
Chapter 2

Preliminaries

This chapter gives a brief introduction to the literature and standard techniques of link

prediction. Also, information about the evaluation of link prediction algorithms is

presented. These evaluation procedures are followed for the proposed works of this

thesis. At last, the background of the experiments conducted in this thesis is presented,

divided into the categories of link prediction in simple and multiplex networks.

2.1 Survey of Elementary Link Prediction Techniques

Different categories of methods have been proposed for link prediction that can be

broadly classified as similarity-based [12], probabilistic and maximum likelihood-based

[14, 15], and dimensionality reduction-based techniques. The similarity-based link

prediction category can further be separated into local similarity-based methods, global

similarity-based methods, and quasi-local similarity-based methods. A brief introduction

to these various categories of link prediction algorithms is presented in the following

sections. This thesis’s proposed research primarily focuses on similarity-based link

prediction.
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2.1.1 Similarity-based Link Prediction

Similarity-based link prediction is computationally the most straightforward kind of link

prediction category, in which similarity scores are calculated for node pairs that have to

be evaluated for the possibility of link existence [33, 34]. These methods can use

information from either the immediate neighborhood of nodes themselves (local

similarity-based) or take the entire graph structure into account (global similarity-based).

New methods containing trade-offs between these separate categories of information

have also recently emerged (quasi-local similarity-based), showing relative

improvements in the overall task of link prediction.

2.1.1.1 Local Similarity-based Link Prediction

Local similarity-based features are calculated using information from immediate

neighbors. Neighbors are the closest ones to a given user. The following are examples of

link prediction methods of this category -

• Common Neighbors (CN) [16]. The size of common neighbours for a given pair

of nodes x and y is determined as the intersection of the two node neighbourhoods

in a particular network or graph. It is calculated as.

S(x,y) = |Γ(x)∩Γ(y)|, (2.1)

where Γ(x)&Γ(y) - neighbors of the node x and y respectively.

• Jaccard Coefficient(JC) [19]. It normalizes the size of common neighbour. It is

calculates as.

S(x,y) =
|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

. (2.2)

• Adamic/Adar Index(AA) [17]. Adamic and Adar presented a metric that uses

shared features to produce a similarity score between two web pages, which is then
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used in link prediction. Mathematically, it is expressed as.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

1
logkz

, (2.3)

where kz is the degree of the node z.

• Preferential Attachment (PA) [16]. According to the Preferential Attachment

metric, new links are more likely to contact higher-degree nodes than lower ones.

The likelihood increment new connection associated with a node x is proportional

to kx, the degree of the node. The following formula is used to estimate the PA

score between two nodes x and y.

S(x,y) = kx.ky. (2.4)

• Resource Allocation (RA) [18]. Resource Allocation index is based on the

hypothetical where we suppose node x sends some resources to y through the

common nodes of both x and y then the similarity between the two vertices is

computed in terms of resources sent from x to y.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

1
kz
. (2.5)

2.1.1.2 Global Similarity-based Link Prediction

Global similarity-based features are usually calculated using information from the whole

graph structure. The following are examples of link prediction methods of this category -

• Shortest Path (SP) [35]. There are several different algorithms that can be used

to determine the shortest path between two vertex pairs in a graph depending on

circumstances [36–38]. Shortest Path is calculated as.

SP(x,y) =−|d(x,y)|, (2.6)
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where the shortest path d(x,y) between the node pair (x,y) is calculated using the

Dijkstra algorithm [36].

• Cos+ (COSP) [39]. Any inner product metric, such as the cosine similarity, can be

used to determine how similar two nodes x and y are to one another. The cosine

similarity time metric is based on L† by calculating similarity of two vectors. It is

calculated by the following formula.

COSP(x,y) =
L†

x,y√
L†

x,xL†
y,y

. (2.7)

• Matrix Forest Index (MFI) [40]. MFI employs the spanning tree principle. It

contains fewer links than the original graph.

MFI = (I +L)−1, (2.8)

where (I+L)(x,y) is the count of spanning rooted forests (x as root) that include both

the nodes x and y. This value is also identical to the co-factor of (I +L)(x,y).

