Chapter 4

HOPLP-MUL: Link Prediction in
Multiplex Networks based on Higher
Order Paths and Layer Fusion

The previous chapter attempted to exploit edge relevance quantification using ego
networks to create a quasi-local similarity-based link prediction method for simple
networks. ELP aggregates different Ego regions of nodes to quantify edge relevance.
This process can be visualized for a small graph by aggregating several graphs with the
same node set with different edge weights. A correlation to multiplex networks with
similar node sets in different layers of edge sets becomes evident. There exists an
opportunity to apply edge relevance quantification for quasi-local link prediction in
multiplex networks. This chapter ! proposes a novel link prediction method for multiplex
networks called HOPLP — MUL (Higher Order Path-based Link Prediction for
Multiplex Networks). Multiple kinds of connections (links) may be encoded into distinct
layers in multiplex networks, with each layer representing a particular type of link. Even
if the type of linkages in various layers varies, the nodes themselves and their underlying

relationships are retained. Considering the combined structure of all the layers, we can
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achieve a complete overview of the network, which is impossible to achieve using any
single layer itself. In this chapter, we theorize that this summarized graph (overview)
provides us with an opportunity to determine the regional influence of nodes with greater

certainty, and we can exploit this for more accurate link prediction.

4.1 Introduction

Though the majority of research in the field of link prediction is concentrated on
single-layer networks, real-world interactions are usually too complex to be represented
as such simple networks. Online networking platform LinkedIn provides an interesting
use case for such multi dimensional user behaviour. The users themselves can be
considered as nodes of a social network graph, and the attributes of nodes such as
connections between followers and followees, shared interest as well as other degrees of
interactions can be considered as different kinds of links between nodes. This social
network can be represented as a multi-layered multiplex network. The nodes in all layers
would represent the users themselves while a connection in a particular layer would
represent a connection between users based on the type of interactions represented by the
layer itself. For the most accurate link prediction in multiplex networks, any proposed
solution should make use of information of all layers to estimate the possibility of link in

a single layer as the users themselves remain the same.

In this chapter a link prediction method on multiplex networks is proposed, based on an
iterative calculation of link similarities on higher-order paths. The primary motivation
behind HOPLP — MUL method is to use higher-order paths to better estimate
neighborhood similarities with the understanding that node influence across three
degrees of influence [29] is taken into account. To accurately gauge the information
represented by different layers of the multiplex graph, a density-based summarization
model is used. The inspiration for the proposed method comes from quasi-local

similarity based methods which attempt to incorporate different types of information
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FIGURE 4.1: Taxonomy of Path-based approaches to Link Prediction (Ajay et al.[1])

(both local and global) into a related index for link prediction. Such quasi-local methods
have shown improved link prediction performance in case of simple networks when
compared to methods based on purely local and global features. Based on the 3 Degree
of Influence Phenomenon by Christakis and Fowler [28], it is believed that to calculate
the likelihood for a link between nodes, it would be better to take the overall region of
influence of nodes into account instead of just the immediate neighbors. Hence, a
method to summarize and process all the information spread across layers into one
concise weighted graph (compression) is utilized. Then link prediction is performed on
this graph using longer length paths and calculate link probabilities on specific layers

accounting for differences in layer densities (decompression).

4.1.1 Path Based Approaches to Link Prediction

Considering the nature of the actual path used by path-based approaches to link

prediction, existing research can be broadly classified into the following categories, as
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FIGURE 4.2: HOPLP-MUL Concept Graph showing regions of influence of nodes X &Y
with intersections between them which denote possible information flow paths.

shown in Fig.4.1. Fundamental differences based on the nature of paths can be observed
using either a deterministic or a random walk-based approach. Paths used by the
deterministic method have fixed starting and ending vertices, and all the paths between
these points are usually explored to get a better overall estimate of network structure.
However, this approach is more time-consuming than the random walk-based approach.
In the random walk-based approach, a fixed central node is usually used as a starting
point, and random walks from this node are performed to get a better estimate of the
neighborhood of this node. A corpus is created which keeps track of uniqueness and
frequency neighborhood node occurrences. At the time of link prediction, this corpus of
nodes is compared to estimate link likelihoods. If the sparseness of a given graph is
considered and the parameters of a random walk are adequately tuned, the paths

considered by the deterministic and random walk approaches may become the same.

Within the deterministic class of approaches, another classification level can be made
based on the contribution of paths, i.e., either homogeneous or heterogeneous, to the
similarity score computations (Fig.4.1). While homogeneous methods consider the
contribution of all paths to be the same, heterogeneous methods have a scheme for

prioritization of such paths based on some parameter, for example, length of path or
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degrees of intermediate nodes. In a previous work, SHOPI [1], a path-based link
prediction approach is proposed for simple unweighted networks based on the
assumption that similar nodes can have a maximum of six degrees of separation between
them. All degrees from one right to six should be considered for similarity calculations,
albeit with different priorities. However, those assumptions do not hold for multiplex
networks, particularly in the setting of this chapter where link prediction has to be
performed on a summarized weighted graph, and those results have to be extrapolated
onto all layers of the multiplex network. Also, the mechanism for influence transfer was
not explored in detail. In this chapter, different regions of influence and the nature of
influence transfer are explored to provide the best possible solution to the link prediction
problem in the context of multiplex networks. The method, HOPLP — MUL, can be
considered a deterministic heterogeneous method as we consider all paths, and their
length defines the relative importance of paths to similarity score computations. This
length-based dampening results in higher penalization of longer paths when compared to

their shorter counterparts leading to better estimation of overall link likelihoods.

4.1.2 HOPLP-MUL Concept

The concept behind HOPLP — MUL approach is demonstrated using Fig.4.2. In this
graph, the task to find link prediction probability between nodes X &Y. It can be clearly
observed that if the region of influence of nodes is assumed to be one hop from the node
of origin, then the only relevant path would be X —1 —Y. If it is assumed that the region
of influence of a node extends to two hops from its point of origin then the relevant paths
considered for link prediction would be both X — 1 —Y and X —2 -3 —4 —Y. Finally
using the 3 Degree of Influence phenomenon given by Christakis et al. [28, 29], it can
be assumed that the region of influence of a node extends to 3 hops away from it. Using
this assumption, it can be seen that for calculation of link probability between X&Y', we

have to consider the smaller paths (X —1 —Y and X —2 —3 —4 —Y) as well as the longest
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possible path under the 3 Degree of Influence constraint, i.e., X —5—6—-7—-8—-9-Y.

In HOPLP — MUL, all these paths are used for more accurate link prediction.

4.2 Proposed Work

Based on existing research on real-world networks, it is evident that social networks
show topological properties, which can be attributed to three significant phenomena, i.e.,
small-world association [152-156], clustering [157], and scale-free behavior [158].
These phenomena are associated with the features of the path, clustering coefficient, and
degree distribution of the network. In HOPLP — MU L approach, the path property of the
network is utilized to estimate better link likelihoods in a weighted summarized
single-layer graph created from multi-layer or multiplex-networks. These likelihood
scores are converted to link probabilities on the original multiplex network in a
layer-specific manner. It is assumed that a sender (start node) sends information to a
receiver (end node) using these paths, and we attempt to quantize and sum up the effect
of this information flow on the relevant paths. The process is somewhat similar to the
resource allocation index [132], but it only considers two-length paths while
HOPLP — MUL proposal aims to evaluate the effect of higher-order (longer) paths. This
combined information flow estimates for link likelihood between the start and end nodes.
The initial two path length score is calculated by just taking familiar neighbors into

account without including any degree of penalization in the process.

4.2.1 HOPLP-MUL Framework

The proposed algorithm, HOPLP — MU L, consists of three basic steps -

* The first step is collating the disparate information from all levels into a single

summary weighted graph. This is accomplished by altering an aggregation
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modelling approach for changes in the total edge densities of layers, as discussed

in Section 4.2.2.

» Secondly, the initial significance of immediate neighbors is calculated on possible
links. To better evaluate the working of HOPLP — MU L algorithm, two possible
methods to estimate the significance of path-length 2 are proposed. One is based
directly on the resource allocation index, and the other is a modification of resource
allocation index, taking into account the power-law effect of total edge weights, as

discussed in Section 4.2.3.

