Chapter 3

ELP: Link Prediction in Social
Networks based on Ego Network

Perspective

This thesis presents four quasi-local similarity-based link prediction methods, three of
which apply to multiplex networks, and one applies to simple networks. The inspiration
for the method used for link prediction on simple networks comes from the fact that local
similarity-based methods use very constrained information regarding node
neighborhoods and edge relevance. Hence if edge relevance can be estimated using
influences from a larger neighborhood of nodes, it can provide a pathway into extending
local similarity-based methods in their corresponding quasi-local domains. In this
chapter !, ELP (Ego-based Link Prediction) is presented. Of the existing link prediction
methods, many use topological network properties, while others use algebraic methods,
statistical models, node embeddings and, community information. Although some
path-based approaches can be said to deal with some nodes’ commutative effect at some

point, they are not designed to infer the total community effect of all local nodes on a
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specific link depending on the node proximity. The proposed ELP approach utilizes Ego
regions to calculate edge relevance and uses this information to extend some traditional

local similarity-based approaches.

3.1 Introduction

Interaction dynamics is a valuable source of information in social network analysis. For
example, the type of relationship, such as best friends, family, close friends, extended
family members, commercial friendships, etc., can be identified based on interaction
frequency and communication distance [32]. Some studies utilized interaction dynamics
like the amount of time spent in interaction [135] and frequency pattern [136, 137] to
predict future links. Lionel et al.[138] further explore the interaction dynamics in a
phone call dataset by considering temporal information like timestamp, duration, etc., to
predict likely connected pairs. In Toprak et al.[139], authors propose using ego network
layers to improve the performance of local similarity-based link prediction algorithms.
In Rezaeipanah et al.[140], authors have proposed ego-based features for
classification-based link prediction tasks on multiplex networks. Other studies into the
behavior of ego networks have also been conducted, such as ones by [141], where
authors study the weightage of each ego circle of corresponding nodes. Due to
interaction dynamics, ego-centered social networks is utilized to reveal target links in
this work. The ego network corresponding to a node comprises a set containing the node
itself and its direct and indirect neighbors. A pair ranking approach combined with ego
strength is utilized to predict missing links. The highly-ranked nodes (same ego circle
nodes) corresponding to a central node are more prone to interact with each other than
low-ranked nodes (different ego circle nodes). Each ego network and its levels
correspond to how far the influence of a node spreads from its central position. These
levels help us quantify the influence of a node over edges in its immediate neighborhood.
If node influences of all nodes over all edges are combined, an improved measure of

edge relevance in the entire network can be created. This cumulative edge relevance



Chapter 3. ELP 39

using ego regions is calculated for existing edges only. To predict unseen links, feature
sets like common neighbors are utilized to predict missing links using the edge strengths
of surrounding edges. Different feature sets are used to quantify the region of influence
between nodes which is most relevant for link prediction. Different paradigms exist for
predicting node influence spread away from central nodes such as resource allocation
[18], three degree-of-influence [142] as well as cumulative influence in triangular
clusters [90]. Since the proposed method aims to predict links using cumulative ego edge
strengths, it becomes important to determine which of these edges is most relevant for

the link prediction problem.

The ELP proposal attempts to solve the link prediction problem using a new perspective,
believing that the commutative effect of Ego regions of nodes on specific edges can
provide a better estimation of the strength of weak edges. Other edge ranking-based
approaches ignore the cumulative effect of nodes on ranking edges that are not directly
connected to them (clustering-based approaches such as CCLP[42], NLC[25]), hence
overlooking the effect some weak edges may have on the overall process of link creation
and prediction. This approach can be considered a global similarity-based approach but
forgoes the costly matrix operations, which are commonly associated with global

similarity and path-based approaches.

3.1.1 Measures of Tie Strength in Social Networks

Granovetter et al.[143] state that the strength of a tie in social networks is probably a
linear combination of four factors emotional intensity, mutual confiding (intimacy), time,
and reciprocal services, which characterize the tie. Later, researchers investigated other
factors like social distance, emotional support, and structural features. These factors are
not equally important, but there is no agreement on their relative importance. Social
relationships can be categorized into two classes: weak and strong ties. Strong ties
represent more critical relationships, while weak ties are acquaintances. Generally, weak

ties are more numerous than strong ties besides their lower strength. Therefore, the
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cumulative strength of weak ties calculated over the whole network could exceed the

directly visible strong ties, and the impact could be substantial.

Several studies [144-146] have been presented in the literature to measure the tie
strength. In Gilbert and Karahalios[144], the authors have provided a model to predict
relationships in the classification of strong and weak ties. Eric Gilbert[145] has studied
contrasting important relationship factors between different social networks, i.e.,
Facebook and Twitter. In Arnaboldi et al.[146], the authors have proposed a reduced
feature set for tie strength prediction and have shown that the recency of interaction is a
much better factor in classifying tie strength than the cumulative closeness of
individuals. A study presenting the contrast between time and depth of relationships was
given by Marsden et al. [147]. Gilbert and Karahalios [144] work focus on a set of
attributes designed by considering all of the seven factors discussed above and presents a
study on the Facebook dataset. These studies suggest that some measurable indicators

can compute a tie’s strength, like frequency of interaction.

