 0.56634 | 0.58059 | 0.57898 |  0.57239 | 0.55464 | 0.68807
0.4 | 0.58021 | 0.56183 | 0.56497 | 0.57897 | 0.58051 |  0.56613 | 0.53907 | 0.67649

0.5 | 0.57421 | 0.56094 | 0.56364 | 0.57806 | 0.57816 |  0.56125 | 0.55584 | 0.64488

0.1 | 0.664 |0.52145 | 0.66303 | 0.66485 | 0.66876 |  0.68705 | 0.43969 | 0.80837

0.2 | 0.65029 | 0.52094 | 0.65666 | 0.65673 | 0.65276 |  0.67604 | 0.45768 | 0.79849
CKM-Physicians-Innovation | 0.3 | 0.63292 | 0.52048 | 0.63456 | 0.63465 | 0.63757 | ~ 0.65673 | 0.48195 | 0.74078
0.4 |0.61458 | 0.51916 | 0.60769 | 0.61446 | 0.61231 |  0.64224 | 0.49062 | 0.70065

0.5 | 0.58946 | 0.52064 | 0.58859 | 0.59162 | 0.58818 |  0.61815 | 0.50531 | 0.6505

0.1 | 0.55662 | 0.4446 | 0.55587 | 0.54642 | 0.55731 |  0.57864 0.5511 | 0.60461

0.2 | 0.54381 | 0.45663 | 0.54208 | 0.54406 | 0.54237 |  0.57165 | 0.52706 | 0.58655

Xenopus-Genetic 0.3 | 0.53362 | 0.46825 | 0.53855 | 0.53424 | 0.53369 |  0.55356 | 0.52827 | 0.56606
0.4 | 0.52884 | 0.48459 | 0.52782 | 0.53125 | 0.52653 |  0.54864 | 0.52559 | 0.54989

0.5 |0.52023 | 0.49288 | 0.52097 | 0.51965 | 0.51968 |  0.53381 | 0.52662 | 0.53993
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TABLE 6.4: Comparison of the proposed algorithm CLP — MU L with baseline algorithms in terms of Balanced Accuracy Score

Chapter 6. CLP-MUL

7 DATASET | Ratio | CN-WT | PA-WT | JC-WT | AA-WT | RA-WT | LOCALP-WT | CC-WT | CLP-MUL |
0.1 | 0.5615 | 0.53646 | 0.54503 | 0.56249 | 0.56419 0.55614 0.55657 | 0.70967
0.2 | 0.56908 | 0.53971 | 0.54971 | 0.5682 | 0.56907 0.5635 0.54852 | 0.68534
Lazega-Law-Firm 0.3 | 0.57191 | 0.5403 | 0.55604 | 0.57204 | 0.57311 0.56729 0.51512 | 0.68443
04 | 0.57415 | 0.53998 | 0.55704 | 0.57521 | 0.5763 0.56956 0.53591 | 0.67394
0.5 | 0.57288 | 0.54144 | 0.56032 | 0.57254 | 0.5706 0.56938 0.5241 | 0.65181
0.1 | 0.6079 | 0.5407 | 0.59873 | 0.60742 | 0.61485 0.60467 0.45819 | 0.79948
0.2 | 0.61242 | 0.53731 | 0.6061 | 0.60458 | 0.61784 0.61127 0.45942 | 0.78661
CS-Aarhus 0.3 | 0.61539 | 0.54551 | 0.61536 | 0.61618 | 0.61383 0.61167 0.4852 | 0.78391
0.4 | 0.61834 | 0.54343 | 0.62198 | 0.61801 | 0.62008 0.62155 0.49376 | 0.76682
0.5 | 0.61216 | 0.5445 | 0.61885 | 0.61974 | 0.62189 0.61359 0.47936 | 0.7225
0.1 | 0.56084 | 0.55122 | 0.53842 | 0.56694 | 0.58246 0.55709 0.5727 0.7439
0.2 | 0.58069 | 0.56213 | 0.54738 | 0.57646 | 0.59167 0.56928 0.57518 | 0.69784
Vickers-Chan-7thGraders 0.3 | 0.58228 | 0.57004 | 0.56163 | 0.58828 | 0.59585 0.57643 0.55499 | 0.67889
04 | 0.5828 | 0.57044 | 0.55981 | 0.58911 | 0.59632 0.58088 0.55292 | 0.65378
0.5 | 0.58206 | 0.57904 | 0.56112 | 0.59386 | 0.58615 0.58334 0.53539 | 0.61161
0.1 |0.54936 | 0.54222 | 0.53539 | 0.55506 | 0.56487 0.54926 0.54167 | 0.66782
0.2 | 0.55652 | 0.55327 | 0.53778 | 0.55802 | 0.56854 0.5563 0.52739 | 0.66647
Kapferer-Tailor-Shop 0.3 | 0.5686 | 0.55616 | 0.54465 | 0.56497 | 0.57525 0.56105 0.53965 | 0.6348
0.4 | 0.56843 | 0.55963 | 0.5498 | 0.56694 | 0.57457 0.56444 0.52335 | 0.63508
0.5 | 0.56411 | 0.56305 | 0.54868 | 0.56669 | 0.57349 0.5605 0.52094 | 0.60248
0.1 |0.65981 | 0.52769 | 0.65872 | 0.66035 | 0.66422 0.67368 045523 | 0.7964
0.2 | 0.64732 | 0.52369 | 0.65402 | 0.65327 | 0.64963 0.66186 0.46528 | 0.79089
CKM-Physicians-Innovation | 0.3 | 0.63092 | 0.52545 | 0.63289 | 0.63248 | 0.63545 0.64863 0.48031 | 0.73693
04 | 0.61342 | 0.52267 | 0.60692 | 0.61312 | 0.6112 0.63879 0.48703 | 0.69842
0.5 | 0.58892 | 0.52267 | 0.58829 | 0.59094 | 0.58761 0.61631 0.49372 | 0.65008
0.1 |0.55648 | 0.51128 | 0.55599 | 0.54617 | 0.55701 0.57796 0.50966 | 0.60364
0.2 | 0.54372 | 0.48181 | 0.54216 | 0.54389 | 0.54217 0.57126 0.49677 | 0.58594
Xenopus-Genetic 0.3 | 0.53357 | 0.49364 | 0.53862 | 0.53413 | 0.53358 0.55335 0.50601 | 0.56574
0.4 | 0.52882 | 0.50837 | 0.52785 | 0.53118 | 0.52647 0.54857 0.51805 | 0.54968
0.5 | 0.52022 | 048308 | 0.521 | 0.51961 | 0.51964 0.53378 0.52016 | 0.53986
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multiplied by the relative density of the current layer with respect to the overall density