* The third step is the iterative step, where the significance of longer paths is
calculated by taking the information of their components into account. For
instance, to calculate the likelihoods for path length x, likelihoods for path length
x — 1 and the dampened influence created after adding an edge to the path of length

x — 1 are used, as discussed in Section 4.2.5.

4.2.2 Network Summarization

Several types of summarization and representations have been used for multiplex
networks in literature, some of the popular ones are boolean operator-based [159] and
embedding-based [160, 161]. Boolean operator-based [159] summarization have not
been used because the resulting graph does not offer the property of edge weighting
based on layer densities and treats all edges across all layers to be the same. Weights
were used to express dissimilarities in density across layers in this technique, and
weights also aid in the subtle transfer of edge probabilities from the summary graph to
real layers. In suggested solutions to the link prediction issue in multiplex networks,
Boolean-based summarization approaches have been utilised, particularly in
circumstances where the link prediction problem in specific layers is characterised as a
multiple attribute decision making (MADM) problem [31, 116]. The fundamental

limitation of these approaches is that for link prediction in each layer, a new initial
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information matrix has to be defined, which contains similarity of edges of the current
layer and occurrence information of same edges in other layers. This matrix is then
processed for calculating prediction scores for possible edges. In HOPLP — MUL
proposed approach, the summarized weighted graph on which link prediction is
performed remains the same irrespective of the layer on which link prediction is
performed. Hence link prediction can be done on all layers after just one round of

processing the summarized weighted graph.

Embedding-based [160, 161] summarization was not used because it would add two
distinct avenues of increased complexity to this framework. First, we would have to
calculate weights (similarities) of edges for all layers before link prediction and also at
the time of transposing probabilities to original layers. For example, if three
similarity-based methods are used to generate scores for edges on a 3-layered multiplex
network, this would involve running similarity calculations nine times.  These
similarity-based embeddings can be used directly for classification tasks that model link
prediction as a supervised machine learning problem [118]. Another option is using
random walks for generating embeddings and then using these embeddings for edge
classification. However, these embeddings by themselves have a higher complexity for
generation than similarity-based methods, even when edge embeddings are directly
generated from node embeddings. Methods which generate embeddings taking into
account information from all layers are complex because layers of a multiplex network

can vary widely in properties such as average density and clustering coefficients.

In HOPLP — MUL concept, network summarization is the process of converting many
interaction (multiplex) networks to a single weighted network. To construct this weighted
network, a topological integration technique was employed. Thus, using Equation 4.1
[162], one can calculate the connection strength Ays(ny,n;) of any existing edge (ny,n;)
in such a network. The graph Gy, is obtained by combining all edges with some degree of

connectivity into a single graph.
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In HOPLP — MUL, a significantly modified strategy is offered that takes into account the
proportional densities of the layers. By combining this with an appropriate strategy for
re-transforming summary graph probabilities to the original layers, it is our belief that
more accurate findings would be attained. Equations 4.2 and 4.3 describe the two
suggested parameters for layer fusion (compression) and likelithood transposition

(decompression).

1

CZ(j) — 4.2)
1E;|
. ||EGH0PLPH - HE]H
DCZ(j) + 4.3)
( ) ||EGH0PLP||

The graph Gyoprp will be the same as Gy, where nodes in these graphs have an edge
if any of the layers have the same edge. The modified summarized weight matrix is as

follows -
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4.2.3 Initial Significance of Path Length 2

Using the social paradigm of the significance of familiar neighbors based on degree, two
variations of calculating the initial significance are proposed which are used as input to
calculate further significance using longer paths. One is based on just the resource
allocation index (Equation 4.4), and the other is based on a modification of resource
allocation index, taking into account power-law effect of total edge weights (Equation
4.5), which is equivalent to the Adamic-Adar index for weighted graphs. Instead of the
degree of a node representing its significance, a value calculated by summing up all the

weights of edges of the node is used (from matrix Agoprp).

1
IS(ny,np) < Z (Z o > 4.4)
xXe cn

cneN(ny)NN(ny) )w[x, Cl’l]

IS(ny,ny) <+ Z ( ! ) 4.5)

cn€N(n)NN(ny) log(ZXGN(Cn) W[x7 Cl’l])

4.2.4 Dampening Function

The basic premise behind HOPLP — MU L approach is that longer paths between nodes
also play a relevant role in predicting possible edges between them. Though the region of
influence of a single node can stretch three hops away from it (3 Degree Phenomenon), it
is evident that node influence decreases as we move away from it. Hence a dampening
function is introduced in Equation 4.6 that can penalize longer paths based on their
respective lengths. The quantity of dampening will depend on a parameter ¥ and the

length of the path /.

O (4.6)
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4.2.5 Likelihood Score Computation for Higher Order Paths

The final likelihood score can be calculated iteratively by summing up the significance of
higher order (longer) paths to their shorter counterparts. Every path of length greater
than two can be seen as a shorter path by one hop connected to an edge. So the
likelihood score based on a path would be a combination of the likelihood of a shorter
path with the additional edge. This process is continued till the desired length of path
Lnax 18 achieved. Based on the three-degree phenomenon, the maximum /,,, to be
considered should be six based on the region of influence of each node to be three hops.
However, in the result evaluation phase, experiments with [,,,, of length four are also
performed, where it is assumed that the region of node influence is restricted to two hops
instead of the usual three. The case of [, = 2 is trivial as it is equivalent to standard
common neighborhood-based algorithms. Through Equation 4.7, probabilities on
Groprp are calculated using weights from Ayoprp. This equation represents an iterative
procedure used to calculate likelihoods for increasingly longer paths starting from
path-length 3. For path-length [ = 3, Prevjterjmpact would be likelihoods calculated
using [ = 2 paths (common neighbor-based similarity). The Edgeympact represents the
effect of adding a new edge to an already existing path for likelihood estimation in
longer paths. Finally, y is the dampening factor for penalizing and adequately
representing information flow over a longer path. These calculations are mainly carried
out in matrix form, as shown in Algorithm 2 in lines 1-5. A working example can be
found in Section 4.2.6, which takes a small graph and calculates link likelihoods for
longer paths. These are transformed (unpacked) into layer-specific probabilities using

Equation 4.8, which uses parameters based on layer densities defined in Equation 4.3.

lmax

Ll(ny,np) < ( Z Prev_Iter_Impactx
=3 (4.7)

Edge Impact 1[/1)
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LIj(n1,np) < LI(ny,ny) * DCZ(j) (4.8)

Algorithm 2: HOPLP-MUL: Higher Order Path based Link Prediction in Multiplex
Network

Input: Social Networks: G;(V, E;), GyopLp

Output: Likelihood Index: LI

> Summarization, Initialization
Create a summarized network Agoprp from n layered multiplex network on same
user set using Equation 4.2.2
priory|v <=0
score|y | v| <=0
> Initial Significance Computation
for each node pair (ny,ny) € Gyoprp do
> Calculate IS(np,n;) using Equation 4.4 or Equation 4.5
score[ny|[ny] < IS(ny,ny)
prior[n;|[n] < score[ni][n;]
> Computation based on Higher Order Paths iteratively
for each Path Length | > 2 till l,,, do
curryy v <=0
for each node pair (ny,ny) € Gyoprp do
for each Node neighbor ¢ € N(n;) do
> Prev_Iter Impact x Edge _Impact x Penalty (Equation 4.7)
L curr[ni][na] = currlny][ny] + (score[ni][c] * prior[c][na] * W)

> Score update for longer path
for each node pair (ny,ny) € Gyoprp do
L score[ny|[ny] = score[ny][na] + currlny][n;)
prior[n;|[ny] = curr[n;][ny]

Return L/;

4.2.6 HOPLP — MUL Algorithm with an illustrative example

Algorithm 2 demonstrates how the likelihood score matrix is calculated for graph
Ghoprp- The input to the algorithm is the summarized graph Gpoprp, summarized

weight matrix Agoprp and layer graphs G;||i € (1,n). The output is the likelihood matrix
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FIGURE 4.3: Example Graph for demonstrating working of HOPLP — MUL for
likelihood calculation over higher order paths.

of dimension ||V || * ||[V|| such that ||V|| is the number of nodes in Gyoprp. The algorithm
can be divided into three significant modules - initialization and graph summarization
(lines 1-4), common neighborhood-based initial significance computations (lines 5-9),
and a module which over successively larger path lengths to calculate cumulative
significance based on higher-order paths (lines 10-20). The last iterative module can be
divided into two sub-modules: current significance computation (lines 12-16) and score
updation for combining this current score with the score from the previous iteration

(lines 17-20).