• Average Commute Time (ACT) [41]. To calculate the average commute time, the

random walk method is employed.

n(x,y) = m(x,y)+m(y,x). (2.9)

This above equation can be made simpler using the pseudo-inverse of the Laplacian

matrix L+

n(x,y) = |E|(l+xx + l+yy−2l+xy), (2.10)

where l+xy denotes the (x,y) entry of the matrix L+. Pseudo-inverse of the Laplacian,

L+ can be computed as

L+ = (L− eeT

n
)−1 +

eeT

n
, (2.11)

where e denotes a column vector consisting of 1’s.
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• Katz index (KATZ) [22]. A variation of the shortest route metric is the KATZ

index. In order to punish longer trips, it dumps exponentially for all direct pathways

between x and y. Here, paths<l>
x,y is considered as the set of total l length paths

between x and y, β is a damping factor that controls the path weights and A is the

adjacency matrix.

S(x,y) =
∞

∑
l=1

β
l|paths<l>

x,y |=
∞

∑
l=1

β
l(Al)x,y, (2.12)

2.1.1.3 Quasi-Local Similarity-based Link Prediction

Quasi-local similarity-based features are usually calculated using a calculated trade-off

between local and global information such that both accuracy and efficiency are

maintained up to an acceptable level. The following are examples of link prediction

methods of this category -

• Local Path Index (LPI) [26]. The local paths of lengths 2 and lengths 3 are used to

calculate the LPI metric. It utilizes some additional information from the neighbors

within a length 3 distance from the current node, in contrast to metrics that only use

the information of the nearest neighbors. It is calculated as.

SLP = A2 + εA3, (2.13)

where ε is free parameter. It is obvious that the measurement converges to the

common neighbour when ε = 0. If x and y are not directly connected, (A3)xy is

equated to the total different paths of length 3 between x and y. The index may also

be extended to take on a generalized form.

SLP = A2 + εA3 + ε
2A4 + ...+ ε

(n−2)An, (2.14)
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where n is the maximal order. Computing this index becomes more complicated

with the increasing value of n.

• Path of Length 3 (L3) [27]. The path length is mathematically, calculated by the

following equation.

S(x,y) = ∑
u,v

ax,u.au,v.av,y√
ku.kv

, (2.15)

where ax,u denotes the interaction strength among nodes x and u and ku denotes the

degree of node u. The Eq. 2.15 measures the connectivity among node u and node

v by utilizing the degree-normalized adjacency matrix.

• Clustering Coefficient based Link Prediction (CCLP) [42]. In this method, the

shared neighbors of the seed node pair are taken into account for calculating the

similarity score. To determine the similarity score, the clustering coefficient of

these common neighbors is used. The following formula is used to calculate the

similarity score between two disconnected seed node pairs.

CCLP(a,b) = ∑
c∈Γ(A)∩Γ(B)

C(c), (2.16)

where C(c)= t(c)
kc(kc−1) and kc is the degree of the node c, CN(a,c) is the number of

common neighbors of the nodes a and c, C(c) is the clustering coefficient of the

node c.

• Node and Link Clustering Coefficient (NLC) [25]. The ”Clustering

Coefficient”, a fundamental aspect of a network’s topology, serves as the

foundation for this similarity measure. The clustering coefficients of both nodes

and links are incorporated to compute the similarity score.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

|Γ(x)∩Γ(z)|
kz−1

×C(z)+
|Γ(y)∩Γ(z)|

kz−1
×C(z). (2.17)
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• CAR-based Common Neighbor Index (CAR) [20]. On the premise that the

likelihood of a connection existing between two nodes increases if their shared

neighbours are also members of the same local community, CAR-based indices

have been proposed. Here, LCL(x,y) refers to the number of local community

links which are defined as the links among the common neighbors of seed nodes x

and y. γ(z) is the subset of neighbors of node z that are also common neighbors of

x and y.

S(x,y) =CN(x,y)×LCL(x,y) =CN(x,y)× ∑
z∈Γ(x)∩Γ(y)

|γ(z)|
2

, (2.18)

• Local Naive Bayes-based Common Neighbors (LNBCN) [21]. The LNBCN

technique is based on the Naive Bayes theory and the claims that numerous

different neighbours perform various roles in the network and, as a result,

contribute differently to the score function generated for unobserved node pairings.