3.1.2 Ego Network Model
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FIGURE 3.1: Ego network structure

To analyze the micro-level topological features of social networks, some more granular

types of subnetworks are considered by researchers. These subnetworks are known as ego
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networks. The ego networks are formed corresponding to a node (ego) and all the nodes
with whom the ego has a connection (alters). The alter nodes are arranged in a series of
inclusive groups (circles) in an ego network based on their tie strength. Figuratively, an
ego network corresponding to an ego node is depicted in Figure 3.1. Any arbitrary node
(Ego) can be envisaged as central node of concentric circles and has relationships with
circle nodes (Alters). Each Ego circle has a circle size along with tie strength. The initial
circle (1) is known as the support group, which have alters of strong tie strength with ego
node. Informally, the support group nodes are known as best friends and are contacted by
the ego in case of financial breakdown, emotional distress, mental stress, etc. The next
circle (2) is known as the sympathy group, and it contains alters who can be considered
close friends. These alters usually contact the ego at least once a month. The last circle (3)
is known as the affinity group, and contains alters representing casual friends or extended

family members.

The literature states that the ego networks are spread out in levels [148], and different
levels of ego network of a node A are considered as Level-1.0(A), Level-1.5(A),
Level-2.0(A), Level-2.5(A) and Level-3.0(A) as shown in Figure 3.2. Level-1.0(A) are
the edges connecting A with its direct neighbors (A-B, A-C, A-D) while Level-1.5(A)
are edges between these direct neighbors (C-D). Level-2.0(A) are edges connecting
direct neighbors with their indirect counterparts (B-G, C-E, C-F) while Level-2.5(A) are
those between indirect neighbors (E-F). All the edges at a distance of 3 hops from A
which do not belong to Level-2.5(A) are considered as the last circle Level-3.0(A) (E-H).
Only the region of 3 hops from the node A is considered following the principle of three
degrees of influence [142]. Within this region the power law is used to quantize the
influence of each particular level of ego network such that edges belonging to
Level-1.0(A), Level-1.5(A), Level-2.0(A), Level-2.5(A) and Level-3.0(A) each have
influence equal to ot o, o, al,a respectively. In this work o¢ = 2 is used. The formal

definition of these levels are as follows.

Definition 3.1.1. (Level-1.0 ego network). The Level-1.0 ego network w!0(x)

corresponding to an ego x contains a subnetwork g(x,Vy,Ey) such that if Iy € V then
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FIGURE 3.2: Ego network structure of node A (Lev.1 is Level-1(A) and so on and so
forth) demonstrating the influence node A exerts on edges 3 hop distances away from it.

y € Vi iff 3(x,y) € E, and V(u,v) € E satisfies following conditions:

2. veV,

Definition 3.1.2. (Level-1.5 ego network). The Level-1.5 ego network w!?(x)
corresponding to an ego x contains a subnetwork g(x,Vy,Ey) such that if Jy € V then

y € Vyiff 3(x,y) € E, and V(u,v) € E, satisfies following conditions:

. (u=x)V(uevy)
2. veV,

Definition 3.1.3. (Level-2.0 ego network). The Level-2.0 ego network w?0(x)
corresponding to an ego x contains a subnetwork g(x,Vy,Ey) such that if 3y € V then

y € V,iff 3(x,y) € E, and satisfies following conditions:

1. V(u,v) €Exiff ((u=x)V(ueVy))AN(veEV)

2. Vi = Uwey, (Vi,Vy) and Ey = Uyyey, (Ex, Ey ), where g(v, V., E, ) is w!O(v).
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Definition 3.1.4. (Level-2.5 ego network). The Level-2.5 ego network w??(x)
corresponding to an ego x contains a subnetwork g(x,Vy,Ey) such that if Jy € V then

y € V, iff 3(x,y) € E, and satisfies following conditions:

1. Y(u,v) €Exiff (u=x)V(uecVy))A(veV
2. Vo= Uypey, (Ve, Vo) and Ey = Uyyev, (Ex, E,), where g(v,V,, E,) is w5 (v).

Definition 3.1.5. (Level-3.0 ego network). The Level-3.0 ego network w30(x)
corresponding to an ego x contains a subnetwork g(x,Vy,Ey) such that if Iy € V then

y € Vyiff 3(x,y) € E, and satisfies following conditions:

1. Y(u,v) €Exiff (u=x)V(ueVy))A(veV

2. Vi = Uwey, (Vi, V) and Eyx = Uy,ey, (Ex, E, ), where g(v,V,,, E, ) is w29(v).

3.2 Proposed work

In this section the proposed method is discussed, which adopts the ego-centric framework
by considering interaction dynamics. The ELP algorithm can be divided into three steps.
In the first step, the ego strength of each existing link is estimated. Secondly, feature
sets are defined for non-existing links based on different topological features. Finally, the

algorithm computes the likelihood score of target links.

3.2.1 Ego Strength Estimation of Existing Links

For evaluating the strength of a tie, the pace (interaction frequency) and length of
communications (ego distance) are utilized. Some studies [142, 149] suggest that an
individual influence is limited to its local region based on small world phenomena. With

these studies, the proposed method incorporates the interaction dynamics within the
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three-hop area [142] on ego networks, i.e., length of communications is considered
within level 3.0 ego network. Moreover, the pace of interaction is estimated using ego

strength y(u,v) of an existing link (u,v) and defined as follows.

Definition 3.2.1. (Ego strength). If G(V,E) is a network graph, then the ego strength
y(u,v) of an existing link (u,v) is defined as the average number of existence of an edge
(u,v) in local ego networks i € {1.0,1.5,2.0,2.5,3.0} of an ego w and computed as

follows.