‘E%;HEH Tables 6.5 and 6.6 show the

comparison of the proposed CLP — MUL algorithm with baseline methods for the AUC

of the summarized graph. This factor is

metric. CLP — MUL is the best performing algorithm in datasets Lazega-Law-Firm,
CS-Aarhus, Vickers-Chan-7thGraders and Kapferer-Tailer-Shop for ratios 0.1&0.2 in
most cases. The exceptions are layer 1 of Lazega-Law-Firm, layer 3 of CS-Aarhus, and
layer 1 of Kapferer-Tailer-Shop. Out of these exceptions, the performance of the
proposed CLP — MUL is third best only in layer 3 of the CS-Aarhus dataset, where it is
outperformed by both NSILR — MUL and MADM — MUL because of extremely low
average connectivity. Besides this exception, the proposed algorithm has the second-best
performance in other cases, only marginally behind MADM — MUL. In the
CKM-Physicians-Innovation dataset, the CLP — MUL algorithm is the third best behind
NSIRLP and MADMLP, which are designed specifically for link prediction in multiplex
networks. This dataset is different from all others because of its high average shortest
path length and extremely low average connectivity (which represents the cohesion in
graph structure or relative difficulty of breaking the graph structure) in all layers. In the
Xenopus-Genetic dataset, the CLP — MU L algorithm performs best in layer 3. In layer 2,
all link prediction algorithms have comparable results. In contrast, layer 1 is an
exceptional case where the structure of the actual layer is drastically different from the
summarized weighted graph because of a low number of nodes and edges. PA —WT and

MADM — MUL algorithms show the best performance in such a case.

Tables 6.7 and 6.8 show the comparison of the proposed CLP — MUL algorithm with
baseline methods for F1 score. CLP — MUL is the best performing algorithm in datasets
Lazega-Law-Firm, CS-Aarhus, Vickers-Chan-7thGraders, and Kapferer-Tailer-Shop for
ratios 0.1&0.2. For the CKM-Physicians dataset, the proposed algorithm shows the best
results for layer 3 and is second best in layers 1 and 2. This dataset is characterized by
high average shortest paths and low average connectivity. In the Xenopus-Genetic
dataset, CLP — MU L shows the best performance in layer 2 and is second best in layer 3.