Here, C(z) is node clustering coefficient and ρ is the network density.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

[log(
C(z)

1−C(z)
)+ log(

1−ρ

ρ
)], (2.19)

2.1.2 Probabilistic and Maximum Likelihood-based Link Prediction

For any given graph, probabilistic models evaluate a given objective function and

optimize it based on different parameters of the graph [14, 43–45]. A new link’s

probability is estimated using conditional probability, which estimates its presence on the

overall graph-based objective function. A link that enhances the parameters of a graph,

such as overall connectivity, is given more importance.
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2.1.3 Dimensionality Reduction-based Link Prediction

Link prediction techniques based on the frameworks of network embedding and matrix

decomposition come under the subset of dimensionality reduction [46–52]. This is

because, at their core, these techniques transform the whole graph, which contains

several nodes and edges, into fixed-length edge and node vectors which are further

distilled to calculate link likelihoods. Embedding-based techniques extract node vectors

from the original graph such that similar nodes with approximately matching

neighborhoods have small-dimension vector representations very close to each other.

The embedding space for such tasks is much smaller than the original unrefined

representation of graphs such as those in the adjacency matrix form. Another class of

dimensionality reduction techniques is matrix factorization/decomposition-based

techniques.

2.2 Evaluation of Link Prediction Algorithm

Performance

2.2.1 Performance Evaluation

The essential task of any link prediction algorithm is to generate link likelihoods or

probabilities for edges not present in the original graph. In the case of single-layered

graph link prediction, these probabilities are based on the topological properties of the

graph. In contrast, layer-specific link prediction in a multiplex network is based on the

combined information provided by all graph layers. The performance of link prediction

algorithms can be evaluated using different methods. In this thesis, all algorithms are

evaluated by discerning the probabilities of all possible edges and then comparing these

probabilities and corresponding labels with the edges of the test graph. Initially, the

datasets are randomly divided into test and training graphs from the entire set of edges.
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The ratio of the number of edges in the testing graph to the total number of edges is

represented by the Ratio variable. Other strategies, such as sampling an equal number of

non-edges with test edges, also exist to evaluate link prediction algorithms. These

strategies help simplify the overall experiment by limiting the number of predictions

made for a smaller candidate edge set. Another link prediction algorithm evaluation type

involves generating edge probabilities for all possible edges but using only a certain

percentage of the highest probabilities for performance evaluations, i.e., top-k edges

prediction. However, we have not used such algorithm evaluations in this thesis to

exhaustively test our proposals for providing a solution to the unbalanced

classification-based link prediction problem.

2.2.2 Evaluation Metrics

Hasan et al.[53] structured the link prediction issue as a binary classification problem,

allowing for the application of the majority of associated evaluation metrics. A confusion

matrix may be used to illustrate the assessment of a binary classification issue with two

classes [54]. Three measures are used to assess the proposed method ELP: accuracy, area

under the precision-recall curve (AUPR), and area under the curve (AUC).

• Accuracy - Accuracy score is the simplest kind of measure that may be used to

evaluate the effectiveness of a classification system. It is just the sum of all accurate

predictions divided by the whole sample size. The link prediction problem’s valid

predictions may be specified using the link existence probability. If the likelihood

is greater than 0.5 and an actual connection exists in the graph, the classification is

regarded accurate.

• AUPR - For binary classification issues, AUPR is more informative and beneficial

[54, 55]. As a result, it is employed as a forecasting measure. The AUPR values are

determined using the precision-recall curve, in which the x- and y-axes reflect the

recall and precision values, respectively.
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• AUC - The area under the receiver operating characteristics curve (AUROC/AUC)

[54, 55] plots TPR (y-axis) against FPR (x-axis). The AUC value is a single-point

statistical summary with a range of 0–1 and is estimated using the trapezoidal rule.

• F1 - The F1 score employs as a comparative measurement metric for two classifiers

where one classifier was good in precision while the other was good in recall values.

In such cases, the F1 score predicts the better classifier between them by taking the

harmonic means of precision and recall values. A higher value of the F1 score for

an algorithm represents its better performance compared to others and the absolute

values range between 0&1.