I//(M,V) = Z Z Tlfv(”,") (3.1)

where,

m’;(u,V) — (3.2)
0 otherwise

The strength of ties in concentric circles of the ego are different, as shown in Fig. 3.1,
due to the frequency of interaction between the ego and its alters. The inner-circle ties
corresponding to an ego have more strength than the outer circle ties. To incorporate this
behavior, ELP utilizes a ranking strategy that considers higher ranking for inner circles,
i.e., R" > R/ for i < j. Both of these strength defining strategies can be used depending
on the situation. One possible example is in case of high relevance nodes large amount of
information can be shared to larger regions such that Eq. 3.2 can be used, otherwise use
Eq. 3.3. Ego strength of an edge can also be viewed as the sum of influence of all nodes
at a 3-hop distance from the nodes creating the edge. Therefore, Eq. 3.2 is redefined as

follows.

. Ri . , i
Ny, (u,v) = ¥ ) € vin) (3.3)

0 otherwise
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FIGURE 3.3: Example of different regions of feature selection for nodes X&Y (orange -
CAR, red - CN, blue - CC, green - PA, black - Ego-2.0).

3.2.2 Feature Selection

Now, the proposed algorithm identifies the feature set y(x,y) for each non-existing edge
(x,y) based on topological features. These features are explained with example in Fig.
3.3. Here CN(X,Y) = {1,2,3,4}, CC(X,Y) = {4,13,14}, CAR(X,Y) = {1,2}, PA(X,Y)
=CN(X,Y)U{5,6,7,8}, and Ego —2.0(X,Y) = PA(X,Y)U{9,10,11,12}. Hence, the
large node features are PA(X,Y) = {1,2,3,4,5,6,7,8}, and Ego — 2.0(X,Y) =
{1,2,3,4,5,6,7,8,9,10,11,12,13,14}. There are different topological features which

are utilized, defined as follows.

1. Common Neighbors (CN). In real world, nodes are highly clustered locally with
small world phenomena, i.e., nodes with more common neighbors tend to be
connected [16]. The common neighbors feature set Yoy (ny,n;) for a non-existing
pair (ny,ny) is defined as the set of nodes that is connected to both from n; and to
n.

Yen(n1,m) < {nln € {N(n)NN(np)}} (3.4)

where N(n;) and N(ny) denotes the neighbors of node n; and n; respectively.
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2. Preferential Attachment (PA). Barabasi et al. [90] considered that nodes with
overall more connections, more likely to receive new connections. Therefore, the
preferential attachment feature set ypa(n,ny) for a non-existing pair (ny,ny) is

defined as the set of nodes that is connected to anyone, from n; or to n;.
YPA(nl,nz) — {n|n€ {N(l’ll)UN(nz)}} (35)

3. Clustering Coefficient (CC). The clustering coefficient is the measure of the
degree of those nodes which tend to form the cluster together [42]. Therefore, The
clustering coefficient feature set ycc(nj,ny) for a non-existing pair (ny,np) is

defined as the set of neighbor nodes that tend to form triangles.

Yec(ni,n2) < {nn € Ay} (3.6)

where A, denotes set of nodes which forms triangles passing through node m,m &

{N(I’ll) ﬂN(nz)}.

4. CAR. Cannistraci et al [20] stated that nodes which belong to the same local
community are more likely to have a connection. Therefore, CAR feature set

Year(n1,nz) for a non-existing pair (n1,n;) is defined as follows.
Year(ni,ma) {n\n € {¥n' € {N(m) N"N(m)},N(n) NN (ny) mN<n’)}} 3.7)

5. Ego y?

0, This Ego can be said to encompass a significant area away from the
central node such that all 2 hop nodes can be said to be influenced by the central
node. This feature can be viewed as a combination of PA feature set with all nodes
which fall after 2 hops from nodes X&Y. It can also be viewed as a union set of

nodes falling in Level-2.0 ego regions of nodes X&Y (Level —2.0(X) U Level —

2.0(Y)). Hence, the Ego y?? feature set YzGo_2.0(n1,n2) for a non-existing pair
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(x,y) is defined as follows.

YeGo—2.0(n1,n2) <= {njn € {N(n)UN(na) UN(N(n1)) UN(N(n2))}  (3.8)

3.2.3 Computation of Likelihood Score of Non-existing Links

Finally, ELP computes the likelihood score Sy (x,y) of each non-existing link (x,y) based
on selected feature set y(x,y) (feature sets and their formulations can be selected from
Section 3.2.2) and ego strength of existing links. For calculating this, we do a summation
over all nodes of y(x,y) set (can be selected from CN, CC, CAR, PA, Ego-2.0) and all
these nodes are used to calculate a fraction representing the relevance of existing edges
between the intermediate node and nodes between which link likelihood has to be
calculated (x&y). The denominator of this fraction is the sum of ego strengths of all
edges incident on this node and the numerator represents ego strengths of the incident
edges from x&y. The ego strength can be calculated using Eq. 3.1. The likelihood score

Sr(x,y) of a non-existing link (x,y) is computed as follows.

v(z,x) + v(z,y)
z€y(xy) ZaEN(z) V(z,a)

Si(x,y) = (3.9)

3.3 ELP Algorithm

Algorithm 1 takes a social network graph as input and estimates the likelihood of target
links and returns those computed likelihoods as output. The for loop in lines 1-2 computes
the likelihood of all existing links using Equation 3.1. The for loop in lines 3-5 estimates
the likelihood value of target links using Equation 3.9 based on selected feature set. It
has been stated in Stolz and Schlereth[141] that there three types of revealed preferences
which can be used as predictors of edge strength - similarity of user attributes, interaction

among peers and the overall network structure. The algorithm ELP can also be seen
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to consists of three such comparable parts - for predicting cumulative strength of existing
edges the whole network structure is taken into account, each edge has a cumulative effect
of multiple interactions of node influences and the final link prediction is the calculation

of similarity for non existing edges.