Layer 1 of this dataset presents an interesting edge case where the performance of all
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TABLE 6.5: Comparison of the proposed algorithm CLP — MU L with baseline algorithms in terms of AUC layer-wise

Chapter 6. CLP-MUL

DATASET 7 LAYER 7 Ratio 7 CN-WT 7 PA-WT 7 JC-WT 7 AA-WT 7 RA-WT 7 CC-WT 7 LP-WT 7 NSILRLP 7 MADMLP 7 CLP-MUL 7
1 0.1 | 0.6022 | 0.5505 | 0.6054 | 0.6035 | 0.6040 | 0.5502 | 0.5892 | 0.7802 0.8451 0.8229
0.2 | 0.6023 | 0.5487 | 0.6052 | 0.6038 | 0.6043 | 0.5439 | 0.5853 | 0.8073 0.8573 0.8115
0.3 | 0.6037 | 0.5481 | 0.6054 | 0.6048 | 0.6046 | 0.5396 | 0.5836 | 0.8491 0.9060 0.7962
. 2 0.1 | 0.6499 | 0.5671 | 0.6501 | 0.6486 | 0.6533 | 0.5918 | 0.6199 | 0.8253 0.8210 0.8743
Lazega-Law-Firm 0.2 | 0.6512 | 0.5677 | 0.6509 | 0.6520 | 0.6521 | 0.5870 | 0.6204 | 0.8324 0.8204 0.8584
0.3 | 0.6488 | 0.5671 | 0.6491 | 0.6496 | 0.6509 | 0.5750 | 0.6222 | 0.8733 0.8497 0.8373
3 0.1 | 05912 | 0.5479 | 0.5897 | 0.5896 | 0.5918 | 0.4910 | 0.5833 | 0.7035 0.7283 0.7931
0.2 | 05901 | 0.5466 | 0.5889 | 0.5918 | 0.5918 | 0.4976 | 0.5804 | 0.7409 0.7535 0.7837
0.3 | 05913 | 0.5462 | 0.5885 | 0.5921 | 0.5927 | 0.5001 | 0.5791 | 0.8002 0.8099 0.7714
1 0.1 | 0.7035 | 0.5309 | 0.7045 | 0.7054 | 0.7054 | 0.4339 | 0.6881 | 0.8976 0.8685 0.9474
0.2 | 0.6990 | 0.5312 | 0.6998 | 0.6970 | 0.6988 | 0.4362 | 0.6882 | 0.9063 0.8927 0.9249
0.3 | 0.6881 | 0.5292 | 0.6878 | 0.6884 | 0.6901 | 0.4509 | 0.6845 | 0.9407 0.9313 0.8930
2 0.1 | 0.7056 | 0.7039 | 0.7079 | 0.7056 | 0.7069 | 0.7510 | 0.7124 | 0.8637 0.8161 0.9299
CS-Aarhus 0.2 | 0.7007 | 0.7017 | 0.7025 | 0.6989 | 0.7008 | 0.7347 | 0.7087 | 0.8932 0.8423 0.8940
0.3 | 0.6879 | 0.7017 | 0.6860 | 0.6873 | 0.6880 | 0.7154 | 0.7009 | 0.9211 0.8700 0.8696
3 0.1 | 05985 | 0.5924 | 0.6135 | 0.6078 | 0.6053 | 0.5227 | 0.6123 | 0.8938 0.8503 0.7326
0.2 | 05828 | 0.5784 | 0.5773 | 0.5899 | 0.5864 | 0.5241 | 0.5820 | 0.9146 0.8914 0.6708
0.3 | 05623 | 0.5695 | 0.5662 | 0.5680 | 0.5606 | 0.5348 | 0.5685 | 0.9056 0.8943 0.6226
1 0.1 | 05941 | 0.5805 | 0.5898 | 0.5961 | 0.5987 | 0.5748 | 0.5931 | 0.7282 0.6960 0.8167
0.2 | 05914 | 0.5785 | 0.5868 | 0.5920 | 0.5965 | 0.5658 | 0.5900 | 0.7679 0.7202 0.8003
0.3 | 0.5880 | 0.5757 | 0.5828 | 0.5911 | 0.5931 | 0.5533 | 0.5849 | 0.8668 0.8820 0.7862
. 2 0.1 | 0.6214 | 05638 | 0.6142 | 0.6266 | 0.6256 | 0.4927 | 0.5956 | 0.8200 0.7664 0.8539
Vickers-Chan-7thGraders 02 | 06194 | 05659 | 0.6157 | 0.6257 | 0.6276 | 0.4922 | 0.5942 | 08175 | 0.7862 0.8403
03 | 0.6216 | 0.5657 | 0.6122 | 0.6246 | 0.6227 | 0.4852 | 0.5928 | 0.8531 0.8458 0.8166
3 0.1 | 0.6200 | 0.5786 | 0.6186 | 0.6213 | 0.6250 | 0.5831 | 0.6029 | 0.7440 0.7525 0.8437
0.2 | 0.6224 | 05755 | 0.6147 | 0.6224 | 0.6251 | 0.5572 | 0.6031 | 0.7620 0.7548 0.8415
03 | 0.6199 | 0.5755 | 0.6129 | 0.6235 | 0.6229 | 0.5487 | 0.6020 | 0.8620 0.8486 0.8141
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TABLE 6.7: Comparison of the proposed algorithm CLP — MU L with baseline algorithms in terms of F1 Score layer-wise