For the sake of clarity and understanding purposes, an explanation of the working of
the algorithm is provided using Fig.4.3. In this graph, we assume that the weight of all
edges of the graph is 1, and the value of parameter Y = 0.1. The problem of finding
link probability between nodes X &Y is considered. In Table 4.1, the last two rows and
columns represent X &Y respectively in each matrix. In this table, it can be seen that the
exact matrices where PRIOR as in Algorithm 2 represents Edge_Impact and SCORE is
Prev_Iter_Impact. The last two rows and columns represent X &Y respectively in each
matrix. First, the effect of 2-length paths in graph are calculated as shown in Fig.4.3.
Two such paths exist - X — 1 —Y and X —2 — Y. Using Equation 4.4, IS(X,Y) = 0.4 as
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TABLE 4.1: SCORE and PRIOR matrices from Example for path-length [ = 2,3, 4.

| PATH-LENGTH | 7

PRIOR-MATRIX

SCORE-MATRIX

| | NODES | 1 2 3 4 5 6 7 8 X Y || NODES | 1 2 3 4 5 6 7 8 X Y
1 0 05 075 025 033 0 025 025 033 05 1 0 05 075 025 033 0 025 025 033 05
2 05 0 025 075 0 033 025 025 033 05 2 05 0 025 075 0 033 025 025 033 05
3 075 025 0 025 02 0O 02 0 02 02 3 075 025 0 025 02 0 02 0 02 02
4 025 075 025 0 0 02 0 02 02 02 4 025 075 025 0 0 02 0 02 02 02
5 033 0 02 0 0 0 02 0 05 02 5 033 0 02 0 0 0 02 0 053 02
6 0 03 0 02 0 0 0 02 053 02 6 0 033 0 02 0 0 0 02 053 02
7 025 025 02 0 02 O 0 025 02 02 7 025 025 02 0 02 0 0 025 02 02
8 025 025 0 02 0 02 025 0 02 02 8 025 025 0 02 0 02 025 0 02 02
X 033 033 02 02 053 053 02 02 0 04 X 033 033 02 02 053 053 02 02 0 04
Y 05 05 02 02 02 02 02 02 04 O Y 05 05 02 02 02 02 02 02 04 0O

| NODES | 1 2 3 4 5 6 7 8 X Y || NODES | 1 2 3 4 5 6 7 8 X Y
1 0 004 001 001 002 0 00l 001 002 001 1 0 054 076 026 034 0 026 026 034 05
2 004 0 00l 001 0 002 001 00l 002 001 2 054 0 026 076 0 034 026 026 034 05
3 001 001 0 0 002 0 002 0 002 004 3 076 026 0 025 022 0 022 0 022 024
4 001 001 0 0 0 002 0 002 002 004 4 026 076 025 0 0 022 0 022 022 024
5 002 0 002 0 0 0 001 0 001 002 5 03 0 022 0 0 0 021 0 054 022
6 0 002 0 002 0 0 0 001 001 002 6 0 03 0 022 0 0 0 021 054 022
7 001 001 002 0 001 0 0 0 001 001 7 026 026 02 0 021 0 0 025 021 021
8 001 001 0 002 0 001 0 0 001 001 8 026 026 0 022 0 021 025 0 021 021
X 002 002 002 002 001 001 001 001 0 003 X 034 034 022 022 054 054 021 021 0 043
Y 001 001 004 004 002 002 001 001 003 0 Y 05 05 024 024 022 022 021 021 043 0

| | NODES | 1 2 3 4 5 6 7 8 X Y || NODES | 1 2 3 4 5 6 7 8 X Y
1 0 0 0 0 0 0 0 0 0 0 1 0 054 076 026 034 0 026 026 034 05
2 0 0 0 0 0 0 0 0 0 0 2 054 0 026 076 0 034 026 026 034 05
3 0 0 0 0 0 0 0 0 0 0 3 076 026 0 025 022 0 022 0 022 024
4 0 0 0 0 0 0 0 0 0 0 4 026 076 025 0 0 022 0 022 022 024
5 0 0 0 0 0 0 0 0 0 0 5 03 0 022 0 0 0 021 0 054 022
6 0 0 0 0 0 0 0 0 0 0 6 0 034 0 022 0 0 0 021 054 022
7 0 0 0 0 0 0 0 0 0 0 7 026 026 02 0 021 0 0 025 021 021
8 0 0 0 0 0 0 0 0 0 0 8 026 026 0 022 0 021 025 0 021 021
X 0 0 0 0 0 0 0 0 0 0 X 034 034 022 022 054 054 021 021 0 043
Y 0 0 0 0 0 0 0 0 0 0 Y 05 05 024 024 022 022 021 021 043 0
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the contribution of nodes 1&2 is 0.2 each (5 edges each). Then 3 length paths between
X&Y are considered, which are not calculated directly but use the values of the SCORE
matrix from the same iteration but to common neighbors instead of between X&Y. The
values of SCORE (X,1) = SCORE (X,2) = 0.33 and SCORE (Y,1) = SCORE(Y,2) =0.5
are used. Hence the CURR value is calculated for path X — 1 —Y as SCORE (X, 1) *
PRIOR(1,Y) * penalty = 0.015 and similarly for path X —2 — Y. Combining these with
older path-length [ =2 SCORE, the total probability comes as 0.43. A point to be noted
here is that in HOPLP — MUL algorithm, we do not directly calculate the higher-order
paths between X&Y. For path-length / = 4, it can be observed that the CURR matrix
has become null after computation. This is because of the setup rounding off decimals
to 2 significant places. Hence the SCORE matrix for path-length [ = 3&4 remains the
same. In this example, it is assumed that the node influence of nodes X &Y extends only
a 2-hop region away from them (/,,,, = 4) for the sake of simplicity and keeping in mind
the example size of the graph. This exact mechanism can be extended to a 3-hop region

(lnax = 6), predicted by the 3 Degree of Influence phenomenon.

4.2.7 Complexity Analysis

In this section, the complexity of the proposed algorithm HOPLP — MUL is analyzed.
Line 1 generates multiplex network in &'(V + E) time. Line 2-3 initialize matrices which
is a trivial process hence it takes ¢’(1) time. The loop in line 4 for iteration has &'(|V|?)
complexity. Equations 4.4,4.5 are used in line 5 and takes €'(Dgg) time. Lines 6 and
7 are trivial and hence take ¢(1) time. The module for initial significance calculation
i.e., lines 4-7, collectively has & (|V|? % Dgyg) complexity. Line 8 iterates over the third
module /,,,,, —2 times. Lines 10 iterates over all possible node pairs and hence has a
total of |V |? iterations. The complexity of lines 11-13 has complexity of &(Dy,) because
of iteration over a set which contains neighbors of a node. Hence the total complexity
of sub-module in lines 10-13 is &(|V|? ¥ D). Similarly the complexity of sub-module

which handles score updation is &(|V'|?). The total complexity of the third module in lines
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8-161is O ((Imax —2) * |V |* ¥ Davg). Comparing the three major modules of HOPLP —MUL
algorithm, the combined complexity is O((V +E) + |V |* * Dayg + (nax — 2) * |V |* % Dayg).
Taking the most significant terms this can be simplified t0 &((lyax — 1) * |V |? % Dayg).
Since the /,;,,c — 1 part can be seen to much smaller than other terms, the complexity can

be simplified to O(|V|? % Dyyg).