Algorithm 1: ELP: Ego-centric Link Prediction Algorithm
Input: Social graph: G(V,E)
Output: Likelihood score of non-existing links: S
for each existing link (u,v) € E do
L v (u,v) < Compute ego strength of edge (u,v) using Equation 3.1;

for each non-existing link (x,y) € U \ E do
¥(x,y) < Estimate the feature of a pair of nodes (x,y);
S1(x,y) <= Compute likelihood score of (x,y) using Equation 3.9;

Return S;;

FIGURE 3.4: Example Network for demonstrating the working of ELP algorithm for link
prediction.

3.3.1 An Illustrative Example

To explain the working of the proposed algorithm ELP, an example graph is used as shown
in Figure 3.4. The given example graph has 9 nodes and the lines show the connection

between them. The proposed algorithm works in three phases given as follows.

* Ego Strength Estimation: In this phase, ELP computes the ego strength y/(u,v)
of each existing edge (u,v) using Eq. 3.1. For example, ego strength of (B,C)
can be calculated as w(B,C) = ¥, ¥,.cv 1%,(B,C), where i € {1.0,1.5,2.0,2.5,3.0}.
The edge (B,C) is existed in ego networks of {B,C,A,D, E} under level 3.0 of ego
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network, so ¥(B,C) = 5. Similarly, the ego strength of other existing edges can be

estimated as shown in Figure 3.5.

FIGURE 3.5: Ego Strength of Example Network.

* Feature Selection: Now, the algorithm computes the feature set y(x,y) for each
non-existing pair (x,y) using different topological features as shown in Table 3.1.
For example, the common neighbors (CN) feature set for non-existing edge (A, B) is
Y(A,B) = {C} from Eq. 3.4 and PA feature set can be computed as y(A,B) = {C,D}
by Eq. 3.5. Similarly, other feature sets CC, CAR, and Ego y? can be computed
using Eq. 3.6,3.7 and 3.8 respectively.

* Likelihood Score Computation: In this phase, ELP estimates likelihood score for
each non-existing pair (x,y) based on feature set and ego strength using Eq. 3.9 as
shown in Table 3.2. For example, the likelihood score of (A,B) can be computed
as S.(A,B)=Y.cyap) %:(12 +5)/(12+ 12+ 5) = 0.5862068. After
that, there is need to normalize the likelihood score of each non-existing link by
maximum of computed likelihood score. Therefore, the normalize

SL(A,B) = 0.119847 and same is shown in Table 3.2 for all non-existing links

based on different feature sets.

* Predicting Missing Links: Finally the algorithm ELP predicts missing links
based on likelihood score. The standard process for converting this score into
predicted label is setting a threshold probability which defines the margin of
separation between prediction of edges and non edges. Usually this probability
margin is kept at 0.5. The predicted labels are then matched with actual labels of

edges to check for accuracy of the proposed approach. Some performance metrics



Chapter 3. ELP

50

like AUC and AUPR also use the predicted probabilities directly to create a curve

with varying thresholds on different axes (Precision/Recall and TPR/FPR) and

then take area of this curve as a measure of performance.

TABLE 3.1: Feature Set Selection

Non Existing
Edges

Feature Sets

CN

PA

CcC

CAR

Ego l[/2'0

A-B
A-E
A-F
A-G
A-H

A-1

B-H
B-1

C-E
C-F

C-G

C-H

C-1

D-F

D-G

E-G
E-H
E-I
F-H
H-1

os
)

D’
C.DF
T,°G,°C, D, B’

TH,C,D,F
'G’.°C’,’D’
'G’,°C’,’D’.’F

AR, C
C’,D,F
TG C

O, H, R

G
'G’LCLF

AR, °BLD
AT, °G’, ’B’, D',
B

A, T, H, °BY, D',
B

AL°G,BL D’
A°G, B D, F
AT, G, CL B
AL T, CH, CCL R,
B

ARG,
ALGLCLFE
T,H, D, F
'G’.D,F
'G.D,F

TG, B’

G

ALCL D’
ALCL D’

ALCL D’

ALCLD

TG, F
TG F

TG F
TG F

D
Tk

'E’,’C,D’
T,’G’,’B’,’C’,’D’,’F
'T,’G’,’H’, ’B’, ’C’, ’D’,
B

'r,’H’, ’B’, ’C’, ’D’, ’F’,
B

T,’G’,’B’,’C’, ’D’, 'F,
B

'G’,’H’,’B’,’C’,’D’, 'F,
B

AR, CLF
A,T,°GLCL DR
A, T, G, H, °CL Dy,
B

AT, CH, CCL D R,
B

AT,°GLCL DR
'A,°GLH, CL, D R,
B

AT, G, B DR
A, T, G, H, B, Dy,

7A’, ’I’, ,H’, ,B’, ’D’, ,F,,

AT, G, B, D, R,
B

'A,’G’,’H’, B, D’ CF,
B

AT, G, H, B, U C,
B

AT, H, B, CL R,
B

AT, °GL B, CL R,
B

'A,’G,’H, B, CL P,
B

A,T,CH,CL DR
A,T,°GLCL DR
'A,°GL,H,CL DR
T,°G’,’E’,’D’