DATASET 7 LAYER 7 Ratio 7 CN-WT 7 PA-WT 7 JC-WT 7 AA-WT 7 RA-WT 7 CC-WT 7 LP-WT 7 NSILRLP 7 MADMLP 7 CLP-MUL 7
1 0.1 | 0.1025 | 0.0845 | 0.0954 | 0.1015 | 0.1021 | 0.0820 | 0.0988 | 0.0712 0.0950 0.1569
0.2 | 0.1765 | 0.1486 | 0.1691 | 0.1771 | 0.1801 | 0.1433 | 0.1746 | 0.1743 0.2259 0.2655
03 | 02422 | 02002 | 0.2286 | 0.2412 | 0.2400 | 0.1915 | 0.2358 | 0.3592 0.4510 0.3427
. 2 0.1 | 0.0652 | 0.0483 | 0.0641 | 0.0647 | 0.0686 | 0.0457 | 0.0651 | 0.0464 0.0493 0.0994
Lazega-Law-Firm 0.2 | 0.1258 | 0.0900 | 0.1244 | 0.1252 | 0.1277 | 0.0849 | 0.1241 | 0.1090 0.1121 0.1811
0.3 | 0.1806 | 0.1267 | 0.1813 | 0.1801 | 0.1820 | 0.1160 | 0.1799 | 0.2215 0.2333 0.2472
3 0.1 | 0.0991 | 0.0854 | 0.0923 | 0.1001 | 0.1024 | 0.0691 | 0.0972 | 0.0637 0.0903 0.1592
02 | 0.1762 | 0.1510 | 0.1654 | 0.1760 | 0.1797 | 0.1275 | 0.1715 | 0.1612 0.2061 0.2688
0.3 | 02321 | 02019 | 0.2202 | 0.2330 | 0.2377 | 0.1746 | 0.2310 | 0.3378 0.4201 0.3420
1 0.1 | 0.0988 | 0.0264 | 0.0983 | 0.0984 | 0.0983 | 0.0175 | 0.0937 | 0.0422 0.0519 0.1125
0.2 | 0.1849 | 0.0500 | 0.1858 | 0.1827 | 0.1845 | 0.0345 | 0.1749 | 0.0976 0.1280 0.2195
0.3 | 02569 | 0.0695 | 0.2553 | 0.2559 | 0.2572 | 0.0520 | 0.2450 | 0.2027 0.2758 0.3180
2 0.1 | 0.0849 | 0.0639 | 0.0860 | 0.0850 | 0.0855 | 0.0282 | 0.0815 | 0.0288 0.0304 0.0937
CS-Aarhus 0.2 | 0.1564 | 0.1135 | 0.1573 | 0.1554 | 0.1557 | 0.0512 | 0.1463 | 0.0737 0.0830 0.1764
03 | 02207 | 0.1591 | 0.2187 | 0.2198 | 0.2208 | 0.0729 | 0.2067 | 0.1386 0.1730 0.2615
3 0.1 | 0.1274 | 0.0117 | 0.1452 | 0.1428 | 0.1378 | 0.0040 | 0.1211 | 0.0070 0.0125 0.1807
0.2 | 0.1612 | 0.0195 | 0.1545 | 0.1762 | 0.1675 | 0.0069 | 0.1362 | 0.0107 0.0205 0.2147
0.3 | 0.1542 | 0.0282 | 0.1646 | 0.1686 | 0.1506 | 0.0116 | 0.1523 | 0.0255 0.0481 0.2231
1 0.1 | 02315 | 0.2205 | 0.2137 | 0.2377 | 0.2484 | 0.2267 | 0.2273 | 0.1586 0.1424 0.3699
0.2 | 03533 | 03338 | 0.3309 | 0.3562 | 0.3687 | 0.3391 | 0.3462 | 0.3492 0.3278 0.5229
0.3 | 0.4135 | 0.3995 | 0.4000 | 0.4234 | 0.4310 | 0.3958 | 0.4119 | 0.6718 0.6998 0.5903
. 2 0.1 | 0.1072 | 0.0935 | 0.1039 | 0.1207 | 0.1292 | 0.0754 | 0.1031 | 0.0753 0.0785 0.2026
Vickers-Chan-7thGraders 02 | 0.1846 | 0.1657 | 0.1872 | 0.1927 | 0.2265 | 0.1360 | 0.1853 | 0.1871 0.1998 0.3356
0.3 | 02518 | 0.2186 | 0.2495 | 0.2509 | 0.2782 | 0.1725 | 0.2519 | 0.3877 0.4290 0.3951
3 0.1 | 0.1603 | 0.1320 | 0.1408 | 0.1552 | 0.1533 | 0.1274 | 0.1461 | 0.0919 0.0926 0.2468
0.2 | 02431 | 02152 | 0.2262 | 0.2489 | 0.2525 | 0.1970 | 0.2337 | 0.2114 0.2080 0.3834
03 | 02935 | 02774 | 0.2914 | 0.2991 | 03143 | 0.2511 | 0.2951 | 0.4704 0.4645 0.4533
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TABLE 6.9: Comparison of the proposed algorithm CLP — MU L with baseline algorithms in terms of Balanced Accuracy Score layer-wise