F1 =
2∗Precision∗Recall

Precision+Recall
(2.20)

2.3 Link Prediction in Simple Networks

2.3.1 Recent Related Work

Numerous comprehensive studies have been done in order to provide a comprehensive

analysis of the link prediction problem and its associated literature [43, 44, 56–60].

These studies have classified link prediction into several classes like similarity-based

[17, 18], dimensionality reduction-based [61, 62], probabilistic and maximum

likelihood-based [63, 64], learning-based [65], information theory-based [66], etc. The

probabilistic link prediction model optimizes an objective function for a particular

network in order to construct a model made of several parameters. This model does an

excellent job of estimating observed data for the given network. At that point, the

probability of a non-existing connection being present is defined as the value of the

objective function in the presence of such a link. Techniques for dimensionality

reduction fall into two categories: embedding-based and matrix-decomposition-based.

This method of link prediction generates feature sets for relevant edges and trains
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machine learning classifiers on them for classification tasks. While learning-based

strategies also make use of machine learning classifiers, the features in this issue

category correspond to various attributes of edges on various link prediction indices.

Similarity-based link prediction methods are most popular in practice, particularly

structural similarities due to their simplicity and efficiency. These methods estimate the

similarity index for a pair of individuals based on local, quasi-local, and global

topological information.

A different form of solution to the link prediction problem is via graph embedding

techniques [61, 62, 67–69], which can be used in binary classification problems in

combination with machine learning algorithms. Logically linear embedding (LLE) [61]

and Laplacian eigenmaps [67] are some of the matrix-based graph embedding methods

that can be used. However, considering their complicated overall implementation and

greater resource intensiveness, they are not scalable. For addressing the scalability issue

on large graphs, the sparsity of networks can be used as an improvement factor in

targeted algorithms. To deal with the limitations of complete matrix-based embedding

methods, DeepWalk, a local embedding-based method that uses local information of

random walk, was proposed by Perozzi et al.[62]. DeepWalk preserves higher-order

proximity by maximizing the probability of co-occurrence of random walk. The authors

of [68] also use a directed random walk model to embed the nodes using a corpus of 2

hop possibilities. For performance improvement, the authors of this node2vec algorithm

also incorporated the concept of combining both depth-first and breadth-first searches in

possible paths. Random walk-based link prediction methods are also considered

quasi-local link prediction methods, such as ones by Berahmand et al.[70, 71].

The newest subset of link prediction algorithms is community-guided link prediction. A

topology-based link prediction algorithm was proposed by Huang Zan[72]. Using a

cycle formation model, the generalized clustering coefficient was used as the likelihood

score. In 2015, a resolution-based community division-based link prediction approach

was presented by Ding et al.[73]. They proposed to use the coarsened resolution to
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extract community structure in the first step. For computing target link probability, a

frequency statistical model is used to distinguish different communities. In 2016, a new

similarity feature called community relevance was proposed by Ding et al.[74]. They

proposed an amalgamated feature which, in addition to other topological information

usually used in other classical link prediction approaches, also uses latent

cross-community information. Another recent algorithm was CLP-ID, proposed by

Singh et al.[75], that combines a community-based framework and information diffusion

principle to calculate the prediction scores for target links. Community detection

approaches which use deep learning are also being researched in current times [76–78].

Motif based link prediction has been proposed by Rossi et al.[79]. Multiple similarity

based link prediction algorithms were combined with stacked machine learning

algorithms to produce improved performance on small datasets by Li et al.[80]. Bastami

et al.[81] proposed a gravitation inspired method which combines local, global and

community-based features to improve upon the performance of similarity-based

methods. In case of signed network link prediction becomes a three class prediction

problem but methods which work on unsigned networks have also been successfully

used with modification for signed link prediction (Chen et al.[82]). Similarly, Liu et

al.[83] used motifs for signed link prediction in complex networks. Due to the advent of

cloud computing, link prediction algorithms which are designed specifically for parallel

computing platforms are also a growing area of interest. One such proposal was made by

Wang et al.[84] which provides community enhanced similarity-based scores to provide

an algorithm which can be parallelized across many clusters.