"G, ’E’,CF
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TABLE 3.2: Likelihood Score Computation

Non Likelihood Score

Existing

Edges CN PA CC CAR Ego y20
A-B 0.119847  0.172097 0.455022  0.164118  0.175515
A-E 0.114001  0.221181  0.445778  0.172534  0.225574
A-F 0 0.365226 0 0 0.293032
A-G 0 0.435459 0 0 0.344798
A-H 0 0.181597 0 0 0.096068
A-1 0 0.268316 0 0 0.094888
B-D 0.084892  0.281266  0.480667  0.280368  0.286852
B-E 0 0.133975 0 0 0.093347
B-F 0 0.271278 0 0 0.170978
B-G 0 0.341524 0 0 0.338619
B-H 0 0.074904 0 0 0.043289
B-I 0 0.180623 0 0 0.095074
C-E 0.114001  0.786209  0.635289  0.356832  0.801825
C-F 0 0.930254 0 0 0.869283
C-G 0 0.928829 0 0 0.927415
C-H 0 0.668725 0 0 0.672318
C-1 0 0.761686 0 0 0.677504
D-F 0.214226  0.54006 0 0 0.550787
D-G 0 0.694935 0 0 0.62929
D-H 0 0.363161 0 0 0.264686
D-I 0 0456134 0 0 0.385746
E-G 0.109251 0.474963  0.550356  0.280368  0.484397
E-H 0 0.14993 0 0 0.109619
E-1 0.123501  0.236162  0.517244  0.219589  0.240852
F-H 0.124841 0.373148  0.692044  0.38232 0.38056
H-1 0.099872  0.171123  0.452178  0.223797  0.174522

3.3.2 Complexity Analysis

Based on different topological features, the proposed algorithm presents different
variants: ELP-CN, ELP-PA, ELP-CC, ELP-CAR, and ELP—I//Z'O. Assuming the average
degree of a node is Dy, the feature creation process takes worst time complexities of
7 (wag), 7 (ngg), 7 (wag), 7 (wag) and O (D;‘vg) respectively for CN, PA, CC, CAR
and w2 feature sets (|FC|). The calculate node set is represented by F'S. In Algorithm
1, the first steps in lines 1-2 is the initial strength calculation part for existing edges. For
this, all nodes and their respective Ego regions would have to be taken into account to

correctly estimate the cumulative strength of edges. The total complexity of these steps

would be O(|V|*D2,,) for the whole graph. Here, |V| is the total number of nodes and

avg
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TABLE 3.3: Running Time Analysis (in seconds) for different Ratio values representing
testing to total edges percentage in five datasets.

| Dataset | Ratio| CN | CAR | PA | CCLP | ELP

0.1 0.038 | 0.049 | 0.026 | 0.056 | 0.045
0.2 | 0.037 | 0.045 | 0.026 | 0.052 | 0.043
Karate 0.3 | 0.036 | 0.043 | 0.027 | 0.049 | 0.041
04 | 0.036 | 0.042 | 0.026 | 0.045 | 0.036
0.5 | 0.036 | 0.041 | 0.026 | 0.044 | 0.035

0.1 2404 | 4221 | 0.598 | 5.051 | 6.342
0.2 | 2356 | 3972 | 0.566 | 4.350 | 5.211
Jazz 0.3 1.919 | 3.232 | 0.567 | 3.700 | 4.444
04 1.766 | 2.758 | 0.582 | 3.110 | 3.616
0.5 1.564 | 2.373 | 0.618 | 2.587 | 2.709

0.1 | 3361 | 5251 | 1.258 | 5.457 | 6.903
0.2 | 3217 | 4.467 | 1.257 | 4.965 | 5.676
Celegansneural | 0.3 2939 | 3.995 | 1.244 | 4479 | 4.643
04 | 2778 | 3.557 | 1.243 | 3.839 | 3.787
0.5 | 2607 | 3.117 | 1.241 | 3.382 | 3.099

0.1 1.821 | 2.979 | 0.809 | 3.464 | 4.898
0.2 1.741 | 2.847 | 0.777 | 3.040 | 4.172
Airlines 0.3 1.668 | 2.415 | 0.768 | 2.750 | 3.371
04 1.565 | 2.139 | 0.763 | 2.302 | 2.697
0.5 1.441 | 2.063 | 0.792 | 2.062 | 2.143

0.1 | 32351 | 40.045 | 15.497 | 41.275 | 56.216
0.2 | 30.855 | 36.967 | 15.463 | 38.237 | 48.018
SmaGri 0.3 |29.411 | 34361 | 15.376 | 35.323 | 38.863
0.4 | 28.064 | 31.984 | 15.331 | 32.661 | 32.499
0.5 |26.775 | 29.818 | 15.338 | 30.172 | 27.745

wag represents visit into w3 region around the node. The next phase of the algorithm is
predicting the likelihood score of non existent edges. For each edges, the complexity can
be divided into two major parts, one is generating features (line 4) and second is strength
estimation (line 5). So the overall complexity for calculation of each likelihood score
would be O(|FC|+ |FS| * Dygy,), where the first term |FC]| is for feature calculation and
the second term |F'S| * Dy, is for calculation strength over those features. Essentially, it
is observed that time taken for calculation of likelihood is directly dependent on number
of nodes in feature set. Hence the overall complexity of the algorithm would be
o(V| *wag) +|E|* (|JFC| + |FS| * Dgyg)). In this formulation if we substitute for the
best feature set, i.e., CN, the final result is O((|V|*D3J,,) + |E| * (ngg)). Here

avg

|FC| < D?,, and |FS| < Dgayg. Since CN,PA,CCLP (representing clustering coefficient

avg
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CC based method) and CAR are also link prediction approaches on their own, a
quantitative comparison of running time of these link prediction approaches with the
proposed ELP (EGO — CN variation used for representation in these running time
calculation context) algorithm is presented in Table 3.3. The experiment have been run
on five different Ratio values between 0.1&0.5 which are ration of testing to total edges
of dataset. The running times for ELP algorithm can been observed to be comparable to

other standard link prediction algorithms.