Chapter 6. CLP-MUL

DATASET 7 LAYER 7 Ratio 7 CN-WT 7 PA-WT 7 JC-WT 7 AA-WT 7 RA-WT 7 CC-WT 7 LP-WT 7 NSILRLP 7 MADMLP 7 CLP-MUL 7
1 0.1 | 0.5834 | 0.5416 | 0.5701 | 0.5814 | 0.5825 | 0.5375 | 0.5766 | 0.7064 0.7875 0.7394
0.2 | 05818 | 0.5412 | 0.5729 | 0.5823 | 0.5857 | 0.5312 | 0.5793 | 0.7215 0.7912 0.7315
0.3 | 05901 | 0.5428 | 0.5771 | 0.5894 | 0.5881 | 0.5277 | 0.5842 | 0.7545 0.8232 0.7221
. 2 0.1 | 0.6140 | 0.5620 | 0.6114 | 0.6123 | 0.6207 | 0.5632 | 0.6140 | 0.7561 0.7325 0.7938
Lazega-Law-Firm 0.2 | 0.6207 | 0.5621 | 0.6191 | 0.6202 | 0.6224 | 0.5592 | 0.6183 | 0.7581 0.7224 0.7864
0.3 | 0.6246 | 0.5632 | 0.6257 | 0.6242 | 0.6259 | 0.5497 | 0.6241 | 0.7726 0.7375 0.7730
3 0.1 | 05735 | 0.5404 | 0.5590 | 0.5751 | 0.5789 | 0.4893 | 0.5698 | 0.6518 0.6591 0.7244
0.2 | 05780 | 0.5416 | 0.5641 | 0.5779 | 0.5819 | 0.4962 | 0.5722 | 0.6808 0.6791 0.7155
0.3 | 05780 | 0.5425 | 0.5650 | 0.5788 | 0.5833 | 0.4990 | 0.5770 | 0.7204 0.7319 0.7055
1 0.1 | 0.6871 | 0.5268 | 0.6873 | 0.6874 | 0.6871 | 0.4447 | 0.6835 | 0.8180 0.8256 0.8818
0.2 | 0.6872 | 0.5292 | 0.6875 | 0.6839 | 0.6855 | 0.4517 | 0.6842 | 0.8201 0.8454 0.8773
0.3 | 0.6805 | 0.5238 | 0.6795 | 0.6794 | 0.6806 | 0.4619 | 0.6805 | 0.8431 0.8765 0.8604
2 0.1 | 0.6957 | 0.6915 | 0.6980 | 0.6949 | 0.6966 | 0.6795 | 0.6994 | 0.8076 0.7033 0.8926
CS-Aarhus 0.2 | 0.6931 | 0.6903 | 0.6946 | 0.6911 | 0.6928 | 0.6696 | 0.6948 | 0.8300 0.7306 0.8688
0.3 | 0.6829 | 0.6900 | 0.6810 | 0.6818 | 0.6826 | 0.6501 | 0.6879 | 0.8307 0.7471 0.8519
3 0.1 | 0.5984 | 0.5896 | 0.6135 | 0.6077 | 0.6051 | 0.5317 | 0.6122 | 0.8091 0.8379 0.7320
0.2 | 05828 | 0.5771 | 0.5773 | 0.5898 | 0.5863 | 0.5273 | 0.5819 | 0.8125 0.8768 0.6705
0.3 | 05623 | 0.5687 | 0.5662 | 0.5680 | 0.5605 | 0.5354 | 0.5684 | 0.8193 0.8825 0.6224
1 0.1 | 05625 | 0.5492 | 0.5387 | 0.5698 | 0.5817 | 0.5552 | 0.5572 | 0.6927 0.6492 0.7415
0.2 | 05747 | 05566 | 0.5484 | 0.5781 | 0.5900 | 0.5531 | 0.5669 | 0.7094 0.6731 0.7319
0.3 | 05749 | 0.5626 | 0.5551 | 0.5844 | 0.5932 | 0.5396 | 0.5718 | 0.7856 0.7985 0.7168
. 2 0.1 | 05753 | 0.5442 | 0.5694 | 0.5980 | 0.6080 | 0.4915 | 0.5680 | 0.7202 0.7310 0.7784
Vickers-Chan-7thGraders 02 | 05753 | 0.5492 | 0.5788 | 0.5850 | 0.6158 | 0.4959 | 0.5763 | 0.7320 | 0.7531 0.7716
0.3 | 0.5885 | 0.5534 | 0.5860 | 0.5873 | 0.6087 | 0.4837 | 0.5884 | 0.7668 0.8037 0.7496
3 0.1 | 0.6053 | 0.5663 | 0.5822 | 0.6002 | 0.5982 | 0.5659 | 0.5882 | 0.6793 0.6550 0.7659
0.2 | 05976 | 0.5675 | 0.5803 | 0.6020 | 0.6051 | 0.5425 | 0.5885 | 0.6903 0.6588 0.7625
0.3 | 0.5865 | 0.5713 | 0.5845 | 0.5916 | 0.6039 | 0.5348 | 0.5880 | 0.7803 0.7427 0.7424
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algorithms falls drastically. This is because of an extremely small number of edges in