4.3 Performance Analysis

4.3.1 Algorithm Variation Comparison

In this section, the performance of the proposed algorithm is compared with different
baseline algorithms. The relationship between the algorithm’s performance based on
different forms of initial significance calculations (Equations 4.4 and 4.5) and different
regions of influence of nodes (/,,,x = 4,6) is also investigated. Hence the experiment are
performed with the variations (HOPLP — MUL —2 —0.05,HOPLP — MUL — 3 — 0.05,
HOPLP —MUL - LOG -2 —0.05, HOPLP — MUL — LOG — 3 — 0.05 such that LOG
represents calculation from Equation 4.5 and 2,3 represent l,,. = 4,6 respectively.
Three metrics in these experiments: AUC, F1 Score, and Balanced Accuracy Score are
used. Five different ratios (0.1, 0.2, 0.3, 0.4, 0.5) of testing set edges to total edges of
graph datasets are considered. For the parameter y, we experiment for values from
0.01 —0.15 with an interval of 0.02. Each of these tests is performed on six real-world
networks. For the sake of simplicity in performing comparisons between different
variations, the value of 7y is fixed at 0.05 for Section 4.3.1. This setup helps streamline
the results such that only differences caused due to changes of different initial

significance and influence regions can be measured.
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4.3.1.1 Analysis of AUC Pattern on different algorithm variations

Fig. 4.4 presents the comparison of different algorithm variations on six datasets. In five
datasets, it is observed that HOPLP — MUL — LOG — 2 — 0.05 can be considered either
the best performing algorithm, or it narrowly misses the best position.
HOPLP — MUL — LOG — 3 — 0.05 is the second-best performing algorithm in five
datasets. The exception is Pierreauger, where it becomes the worst performing algorithm.
HOPLP — MUL — 2 — 0.05 can be considered the algorithm with the most
middle-of-the-pack performance. It is tough to differentiate between the performance of

algorithms in CKM-Physicians-Innovation and Rattus-Genetic datasets.

4.3.1.2 Analysis of F1 Score Pattern on different different variations

Fig. 4.5 presents the comparison of different algorithm variations on six datasets.
HOPLP —MUL — LOG — 2 —0.05 can be observed as the best performing algorithm
across all datasets except Rattus-Genetic. HOPLP — MUL — LOG — 3 — 0.05 can be
considered to have a similar performance to HOPLP — MUL — LOG — 2 — 0.05 for all
datasets except Pierreauger. This dataset is an exception because algorithms that
consider larger influence regions of nodes, i.e., HOPLP — MUL — 3 — 0.05 and
HOPLP —MUL — LOG — 3 —0.05, show almost constant performance relative to Ratio,
which for other algorithms and datasets has an increasing pattern. However, it can be
observed that the quantum of increase decreases with the increase of the Ratio variable.
In other datasets, the performance of HOPLP — MUL — 3 — 0.05 tends to fall after
reaching Ratio = 0.3. The algorithms using exponential initial significance function, i.e.,
HOPLP —MUL —2—0.05 and HOPLP —MUL — 3 —0.05, show better performance in
the Rattus-Genetic dataset contrary to the general pattern where logarithmic based

variations tend to be better.
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4.3.1.3 Analysis of Balanced Accuracy Score Pattern on different algorithm

variations

Fig. 4.6 presents the comparison of different algorithm variations on six datasets. In five
datasets, it is observed that HOPLP — MUL — LOG — 2 — 0.05 can be considered either
the best performing algorithm or narrowly misses the best position. The only sizable
difference is observed in the dataset Pierreauger where HOPLP — MUL —2 —0.05 is the
best performing algorithm. In this dataset, it is observed that the same performance by
HOPLP —MUL —3 —0.05 and HOPLP — MUL — LOG — 3 — 0.05, which shows it is
suitable for variations to consider larger regions of influence for prediction. However,
HOPLP — MUL — 3 — 0.05 is the worst-performing algorithm in all other datasets.
HOPLP — MUL — 2 — 0.05 shows a middle-of-the-pack performance in all datasets
except Pierreauger, as explained above. HOPLP — MUL — LOG — 3 — 0.05 shows
excellent performance comparable to HOPLP — MUL — LOG — 2 — 0.05 in all datasets

except Pierreauger.

4.3.2 Variation of HOPLP — MUL based on different y values

Fig. 4.7 shows the comparison of the performance of HOPLP — MUL algorithm for
different values of 7. Based on variation comparisons in Section 4.3.1,
HOPLP — LOG — 2 i1s used as the base method for finding the best y. In Fig. 4.7a, it is
observed that in the overall pattern, the AUC values of HOPLP — MUL algorithm
decrease as the 7y value is increased. In datasets CKM-Physicians-Innovations,
Pierreauger, and Rattus-Genetic, there is only a minor improvement. So the most
suitable candidates for best AUC performance is ¥ = 0.01. In Fig. 4.7b, it is observed
that although lower values of y show the best performance, the total decrease between
consequent values is relatively slight. Even then, it is evident that the best candidate is
Y= 0.01. In Fig. 4.7c, a similar pattern as the AUC metric is observed but with more

contrast, one of decreasing balanced accuracy score values with the increase in y. Only
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in the Rattus-Genetic dataset, the quantum of decrease is relatively tiny with increasing y
value. Hence, it can be concluded that the best performance of the algorithm can be
achieved at Y = 0.01. Based on the results of Section 4.3.1 and 4.3.2, from hereon, the
candidate variation HOPLP — LOG — 2 — 0.01 is referred to as the algorithm

HOPLP — MUL as the one with the best trade-off between accuracy and complexity.

4.3.3 HOPLP — MUL comparison with link prediction methods on

summarized weighted graph

The AUC metric is used in Table 4.2 to compare the proposed HOPLP — MUL algorithm
to baseline approaches. In five datasets, HOPLP — MUL is the method with best results.
In CS-Aarhus, CKM-Physicians-Innovation, and Pierreauger, the improvement is quite
drastic.  For Vickers-Chan-7thGraders and Kapferer-Tailor-Shop, the performance
improvement is significant. In Rattus-Genetic, the proposed HOPLP — MU L algorithm
is second best behind CC-WT. The assessment of the suggested HOPLP — MUL
algorithm with respect to baseline approaches in terms of the F1 score is shown in Table
4.3. HOPLP — MUL outperforms all other algorithms in four datasets. The exceptions
are CS-Aarhus and Vickers-Chan-7thGraders datasets, in which for higher Ratio values
(0.4,0.5), the performance of HOPLP — MUL algorithm becomes marginally less than
most of the baseline methods. Table 4.4 compares the proposed HOPLP — MUL
algorithm to baseline approaches in terms of Balanced Accuracy score. HOPLP — MUL
outperforms all other algorithms in all six datasets. The most negligible improvement is
seen for Kapferer-Tailor-Shop and Rattus-Genetic datasets, while all others show

significant improvement.
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TABLE 4.2: Comparison of the proposed algorithm HOPLP — MU L with baseline algorithms in terms of AUC on six datasets and five
Ratio values for testing to total edges percentage