3.4 Performance Analysis

In this section ELP is the final proposed algorithm. The relationship between the
algorithm’s performance based on different feature sets (EGO — CN, EGO — PA,
EGO — CAR, EGO — CC, EGO —2.0) is also investigated. Three metrics are used in
these experiments: Accuracy Score, AUPR and AUC. Five different ratios (0.1, 0.2, 0.3,

0.4, 0.5) of testing set edges to total edges are considered.

3.4.1 Accuracy Score On Features

As is evident from Fig. 3.6 in all datasets and all algorithms, the EGO — 2.0 based
algorithm performs worst. This shows that the feature set generated using EGO — 2.0 is
spread too far from the edge influence to provide a reliable estimation of its effect.
EGO — CC and EGO — CAR are usually in the middle-of-the-pack based on
performance, while EGO — CN 1is best in most cases and trades places with EGO — PA in
few others. They also present the most negligible variation based on different datasets’

ratios, making them a reasonably good choice for the Accuracy Score metric.
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FIGURE 3.7: AUPR comparison of ELP variations for different feature sets on six
datasets.
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3.4.2 AUPR on Features

As is evident from Fig. 3.7 in all datasets and all algorithms, EGO — CN performs best
in all cases except the Karate dataset, which is comparatively a tiny dataset. For most
cases in the EGO — CAR algorithm, the worst performance is seen, while EGO — PA,
EGO —CC, and EGO — 2.0 can be considered to be middle-of-the-pack algorithms. A
point to be noted here is that in 5 out of 6 datasets, EGO — CN’s performance is far above

other algorithms for all ratios, making ELP a clear choice for the AUPR metric.

3.4.3 Comparing ELP performance variation for AUC on Features

As is evident from Fig. 3.8 in all datasets and all algorithms, EGO — CN performs best
for high-density datasets while EGO — PA performs better for mid-density ones. The
worst performance is observed in EGO — 2.0, while EGO — CC and EGO — CAR can
be considered the middle-of-the-pack algorithms. It is noted here that EGO — PA shows
much more stable performance degradation with an increasing ratio of testing set edges.
The other algorithms can be seen to have a sharp dip as the increase of ratio. Henceforth,
EGO —CN is the algorithm compared with state-of-art algorithms and will be referred to
as ELP.

3.44 Comparing ELP performance with baseline algorithms for

Accuracy Score

The nature of social networks considered in these experiments is inherently sparse. This is
because compared to the total number of possible links for a sizable-sized graph, n*n for a
set of n nodes, the actual number of interactions would be quite a few. The accuracy score
is fundamentally a measure of how exactly the set of predicted and actual labels match.

In Table 3.4, two best values from each Ratio row have been highlighted. In this table,
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it is observed that the proposed algorithm ELP performs the best on all datasets except
for the Jazz dataset. Even in Jazz, ELP is the second-best performing algorithm, with
CAR being the best. This can be attributed to the distribution of a higher number of local
communities in the Jazz dataset on the occurrence on which CAR is based. This is very
impressive, especially considering how strict the process of calculation of the Accuracy
score is. It can be concluded that the algorithm works well with sparse graphs in terms of

accuracy, at least when the ratio of edges to nodes is less than equal to approximately 10.

3.4.5 Comparing ELP performance with baseline algorithms for

AUPR

In Table 3.5, two best values from each Ratio row have been highlighted. In this table,
it is observed that overall the proposed ELP algorithm can be considered the third-best
in performance out of all the algorithms considered. For the smallest Karate dataset, the
algorithm’s metrics lack behind CAR, PA, and Node2V . It can be observed that Node2v
and PA show a gradual increase in performance, while CAR’s metrics can be considered
analogous. In the Jazz dataset, the algorithm is the third-best algorithm, just behind RA
and CCLP. However, even among these, the numbers are very close and comparable.
ELP algorithm is the fourth-best performing algorithm in the Airlines dataset, behind RA,
CCLP, and PA. In Celegansneural, the ELP algorithm is the best performing out of all
the state-of-art algorithms considered for comparison. In the Political Blogs dataset, it
is observed that the algorithm’s worst ranking is behind CN, RA, CCLP, and CLP — ID.
The algorithm performs better in the SmaGri dataset than most, just behind CAR, and is
comprehensively outperformed by CCLP. The algorithm does not perform well in the
GrQc dataset and is the sixth-best algorithm out of all state-of-art algorithms. When
considering the overall pattern, it can be seen that for the AUPR metric, the algorithm can
be worse than only RA and CCLP in most cases. Regarding AUPR, the overall relative
performance of the ELP algorithm decreases as the ratio of edges to nodes increases in a

dataset, the Karate dataset being an exception to this pattern.
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TABLE 3.5: Comparison of the proposed algorithm ELP with the state-of-the-art algorithms in terms of AUPR