this layer which makes it significantly different from the summarized weighted graph.
Tables 6.9 and 6.10 show the comparison of the proposed CLP — MUL algorithm with
baseline methods for the Balanced Accuracy score. CLP —MUL is the best performing
algorithm in datasets Lazega-Law-Firm, Vickers-Chan-7thGraders and
Kapferer-Tailer-Shop for ratios 0.1&0.2. In the CKM-Physicians-Innovation dataset, the
CLP — MUL algorithm is the third best behind NSIRLP and MADMLP, which are
designed specifically for link prediction in multiplex networks. This dataset differs from
all others because of its high average shortest path length in all layers. For Ratio = 0.3
CLP — MUL algorithm shows worse performance than others because the performance
of this algorithm is directly correlated with the task of community detection, which
becomes cumbersome if a complete overall view of the graph and its relationships is not
available. These tables only show networks in which the number of layers is less than
five due to space constraints. This is because it can be assumed that the probabilities for
links on the weighted graph are the same as links on layers for the same pair of nodes, as

in rigid core communities.

6.4 Concluding Remarks

This chapter presents a novel method for link prediction in multiplex networks based on
community detection, CLP — MUL. The proposed algorithm predicts links that are not
specific to a particular layer but are based on communities detected using the
summarized information of all layers. In this approach, a clustering method that uses
information diffusion for label propagation to fit our needs on weighted networks is
formulated. This method determines the region of influence of different central nodes.
These regions are the communities/clusters that have high rigidity across layers. This
approach considers these communities to stretch across layers even if the edge structure
of a particular layer may not agree entirely with it. The detected clusters are used for

calculating intra-cluster and inter-cluster similarity between node pairs for link
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prediction. The experiments are performed on six real-world datasets. The results
indicate that the argument was justified for datasets with low average shortest path length
and relatively higher edge density. CLP — MUL method is compared with the classical
link prediction methods for weighted graphs, demonstrating its superior performance
both on the summarized weighted graph and on the original layers. The algorithm
performance shows a slight deterioration for datasets with a high average shortest path

length compared with the best algorithms in those cases.