7 DATASET | Ratio | CN-WT | JC-WT | PA-WT | AA-WT | RA-WT | CC-WT | LOCALP-WT | HOPLP-MUL |
0.1 | 0.64595 | 0.64335 | 0.54614 | 0.64816 | 0.65096 | 0.44883 |  0.61613 0.82107
0.2 | 0.64674 | 0.6508 | 0.54807 | 0.64989 | 0.65166 | 0.48473 |  0.61786 0.81494
CS-Aarhus 0.3 | 0.64796 | 0.64695 | 0.54667 | 0.65017 | 0.64938 | 0.4763 0.62041 0.79835
04 | 0.64107 | 0.64189 | 0.54389 | 0.63978 | 0.64296 | 0.47303 |  0.61972 0.78491
0.5 | 0.62953 | 0.62924 | 0.5434 | 0.63019 | 0.63121 | 0.51155 |  0.61666 0.7437
0.1 | 0.60084 | 0.5987 | 0.58839 | 0.60487 | 0.60348 | 0.58815 |  0.59864 0.72004
0.2 | 0.59372 | 0.59351 | 0.58186 | 0.59796 | 0.59703 | 0.60575 |  0.59528 0.69263
Vickers-Chan-7thGraders | 0.3 | 0.59094 | 0.58578 | 0.58154 | 0.59544 | 0.59457 | 0.58773 |  0.59104 0.69143
0.4 | 059192 | 0.58385 | 0.57859 | 0.5926 | 0.59347 | 0.56523 |  0.58703 0.66945
0.5 | 0.58715 | 0.57883 | 0.57524 | 0.59118 | 0.59074 | 0.53464 0.5822 0.62946
0.1 | 0.58056 | 0.57322 | 0.56709 | 0.58032 | 0.58257 | 0.54942 |  0.57723 0.6887
0.2 | 058108 | 0.57089 | 0.56704 | 0.57898 | 0.57952 | 0.53922 |  0.57612 0.69555
Kapferer-Tailor-Shop 0.3 | 0.57838 | 0.56688 | 0.56016 | 0.58046 | 0.57921 | 0.55687 |  0.57286 0.68425
04 | 057611 | 0.5639 | 0.5607 | 0.57916 | 0.57823 | 0.52899 0.5661 0.67274
0.5 | 0.57474 | 0.56289 | 0.5595 | 0.57438 | 0.57635 | 0.53624 |  0.56324 0.64621
0.1 | 0.66488 | 0.67271 | 0.52436 | 0.66903 | 0.66665 | 0.4514 0.67969 0.83184
0.2 | 0.65093 | 0.65162 | 0.52151 | 0.6519 | 0.65312 | 0.46986 0.6735 0.7993
CKM-Physicians-Innovation | 0.3 | 0.63531 | 0.63339 | 0.5202 | 0.63347 | 0.63432 | 0.47539 |  0.65906 0.75949
04 |0.61306 | 0.61052 | 052 | 0.61185 | 0.61232 | 0.49387 |  0.64103 0.72289
0.5 | 0.58772 | 0.58759 | 0.51919 | 0.58784 | 0.58817 | 0.49374 |  0.61609 0.67489
0.1 |0.73238 | 0.73283 | 0.59374 | 0.73289 | 0.7328 | 0.80174 |  0.71658 0.99041
0.2 | 0.73289 | 0.73333 | 0.59606 | 0.73337 | 0.73336 | 0.80434 |  0.71929 0.98686
Pierreauger 0.3 | 0.73267 | 0.73278 | 0.5992 | 0.73353 | 0.73315 | 0.80005 |  0.72199 0.98197
0.4 | 0.73151 | 0.73189 | 0.60187 | 0.7318 | 0.73172 | 0.79704 |  0.72296 0.9746
0.5 | 0.72848 | 0.72838 | 0.60586 | 0.7292 | 0.72908 | 0.78689 |  0.72441 0.96476
0.1 |0.53864 | 0.538 | 0.46466 | 0.53723 | 0.53961 | 0.63226 |  0.54274 0.58256
0.2 | 0.53117 | 0.53234 | 0.48039 | 0.53251 | 0.53497 | 0.58736 |  0.54653 0.56995
Rattus-Genetic 0.3 | 0.52758 | 0.52814 | 0.49553 | 0.52863 | 0.52859 | 0.58564 |  0.54478 0.5581
04 |0.52263 | 0.52338 | 0.5087 | 0.52229 | 0.52428 | 0.56224 |  0.54181 0.54526
0.5 | 051704 | 0.51744 | 0.51869 | 0.51829 | 0.51729 | 0.56588 |  0.53589 0.53649




89

Chapter 4. HOPLP-MUL

6€10°0 $E€00°0 | L9100°0 | 2v€00°0 | 65£00°0 | $8£00°0 | €8200°0 | 6¥€00°0 | S0
$9210°0 §TT00°0 11000 | $£200°0 | 29200°0 | STE00'0 | 112000 | 292000 | +0
L910°0 9€1000 | L0000 | 16100°0 | 88100°0 | #¥200°0 | #1000 | S8T00°0 | €0 oneuID-sIYEY
769100 780000 | 9¥000°0 | 1T100°0 | 911000 | TSTO00 | 8£000°0 | TIT000 | T0
1€S10°0 850000 Z000°0 | 9S000°0 | 0000 | 92000°0 | LEOVD'0 | 950000 | 10
LLVLSO 8TLFED | 06800 | €€2LE0 | 96£L£°0 | €v01°0 | TITLEO | LLvLED | SO
98€81°0 €T€8T0 | LETLOO | 69Y0€°0 | TSFOE0 | LS8O'0 | TLEOSO | 8TOEO | +0
9L0LE0 PSPITO | 6LFS0'0 | 906TT0 | 99620 | £2S90°0 | S982T0 | L06TT0 | €0 108neaLIolg
TLOSTO SOTPI'0 | LILEODO | 98EST'O | LOYST'O | ¥L¥PO0 | STEST'O | 1SESTO | TO
SETTI0 90L0°0 8810°0 | ¥ILLOO | 9TLLOO | 69TTO0 | 6L9L0°0 | #89L00 | 1°0
THLLTO €E6ET0 | L8LTOO | TOTSTO | #40ST°0 | 20S€00 | S1ST'0 | ¥11ST0 | S0
652S1°0 €08TT°0 | TEETO0 | S68E1°0 | 9ISET0 | S8TO0 | ¥SIEI°0 | 8L8ET0 | +70
69L11°0 90€60°0 | 8S9T0°0 | ¥9TIT0 | TLITT0 | 6L1T0°0 | TITITO | YEETT'O | €0 | uoneaouur-suerorsKyd-wsrd
$8180°0 $590°0 86010°0 | LESLOO | SLLOO | 9LFIO0 | 99LL0°0 | TLLLOO | T0O
LETHO'0 9v€0°0 SIS00°0 | €10¥0°0 | 1SO00 | SLOO0 | TETFO'0 | 986€0°0 | 10
LIELEO 0v9€°0 | ¥69v€°0 | 610LE°0 | $T99€°0 | 2v99€°0 | 6655€°0 | 288950 | S0
LI6LED TL6EE0 $90€'0 | TOSYE0 | 86EFE0 | 9EEE0 | 989T€0 | SOVHED | 0
8THLED €686T0 | 80LSTO | 8860€°0 | LIOEO | €£€68T°0 | STS8TO | 9Z00E0 | €0 doyg-tofre -rexaydeyy
6VLTE0 662€T0 8I1T0 | LIIFTO | TLSETO | 886TT0 | ¥122T0 | 68€€T0 | T0
S8E1T0 PS6ET'0 | 6LTET0 | ISFI0 | TETHT'O | 9F6ET0 | 68TET°0 | 8STHT'0 | 10
9766€°0 86v87°0 | 8L69%°0 | 6S6L¥°0 | LEVSYO | SLTLYO | 81vLy0 | TISLEO | SO
L8TH O STOLFO | S96SF°0 | 6TVLY0 | 69S95°0 | TS9SHO | €96S7°0 | TI69Y0 | 0
L90¥H0 VOIS0 | LS6THO | 617470 | 901HH'0 | T8EIF0 | TO9TH0 | #SOEY'0 | €0 | SIOPLIDU).-UBYD-SINIA
LSTOH'0 1619€°0 | $988€°0 | ¥8¥8€°0 | 60VLE'D | 6SLYE0 | THOSE0 | 82S9€°0 | T0
¥287€°0 TIHT0 T68ST0 | 19€9T°0 | ¥STSTO | 68SET0 | €8LTT0 | €S9¥T°0 | 1°0
66920 vrL8T0 | 8L69T°0 | T0S8TO | #¥28T0 | 69610 | €9582°0 | vES8T0O | S0
Z8SYT0 L69YTO | 908TI'0 | 88LYT0 | L9OVTO | 610LI'0 | EPLYTO | ¥19¥T0 | +0
$85TT°0 6v261°0 9201°0 | €2661°0 | 89¥61°0 | TI9ET0 | 1LT61°0 | EET61°0 | €0 snyIey-§)
9€061°0 I6LET°0 | LEPLO'O | HOLYT'O | €L9ET°0 | TI860°0 | SESET0 | 61EFI0 | TO
9LITT0 LOELO'O | 6LEEO'0 | 186L0°0 | SFSLO'0 | 96€SO°0 | T9OLOO | SSSLOO | 10
| TN-dTdOH | LM-dTVOOT | 1M-DD | IM-VY | IM-VV | 1M-Vd | LM-Or | LM-ND | oney | LASVIVA 7

a8rjuaorad so3pa [8103 01 FUNSA) 10J SAN[BA 01]DY

OAJ PUR S13SEIRP XIS UO 9100S [ JO SULID) UI S0 suIfaseq Yum 7MW — d7d0 H wyptiose pasodoid ayy jo uostureduio)