Dataset Ratio  Algorithm
CN RA CAR CCLP IC PA PAGERANK NODE2V CLP-ID ELP
0.1 0.02576 0.0515  0.07502 0.03449 0.01862 0.04751 0.03847 0.07433  0.04461 0.0401
0.2 0.05695 0.08042 0.08128 0.07755 0.03748 0.08678 0.0637 0.10402  0.05773 0.08847
Karate 0.3 0.08015 0.10149 0.08579 0.08721 0.0555  0.12118 0.0907 0.11649  0.09055 0.09949
0.4 0.08758 0.11348 0.37281 0.09712 0.07958 0.142 0.10255 0.12704  0.09641 0.10096
0.5 0.09859 0.12247 0.42255 0.11197 0.0861  0.16942 0.11326 0.12848  0.115 0.12463
0.1 0.33076 0.33473 0.32855 0.33092 0.27146 0.08406 0.10002 0.12925  0.31694 0.2902
0.2 0.43159 0.46065 0.41725 0.45577 0.37989 0.13642 0.181 0.21575  0.42905 0.42394
Jazz 0.3 0.48758 0.51989 0.43009 0.5142 04363 0.17861 0.24408 0.26028  0.47659 0.486
0.4 0.51123 0.53607 0.39263 0.53138 0.45724 0.21254 0.29509 0.29409  0.49734 0.51486
0.5 0.50856 0.54145 0.32334 0.53278 0.45094 0.24085 0.332 031156  0.50356 0.5221
0.1 0.0365 0.0395 0.02884 0.0419 0.01593 0.02422 0.02592 0.01933  0.03281 0.04207
0.2 0.0629  0.0719  0.05165 0.07281 0.02915 0.04538 0.04801 0.03614  0.05965 0.0707
Celegansneural 0.3 0.08032 0.09095 0.07506 0.09741 0.03996 0.06321 0.06881 0.04744  0.07836 0.09375
0.4 0.09589 0.10522 0.07608 0.10762 0.04868 0.07885 0.08506 0.05612  0.08827 0.10532
0.5 0.10177 0.10949 0.08366 0.10964 0.05602 0.09529 0.09809 0.06098  0.09561 0.1118
0.1 0.09233  0.09983 0.06645 0.10954 0.0094 0.2113  0.02814 0.01681  0.09087 0.09081
0.2 0.15564 0.15624 0.08411 0.16736 0.01611 0.28483 0.05408 0.03035  0.13933 0.14499
Aiirlines 0.3 0.16747 0.18645 0.09411 0.1943  0.02348 0.33529 0.07924 0.04603  0.16139 0.17225
0.4 0.17919 0.2005  0.11728 0.21344 0.03194 0.36527 0.10255 0.04503  0.17521 0.18735
0.5 0.17755 0.20292 0.12345 0.21015 0.04215 0.4054  0.11942 0.06162  0.1637  0.19767
0.1 0.07604 0.06348 0.06652 0.07439 0.01666 0.0321  0.01982 0.01442  0.07577 0.05487
0.2 0.12866 0.11184 0.10598 0.13129 0.03019 0.06069 0.03861 0.02595  0.13179 0.09761
Polblogs 0.3 0.16641 0.14945 0.12936 0.17203 0.03997 0.08595 0.05647 0.03519  0.16987 0.13195
0.4 0.19595 0.17468 0.14118 0.19967 0.04803 0.11059 0.07352 0.04068  0.19743 0.15919
0.5 0.21155 0.18832 0.15333 0.21791 0.05494 0.13111 0.08935 0.04494  0.21385 0.1756
0.1 0.02759 0.02749 0.02827 0.03256 0.00344 0.01399 0.01222 0.00447  0.02548 0.02484
0.2 0.045 0.0472  0.05313 0.0524 0.00676 0.02884 0.02248 0.00835  0.04196 0.04215
SmaGri 0.3 0.05597 0.0563  0.07643 0.06441 0.01003 0.03978 0.03156 0.01164  0.05344 0.05648
0.4 0.06185 0.06161 0.08762 0.07142 0.01401 0.04888 0.03904 0.01398  0.05732 0.06168
0.5 0.06034 0.06258 0.0817  0.06798 0.01862 0.05871 0.04393 0.01503  0.05611 0.06393
0.1 0.24113  0.14225 0.26749 0.24026 0.09092 0.01511 0.04081 0.03713  0.23008 0.12941
0.2 0.30737 0.20958 0.36901 0.29863 0.12588 0.02595 0.07191 0.06652  0.28935 0.19491
GrQc 0.3 0.34211 0.2442  0.42756 0.33092 0.14979 0.03188 0.09507 0.08854  0.31203 0.22624
0.4 0.3527  0.25575 0.45468 0.33903 0.16287 0.03537 0.10865 0.10707  0.33028 0.2417
0.5 0.35369 0.25412 0.44581 0.34655 0.1724  0.03749 0.11551 0.11559  0.33249 0.24353
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TABLE 3.7: The Posthoc Friedman Siegel Test (Control method = ELP) corresponding
different metrics

|  Metric | Ratio | p-value
| | | CN RA CAR CCLP jc PA | PAGERANK | NODE2V | CLP-ID