2.3.2 Experimental Setup

All of the experiments performed on a 64-bit Linux Mint 19.3 PC with Intel(R)

Core(TM) i7-4770 CPU@ 3.40GHz processor and 32GB memory. Python was used as

language of programming all the algorithms. The code for link prediction on specific

layers is available on Github at https://github.com/shivansh-mishra/linkpredict-static.



Chapter 2. Preliminaries 25

TABLE 2.1: Statistical information of real-world datasets

Dataset N E D K C

Karate 34 78 2.34 4.59 0.57
Jazz 198 2742 2.224 27.697 0.617
Airlines 235 1297 2.31 11.04 0.558
Celegansneural 297 2148 2.45 14.47 0.29
Political blogs 1490 16718 2.738 22.44 0.361
SmaGri 1059 4917 2.981 9.286 0.349
GrQc 5242 14496 6.047 5.531 0.53

Each experiment was executed for each algorithm and testing edges to total edges

percent value (Ratio) 20 times.

2.3.3 Datasets

To validate the proposed algorithms in this thesis, seven real-world simple one-layered

networks are used to compare their performance with other methods. Karate1 [85] dataset

contains social ties among the members of a university karate club collected by Wayne

Zachary in 1977. Jazz2 [86] is a collaboration network of jazz musicians which shows

musicians as nodes and edges represent their respective collaborations with each other.

Airlines3 [87] is a US airline network where nodes and edges represent airports and the

connectivity between airports. Celegansneural4 [88] is a neural network of C. Elegans.

Nodes represent neurons, and edges denote connections by either a synapse or a gap

junction. Political blogs5 [17] is a network of hyperlinks between weblogs on US politics,

1http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm
2http://networkrepository.com/jazz.php
3http://vlado.fmf.uni-lj.si/pub/networks/data/
4https://neurodata.io/project/connectomes/
5http://www-personal.umich.edu/ mejn/netdata/
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recorded in 2005 by Adamic and Glance. SmaGri6 [89] is the undirected form of a citation

network from Garfield collection which represents the results searches in Web of Science.

It was made using HistCite software. Table 2.1 provides the statistical information about

datasets used for experimental analysis. N, E, D, K, and C represent the number of nodes,

number of edges, average shortest distance between a pair of node, the average degree of

node, and average clustering coefficient of the network respectively.

2.3.4 Baseline Methods

The following methods are used as baseline algorithms for the comparison on link

prediction performance on simple networks. Newman et al.[16] stated that the similarity

score between a pair of nodes is dependent on the number of common neighbors

between them and called the method Common Neighbor (CN). Zhou et al.[18] proposed

the RA index for link prediction using diffusion model to penalize higher-degree nodes

and called it Resource Allocation (RA). Cannistraci et al.[20] suggested a similarity

score using the local community paradigm. They proposed CAR variants of CN, JA, AA,

and RA of which the CN variant is used for this research. Wu et al.[42] used the

clustering coefficient to get a better understanding of the strength of a possible link and

proposed Clustering coefficient link prediction (CCLP). Jaccard Coefficient (JC) is one

of the oldest metric proposed by Jaccard[19] and is a bit similar to Common Neighbor

based similarity score. Barabasi et al.[90] considered an opposite approach to the

diffusion paradigm specifically for co-authorship networks and called it Preferential

attachment (PA). PageRank is an adjustment of Katz centrality that takes into

consideration the fact that the centrality gain using a link from an important node should

be decreased depending on how many nodes the central node is connected to (resource

allocation). Grover et al.[68] presented a network embedding based method for link

prediction. N2V (Node2vec) creates embeddings for nodes in a low dimensional space

and then formulates edge embeddings from these node embeddings. These are used as

6http://vlado.fmf.uni-lj.si/pub/networks/data/cite/default.htm
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training data for a logistic regression based classification model. Singh et al.[75]

proposed an algorithm, CLP− ID, which combines a community-based framework and

information diffusion to calculate the prediction scores for target links.