'y A14V]L



90

Chapter 4. HOPLP-MUL

TABLE 4.4: Comparison of the proposed algorithm HOPLP — MU L with baseline algorithms in terms of Balanced Accuracy Score on six
datasets and five Ratio values for testing to total edges percentage

7 DATASET | Ratio | CN-WT | JC-WT | PA-WT | AA-WT | RA-WT | CC-WT | LOCALP-WT | HOPLP-MUL |
0.1 | 0.60606 | 0.5953 | 0.54222 | 0.60664 | 0.6143 | 0.44283 |  0.60167 0.61016
0.2 | 0.61497 | 0.60817 | 0.54215 | 0.60866 | 0.6204 | 0.47741 |  0.61045 0.6215
CS-Aarhus 0.3 | 0.61325 | 0.61406 | 0.54376 | 0.61547 | 0.61856 | 0.47607 |  0.61466 0.60273
04 | 0.61844 | 0.61922 | 0.54454 | 0.61378 | 0.61897 | 0.47427 |  0.62047 0.59219
0.5 | 0.61565 | 0.61588 | 0.54382 | 0.61391 | 0.61544 | 0.50167 0.6169 0.59369
0.1 | 056258 | 0.53822 | 0.5504 | 0.56843 | 0.58162 | 0.56601 |  0.55599 0.64781
0.2 | 0.57132 | 0.55183 | 0.55531 | 0.57972 | 0.59081 | 0.58289 |  0.56651 0.6093
Vickers-Chan-7thGraders | 0.3 | 0.57865 | 0.55628 | 0.56392 | 0.58949 | 0.59374 | 0.55854 |  0.57691 0.59919
0.4 | 058329 | 0.56508 | 0.57073 | 0.58305 | 0.59265 | 0.54492 |  0.58161 0.57838
0.5 | 0.57801 | 0.56188 | 0.56922 | 0.58611 | 0.58761 | 0.52387 |  0.58235 0.54617
0.1 | 05521 | 0.53511 | 0.5468 | 0.55165 | 0.56102 | 0.53478 |  0.54714 0.63293
0.2 | 055611 | 0.54078 | 0.55168 | 0.55858 | 0.56475 | 0.52418 |  0.55499 0.63702
Kapferer-Tailor-Shop 0.3 | 0.56309 | 0.54435 | 0.55254 | 0.56424 | 0.57289 | 0.54035 |  0.56077 0.62428
0.4 | 0.56636 | 0.54459 | 0.55481 | 0.56641 | 0.57148 | 0.51484 |  0.56139 0.60293
0.5 | 056368 | 0.54748 | 0.55781 | 0.56286 | 0.56925 | 0.52088 |  0.55821 0.5858
0.1 | 0.66069 | 0.66849 | 0.5261 | 0.66436 | 0.66214 | 0.45726 |  0.66562 0.79291
0.2 | 0.64789 | 0.64883 | 0.52586 | 0.64855 | 0.65006 | 0.4711 0.65936 0.76069
CKM-Physicians-Innovation | 0.3 | 0.6333 | 0.63184 | 0.5242 | 0.63133 | 0.63231 | 047528 |  0.64946 0.72851
04 |0.61199 | 0.60982 | 0.523 | 0.61066 | 0.61113 | 0.48834 |  0.63784 0.70231
0.5 | 0.58717 | 0.58733 | 0.52181 | 0.58719 | 0.58754 | 0.48408 |  0.61435 0.67011
0.1 |0.71863 | 0.71856 | 0.62186 | 0.71855 | 0.71842 | 0.6817 0.71584 0.9576
0.2 | 0.72121 | 0.72111 | 0.62396 | 0.7211 | 0.72103 | 0.68508 |  0.71847 0.95973
Pierreauger 03 | 0723 |0.72265 | 0.62486 | 0.72323 | 0.72282 | 0.68502 |  0.72076 0.96033
0.4 | 0.72379 | 0.72385 | 0.62646 | 0.72362 | 0.72354 | 0.68381 |  0.72157 0.95813
0.5 | 0.72271 | 0.72232 | 0.62737 | 0.72294 | 0.72275 | 0.6849 0.72128 0.95193
0.1 |0.53745 | 0.51648 | 0.5701 | 0.53528 | 0.53774 | 0.49428 |  0.55026 0.51046
0.2 | 0.53039 | 0.51503 | 0.5673 | 0.53124 | 0.53365 | 0.50655 |  0.54247 0.50833
Rattus-Genetic 0.3 | 0.52706 | 0.51685 | 0.5661 | 0.5278 | 0.52777 | 0.50896 |  0.54212 0.50559
04 |0.52233 | 0.51597 | 0.56171 | 0.52182 | 0.52378 | 0.51199 |  0.54052 0.50388
0.5 | 051691 | 0.51259 | 0.55713 | 0.51804 | 0.51704 | 0.51562 |  0.53538 0.50432
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4.3.4 HOPLP — MUL comparison with multiplex link prediction

methods on individual layers

The results of HOPLP — MUL algorithm’s application to particular layers of multiplex
networks are described in this section. The AUC measure is used in Tables 4.5 and 4.6,
to compare the new HOPLP — MUL algorithm with baseline approaches. Additionally,
the technique is compared to two algorithms that are expressly intended for link
prediction in multiplex networks, namely NSILR — MUL and MADM — MUL, in this
section. HOPLP — MUL outperforms all other algorithms in all three datasets for Ratio
values of 0.1 — 0.3, but especially for Ratio = 0.4. On layer-1 of the
Kapferer-Tailor-Shop and CKM-Physicians-Innovation datasets, NSILR — MUL and
MADM — MUL outperform HOPLP — MUL approach. For conventional weighted link
prediction techniques, the difference in AUC between the approach and the other
benchmark algorithms lessens as the Ratio value increases. For NSILR — MUL and
MADM — MUL, the pattern of change as the Ratio value increases is the inverse of the
pattern for other algorithms, which results in improved performance on fewer edges for
any given layer. HOPLP — MUL algorithm performs better than MV ERSE — EMB for
all layers of Vickers-Chan-7thGraders and layers 2 and 4 of Kapferer-Tailor-Shop
dataset. For CKM-Physicians-Innovation dataset HOPLP — MUL algorithm’s
performance is below MV ERSE — EMB.

In Tables 4.7 and 4.8, the suggested HOPLP — MUL algorithm is compared to standard
approaches in terms of the F1 score. When compared to traditional weighted link
prediction algorithms, HOPLP — MUL outperforms them in all three datasets across all
levels, except in the case of CKM-Physicians-Innovation dataset, where it becomes the
fourth-best performing algorithm for lower Ratio values (0.1,0.2) behind CN — WT,
AA —WT, and RA —WT. But for higher Ratio values (0.3,0.4,0.5) it is the best
performing algorithm for CKM-Physicians-Innovation dataset. In contrast to
NSILR — MUL and MADM — MUL, the approach outperforms both benchmarks for all
Ratio values between 0.1&0.4. In contrast to the AUC trend, all three NSILR — MUL,
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TABLE 4.5: Comparison of the proposed algorithm HOPLP — MU L with baseline algorithms in terms of AUC layer-wise on three datasets
and five Ratio values for testing to total edges percentage