0.1 | 3.70E-05 | 0.073366 | 0.508148 | 0.149804 | 0.002725 | 0.000295 0.009108 0.026506 | 0.001846
0.2 | 0.00016 | 0.128996 | 0.067329 | 0.128996 | 0.002396 | 0.000295 0.014196 0.014196 | 0.001616
ACCURACY | 0.3 | 0.000116 | 0.17308 | 0.009108 | 0.149804 | 0.019517 | 0.00016 0.014196 0.021643 | 0.014196
0.4 | 0.001846 | 0.185686 | 0.010198 | 0.436275 | 0.015807 | 5.20E-05 0.003971 0.005069 | 0.023968
0.5 | 0.015807 | 0.212912 | 0.000938 | 0.559305 | 0.015807 | 5.00E-06 0.001616 0.001616 | 0.079839

0.1 | 0.697092 | 0.350201 | 0.533417 | 0.185686 | 0.010198 | 0.275758 0.061707 0.023968 | 0.815335
0.2 1 0.533417 | 0.87627 | 0.212912 | 0.001846 | 0.161125 0.029273 0.010198 | 0.533417
AUPR 0.3 | 0.533417 | 0.697092 | 0.350201 | 0.391805 | 0.000708 | 0.119471 0.019517 0.003093 | 0.459559
0.4 | 0.96895 | 0.483522 | 0.845687 | 0.227558 | 0.002725 | 0.227558 0.056479 0.00449 | 0.61284
0.5 | 0.533417 | 0.815335 | 0.436275 | 0.755497 | 0.001414 | 0.139101 0.010198 0.001414 | 0.436275

0.1 | 0.051625 | 0.755497 | 1.00E-06 | 0.119471 | 0.001077 | 0.000815 0.04296 0.029273 | 0.073366
0.2 | 0.051625 | 0.697092 | 1.00E-06 | 0.139101 | 0.002396 | 0.015807 0.161125 0.161125 | 0.161125

AUC 0.3 | 0.119471 | 0.87627 | 9.00E-06 | 0.212912 | 0.008123 | 0.119471 0.755497 0.311515 | 0.139101
0.4 | 0.086768 1 6.00E-06 | 0.161125 | 0.003093 | 0.242908 0.697092 0.391805 | 0.161125
0.5 | 0.242908 | 0.61284 | 7.20E-05 | 0.119471 | 0.008123 | 0.815335 0.212912 1 0.413686

3.4.6 Comparing ELP performance with baseline algorithms for

AUC

In Table 3.6, two best values from each Ratio row have been highlighted. In this table, it
is observed that overall the proposed ELP algorithm can be considered the second-best
performing algorithm out of all the algorithms considered. Consistently it is only
outperformed by PA in some cases. For the Karate dataset, the smallest of all datasets,
the ELP algorithm is worse than RA, PA, PageRank, and Node2v. The ELP algorithm is
ranked behind only RA for the Jazz dataset. For the Airlines dataset, the ELP algorithm
gives the second-best numbers only behind PA. In Celeganseural, it performs on par with
RA and is only behind PageRank for some train-to-test ratios. In the Political Blogs
dataset, the ELP algorithm again performs on par with RA and is only outperformed by
PA. In the SmaGri dataset, the algorithm is ranked third only behind PA and PageRank.
In the GrQc dataset, the ELP algorithm is ranked third only behind Node2v and
PageRank. It can be concluded that the overall relative performance of the ELP
algorithm remains mostly consistent for all datasets. The best-performing algorithm may
change, but ELP consistently can be considered the second best-performing algorithm,

the Karate dataset being the only exception to this pattern.
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3.4.7 Statistical Tests

This section compares the different state-of-the-art algorithms with ELP and analyzes
their significant differences. This comparison is made for Accuracy, AUPR, and AUC
metrics. Friedman’s test[150] was applied to highlight significant differences between
other algorithms compared with ELP. The result was hypothesis rejection in all cases.
Friedman Siegel’s Test[151] was applied as a post hoc procedure to estimate each
hypothesis’s degree of rejection. ELP algorithm was considered the control algorithm,
and the degree of freedom and confidence level were 9 and 0.05, respectively. This was
done to get a better measure of the significant difference between the proposed ELP
algorithm and other algorithms. The statistical tests on accuracy metrics (Accuracy,
AUPR, and AUC) demonstrate that the proposed algorithm is significantly different
(<£0.05) from the state-of-the-art algorithms. From Table 3.7, it is observed that the level
of significant differences between the proposed algorithm and other standard algorithms.
In Table 3.7. The combined ratio indicates that the statistical test is performed

simultaneously for different sets of observed links.

3.5 Concluding Remarks

This chapter presents an Ego-based link prediction algorithm (ELP), which uses an
ego-based link strength estimation perspective to predict target links. Classical
algorithms do not consider the cumulative effect of node-based strength propagation on
edges to predict target links, but that is the algorithm’s specialty. The notion of
Ego-based edge strengths is introduced that simulates all nodes’ cumulative effect on all
their Ego region edges. The ELP approach is primarily used to understand the strength
of weak edges, which directly connect two low-priority nodes but are an integral part of
the Ego regions of several nodes. ELP is based on estimating the strength of existing
edges and combines them with different feature sets to predict non-existent links. The

closest comparison to the ELP approach can be found in path-counting algorithms
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dependent on adjacency matrix-based operations, which are computationally very
expensive. ELP performs exceptionally well in the Accuracy metric, a combined
representation of the prediction performance of both existent and non-existent edges. For
other metrics, i.e., AUPR and AUC, it can be observed that ELP’s performance is better
on datasets with an average degree greater than 10. This makes the algorithm more
suitable for link prediction networks with the magnitude of edges much larger than

nodes. These include social networking site-based datasets like Facebook and Twitter.