DATASET | Layer No. | Ratio | CN-WT | PA-WT | JC-WT | AA-WT | RA-WT | CC-WT | LOCALP-WT | NSILR-MUL | MADM-MUL | MVERSE-EMB | HOPLP-MUL
0.1 |0.59264 | 0.58011 | 0.59237 | 0.59553 | 0.59814 | 0.57576 0.5941 0.67383 0.64744 0.58373 0.77557
0.2 | 0.59097 | 0.57682 | 0.58659 | 0.59292 | 0.59469 | 0.57026 |  0.58964 0.68865 0.67858 0.63411 0.75416
1 0.3 | 058722 | 0.57641 | 0.58255 | 0.58999 | 0.59182 | 0.54356 |  0.58549 0.67236 0.66006 0.63743 0.72856
04 | 058726 | 0.57378 | 0.57803 | 0.59082 | 0.59233 | 0.53047 |  0.58239 0.69457 0.67443 0.66327 0.70315
0.5 | 0.58526 | 0.57038 | 0.57285 | 0.58728 | 0.58691 | 0.53176 |  0.57822 0.85148 0.86447 0.72753 0.66052
0.1 | 0.61902 | 0.56741 | 0.61558 | 0.6267 | 0.62889 | 0.48223 |  0.59643 0.67613 0.76145 0.51797 0.83789
02 | 0.62247 | 0.56606 | 0.61424 | 0.62223 | 0.63047 | 0.49103 |  0.59398 0.70182 0.77866 0.53423 0.80438
2 0.3 | 0.61905 | 0.56638 | 0.60894 | 0.62182 | 0.626 | 0.48118 |  0.59322 0.7427 0.77261 0.628 0.78156
04 |0.61329 | 0.56402 | 0.61106 | 0.61451 | 0.62156 | 0.50157 |  0.59178 0.75734 0.79776 0.66767 0.75251
Vickers-Chan-7thGraders 0.5 | 0.60488 | 0.56501 | 0.59501 | 0.60629 | 0.60729 | 0.50581 |  0.58739 0.82937 0.87328 0.7149 0.6941
0.1 | 0.62164 | 0.58049 | 0.6175 | 0.62069 | 0.62662 | 0.57283 |  0.60573 0.5735 0.5131 0.72242 0.81855
02 | 0.62393 | 0.57656 | 0.61901 | 0.62257 | 0.62611 | 0.5692 0.60084 0.61915 0.54899 0.68271 0.80812
3 0.3 | 0.62152 | 0.57468 | 0.61524 | 0.62353 | 0.62386 | 0.5556 0.60198 0.65218 0.63327 0.63888 0.78363
04 | 0.62037 | 0.57429 | 0.61428 | 0.62196 | 0.62074 | 0.54368 0.6 0.6705 0.66265 0.625 0.7454
0.5 | 0.61308 | 0.57382 | 0.6057 | 0.6086 | 0.61482 | 0.53727 |  0.60014 0.76442 0.75108 0.74885 0.71265
0.1 | 0.60486 | 0.56184 | 0.59865 | 0.61264 | 0.60498 | 0.52083 |  0.58524 0.76062 0.80789 0.74507 0.7527
0.2 | 0.60657 | 0.56166 | 0.59469 | 0.60498 | 0.60136 | 0.5045 0.58684 0.66902 0.75498 0.74991 0.72347
1 03 | 059718 | 0.5625 | 0.59257 | 0.59885 | 0.59925 | 0.5177 0.58597 0.76188 0.7278 0.74108 0.70505
0.4 | 0.59247 | 0.56256 | 0.58216 | 0.59263 | 0.58955 | 0.52191 |  0.58082 0.73548 0.74697 0.72225 0.68439
: 0.5 | 0.58225 | 0.56422 | 0.57265 | 0.57901 | 0.57752 | 0.53199 |  0.57756 0.77726 0.81609 0.78406 0.64765
Kapferer-Tailor-Shop
0.1 | 05933 | 0.55929 | 0.5917 | 0.59403 | 0.59351 | 0.58928 | ~ 0.57759 0.64462 0.583 0.55987 0.75132
02 | 059517 | 0.55953 | 0.59036 | 0.5934 | 0.59279 | 0.58149 0.5755 0.63217 0.60123 0.64178 0.72748
2 0.3 | 059318 | 0.55929 | 0.58669 | 0.59445 | 0.59601 | 0.5807 0.57592 0.62654 0.66526 0.69068 0.71071
04 | 0.58828 | 0.55764 | 0.58892 | 0.59235 | 0.59297 | 0.5676 0.57596 0.64257 0.68733 0.66638 0.68361
0.5 | 0.5825 | 0.55684 | 0.57512 | 0.58282 | 0.5831 | 0.5494 0.57362 0.74455 0.74659 0.7469 0.65287
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TABLE 4.7: Comparison of the proposed algorithm HOPLP — MUL with baseline algorithms in terms of F1 Score layer-wise on three

datasets and five Ratio values for testing to total edges percentage

DATASET | Layer No. | Ratio | CN-WT | PA-WT | JC-WT | AA-WT | RA-WT | CC-WT | LOCALP-WT | NSILR-MUL | MADM-MUL | MVERSE-EMB | HOPLP-MUL
0.1 |0.23234 | 0.2198 | 0.21341 | 0.23703 | 0.24751 | 0.23074 |  0.22711 0.03538 0.03269 0.02817 0.36884
02 | 035137 | 0.33263 | 033206 | 0.35722 | 0.36902 | 0.343 0.34857 0.08204 0.08616 0.07281 0.48971
1 0.3 | 0.41243 | 0.39766 | 0.39899 | 0.41899 | 0.42884 | 0.38755 |  0.41402 0.16237 0.16881 0.15406 0.53922
04 | 0.4486 | 0.44206 | 0.44207 | 0.45384 | 0.46286 | 0.41806 |  0.45155 0.32651 0.32604 0.30713 0.54678
0.5 | 0.46538 | 0.45956 | 0.4552 | 0.46777 | 0.46607 | 0.45903 |  0.47055 0.73093 0.74251 0.55646 0.52696
0.1 | 0.10942 | 0.09536 | 0.10508 | 0.11881 | 0.1306 | 0.07326 |  0.10219 0.01307 0.02225 0.00963 0.191
02 | 0.18623 | 0.1666 | 0.18549 | 0.19162 | 0.22908 | 0.13247 |  0.18591 0.03656 0.05672 0.02215 0.31085
2 0.3 | 0.24901 | 0.21787 | 0.24611 | 0.24902 | 0.27958 | 0.17645 |  0.25216 0.10315 0.1365 0.08404 0.37908
04 | 030354 | 0.26385 | 0.30826 | 0.29892 | 0.30889 | 0.21908 |  0.30523 0.22518 0.29543 0.19163 0.42471
Vickers-Chan-7thGraders 0.5 | 033242 | 0.30017 | 033042 | 0.33154 | 0.33195 | 0.24781 |  0.32988 0.50117 0.65207 0.40939 0.42792
0.1 | 0.16091 | 0.13369 | 0.14028 | 0.15392 | 0.15346 | 0.12536 |  0.14546 0.02887 0.02294 0.02897 0.23898
0.2 | 0.24395 | 0.21794 | 0.22878 | 0.25072 | 0.25272 | 0.20568 | ~ 0.23238 0.07093 0.0517 0.06226 037714
3 0.3 | 0.29675 | 0.27762 | 0.29286 | 0.29755 | 0.31927 | 0.25776 | ~ 0.29526 0.15756 0.10472 0.09635 0.44528
04 | 034714 | 0.32164 | 0.34699 | 0.34529 | 0.34926 | 0.29383 |  0.34572 0.24787 0.23321 0.1882 046571
0.5 | 037711 | 0.3533 | 037783 | 0.36839 | 0.37606 | 0.31429 |  0.37774 0.52324 0.44641 0.49561 0.46831
0.1 | 0.07427 | 0.07089 | 0.06992 | 0.07494 | 0.07898 | 0.04998 |  0.07161 0.02082 0.01848 0.0235 0.10543
02 | 0.13276 | 0.12813 | 0.13118 | 0.13418 | 0.13811 | 0.09055 |  0.13085 0.03534 0.04003 0.05272 0.17594
1 0.3 | 0.1821 | 0.17427 | 0.18098 | 0.18125 | 0.18565 | 0.1264 0.18262 0.09088 0.078 0.0929 0.23802
0.4 | 022294 | 0.21052 | 0.21849 | 0.22174 | 0.2205 | 0.15428 |  0.22031 0.16412 0.16132 0.17379 0.27766
: 0.5 | 0.24558 | 0.23636 | 0.24025 | 0.23927 | 0.23913 | 0.18857 |  0.23836 0.35341 0.37883 041191 0.2931
Kapferer-Tailor-Shop
0.1 | 0.10429 | 0.09707 | 0.09689 | 0.10982 | 0.11103 | 0.09363 | ~ 0.10329 0.02261 0.01838 0.01649 0.15025
0.2 | 0.18211 | 0.16857 | 0.16894 | 0.18215 | 0.18897 | 0.16093 |  0.17428 0.0395 0.04457 0.0476 0.24435
2 0.3 | 0.24112 | 0.21989 | 0.22364 | 0.23603 | 0.24636 | 0.21696 |  0.23556 0.08119 0.11703 0.10271 0.30916
04 | 027473 | 0.26253 | 0.27378 | 0.27883 | 0.28436 | 0.25129 |  0.27277 0.16636 0.22874 0.1947 0.33968
0.5 | 0.29691 | 0.29252 | 0.29456 | 0.29761 | 0.30121 | 0.27141 |  0.29675 0.43194 0.45028 0.44684 0.35898
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TABLE 4.9: Comparison of the proposed algorithm HOPLP — MUL with baseline algorithms in terms of Balanced Accuracy Score
layer-wise on three datasets and five Ratio values for testing to total edges percentage

DATASET | Layer No. | Ratio | CN-WT | PA-WT | JC-WT | AA-WT | RA-WT | CC-WT | LOCALP-WT | NSILR-MUL | MADM-MUL | MVERSE-EMB | HOPLP-MUL
0.1 |0.56342 | 0.54828 | 0.53813 | 0.56907 | 0.58082 | 0.56175 | ~ 0.55698 0.64623 0.63125 0.58326 0.73055
0.2 | 057266 | 0.55531 | 0.55013 | 0.57866 | 0.59062 | 0.55696 |  0.56949 0.63429 0.65912 0.60231 0.69728
1 0.3 | 057415 | 0.56055 | 0.55433 | 0.58016 | 0.59138 | 0.53253 |  0.57322 0.62218 0.63996 0.61113 0.67372
04 | 057837 | 0.56688 | 0.55992 | 0.58257 | 0.59203 | 0.52167 0.5786 0.64011 0.63803 0.62448 0.64739
0.5 | 0.57638 | 0.56346 | 0.55444 | 0.58092 | 0.58236 | 0.52659 |  0.57833 0.77505 0.78723 0.6694 0.61304
0.1 | 057881 | 0.54886 | 0.57224 | 0.59482 | 0.61177 | 0.48568 |  0.56612 0.55599 0.73898 0.49613 0.76793
02 | 057762 | 0.55054 | 0.57643 | 0.58365 | 0.61821 | 0.48775 |  0.57738 0.58979 0.75469 0.48254 0.74881
2 0.3 | 0.58547 | 0.55241 | 0.58259 | 0.58572 | 0.61037 | 0.48891 |  0.58883 0.65324 0.77113 0.60237 0.72805
04 | 059324 | 0.5569 | 0.59702 | 0.58937 | 0.59743 | 0.49477 |  0.59452 0.69162 0.79962 0.63135 0.70329
Vickers-Chan-7thGraders 0.5 | 059323 | 0.56227 | 0.59146 | 0.5928 | 0.59287 | 0.49649 |  0.59123 0.74853 0.85768 0.66196 0.6672
0.1 | 0.60595 | 0.56948 | 0.58134 | 0.59791 | 0.59845 | 0.56188 | ~ 0.58746 0.58113 0.51705 0.63245 0.75949
02 | 0.5984 | 0.57069 | 0.58359 | 0.60389 | 0.60532 | 0.55592 |  0.58666 0.59704 0.54868 0.62466 0.75459
3 0.3 | 0.58947 | 0.57144 | 0.58588 | 0.5902 | 0.60796 | 0.54277 |  0.58813 0.64176 0.56173 0.57602 0.7279
04 | 059494 | 0.57312 | 0.59474 | 0.5935 | 0.5971 | 0.53255 |  0.59372 0.64304 0.60044 0.57646 0.69259
0.5 | 059621 | 0.57344 | 0.59702 | 0.59039 | 0.59629 | 0.51901 |  0.59698 0.71139 0.64658 0.68765 0.66205
0.1 |0.58236 | 0.57553 | 0.57355 | 0.58575 | 0.59023 | 0.50667 |  0.57766 0.73472 0.74219 0.67391 0.69667
0.2 | 0.58235 | 0.57619 | 0.57918 | 0.58307 | 0.585 | 0.5036 0.57887 0.63586 0.71668 0.68402 0.67074
1 0.3 | 058075 | 0.57551 | 0.57974 | 0.57988 | 0.58327 | 0.50212 |  0.58127 0.71306 0.69299 0.66321 0.66198
0.4 | 0.58069 | 0.57333 | 0.57676 | 0.57954 | 0.57812 | 0.50073 | ~ 0.57857 0.68368 0.70034 0.67011 0.64472
: 0.5 | 057514 | 0.5699 | 0.57148 | 0.57077 | 0.57059 | 0.5142 0.57017 0.70742 0.74115 0.73242 0.62002
Kapferer-Tailor-Shop
0.1 | 057183 | 0.55661 | 0.55885 | 0.58069 | 0.58219 | 0.55825 | ~ 0.56904 0.60582 0572 0.55723 0.6926
02 | 057814 | 0.56151 | 0.56307 | 0.57758 | 0.58472 | 0.55377 |  0.56828 0.55297 0.57243 0.59319 0.6762
2 0.3 | 058139 | 0.56045 | 0.56453 | 0.57695 | 0.58613 | 0.55621 |  0.57678 0.57583 0.63517 0.62229 0.66291
04 | 05733 | 0.56157 | 0.57201 | 0.57684 | 0.58162 | 0.54171 0.5714 0.5935 0.63969 0.61765 0.63683
0.5 | 0.56818 | 0.56062 | 0.56647 | 0.569 | 0.5724 | 0.52849 |  0.56789 0.68637 0.67203 0.68307 0.61681
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MADM — MUL, and HOPLP — MU L exhibit better performance when the Ratio variable
is increased. HOPLP — MUL algorithm performs better than MV ERSE — EMB for all

layers of all datasets for Ratio between 0.1&0.4.

The Balanced Accuracy score of the proposed HOPLP — MUL algorithm is compared
to that of baseline approaches in Tables 4.9 and 4.10. HOPLP — MUL is the optimal
weighted link prediction algorithm across all three datasets and all layers. Comparing
HOPLP — MUL approach to NSILR — MUL and MADM — MUL, it is observed that this
algorithm outperforms them for all Ratio values between 0.1&0.4 in all layers except
layer-1 of Vickers-Chan-7thGraders, layer-1,3 of Kapferer-Tailor-Shop, and layer-1,2 of
CKM-Physicians-Innovation. As a result, it is observed that the method generates more
false negatives than existing link prediction algorithms optimised for multiplex networks
(for 0.5 probability threshold). Also it can be concluded that in cases where average
shortest path length is greater than 2.5 HOPLP — MUL algorithm’s performance is worse
than MV ERSE — EMB but overall complexity is much better. These tables only show
networks in which the number of layers is less than five due to space constraints. These
tables show that even after transforming the calculated likelihoods from the summarized
weighted graph into the probability for edges on specific layers of the multiplex network,

the proposed algorithm performs better than the classical link prediction algorithms.

4.4 Concluding Remarks

This chapter describes the HOPLP — MUL technique for link prediction in multiplex
networks based on the relevance of higher-order pathways and layer fusion.
HOPLP — MUL method sought to anticipate linkages by including more information
about nodes (considerably larger zones of influence) and applying appropriate damping
and layer fusion procedures. It uses an iterative approach to calculate link similarities
over higher-order paths of the summarized graph. Even though longer paths are taken

into account, we also account for more considerable resistance to information flow on
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such paths by using an adequate penalization approach that dampens the information
flow from longer paths. The density-based proposed parameters and the modified initial
significance play an essential role in the HOPLP — MUL method. Using a layer-specific
decompression constant, the link likelihoods on the summarized single-layer graph are
utilized to forecast links on various layers of multiplex networks. This decompression
constant is estimated using the difference in total densities across layers. The findings
reveal that localized neighborhood-based algorithms have a relatively limited picture of
the routes connecting nodes, resulting in reduced accuracy. This fact has been capitalized

on in this chapter.