2.4 Link Prediction in Multiplex Networks

2.4.1 Recent Related Work

In the last decade, many link prediction techniques have been used to predict missing

links in static networks. Recently, the focus has shifted to more complex networks like

heterogeneous, multilayer, and multiplex networks. This section presents the related

works on link prediction in multiplex networks. In order to extend the concept of

extending static network based similarity indices to the multiplex setting, some

fundamental issues have to be dealt with [91]. These challenges include different node

behaviour in different networks layers along with the degree to which different layers

contribute to each others’ structure. Recently there has been a lot of research interest in

the field of link prediction in multiplex networks such as ones by Shakibian et al.[92], De

Bacco et al.[93], Koptelov et al.[94] and Fan et al.[95].

Multiplex networks are heterogeneous networks that use a variety of connection types

yet share the same nodes [96]. To illustrate such a structure, we may use the notion of

stacked layers of graphs (all with the same node set and 2D representation). Together,

these connected layers form the whole multiplex network [97–99]. The task of link

prediction in one specific layer makes use of connectivity information of nodes in all

other layers as well. In Hristova et al.[100], authors demonstrate the connection between

interaction frequency of users and network multiplexity, making use of both social and

spatial information. To anticipate links, feature sets based on edges are produced and

passed into a machine learning classifier. Jalili et al.[101] make similar predictions using

node and path-based characteristics. Sharma and Singh[102] tweaked this technique to
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link prediction based on the presence of comparable edges in other layers. Pujari and

Kanawati[103] suggested a similar supervised learning-based link prediction technique,

but theirs makes use of similarities measured across all layers concurrently. Hajibagheri

et al.[104] suggested an approach in which, rather than computing edge-based

similarities across all layers, inter-layer similarities are utilised to reweight the original

layer’s link prediction score. They aggregate several topological similarities into a single

result via rank based estimations.

Yao et al.[105] proposed a method which combines both inter and intra-layer

information for more accurate link prediction. Mandal et al.[106] created a multiplex

network dataset using edge information from both Twitter and Foursquare social

networking platforms, and performed link prediction using supervised machine learning

based algorithms. Najari et al.[107] used Logistic regression on feature sets based on

topological information of all layers to predict edges. While others used link prediction

in multiplex network as a method of providing a more complete multiplex graph, Samei

and Jalili[108] proposed a method which identifies spurious links which represent noise

in the network. The same authors proposed two more similarity-based indices based on

hyperbolic distances between nodes. These indices were used to identify both new and

spurious links in the network hence converting the binary link prediction problem to a

three classes-based classification problem. Chen et al.[109] employed max-norm

constrained matrix completion approach for multiplex link prediction. The method

proposed by Abdolhosseini-Qomi et al.[110] used layer construction using information

from all layers of multiplex network for link prediction. Other solutions, like the one

proposed by Zhang et al.[111], also employ GNN (graph neural networks) to use the

whole graph as input rather than just the link properties, but they are not expressly

optimised for multiplex networks. Nasiri et al.[112] expand the Local Random Walk

(LRW) algorithm for multiplex networks by using inter- and intra-layer information to

execute biassed random walks over the network, indicating the chance of certain nodes

appearing. In Nasiri et al.[113], authors explore the effect of different centrality

measures on link prediction performance in multiplex networks. Though we concentrate
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on link prediction within layers themselves in this work, interlayer link prediction is also

a problem which is addressed most recently in Tang et al.[114]. In Mohapatra[115], the

author proposed a link prediction approach in multiplex networks which uses both

structural and spectral properties of network for link prediction. This is done by

extracting both neighborhood-structural composition (using k-shell structure paradigm)

and neighborhood-spectral composition (using principle eigenvectors) and average of the

cosine similarity of the two.

According to Bai et al.[116], link prediction in multiplex networks is a multi-attribute

decision-making issue in which possible connections in the target layer are treated as

alternatives, layers as features, and the similarity score of a possible connection in each

layer is a feature value. Luo et al.[31] presented a similar multiple-attribute

decision-making technique, in which alternatives represent possible linkages in the target

layer and characteristics represent the network’s different layers. Ding et al.[117] offer a

second-order iterative degree penalty (SOIDP) technique for predicting inter-layer

linkages between nodes. This algorithm takes into account the information of first- and

second-order common matched neighbours. Shan et al.[118] describe a machine

learning-based framework in which, in addition to traditional link prediction methods

that focus on particular layers for feature computation, the authors suggest two additional

features that account for all levels in feature extraction. This expanded feature set is

subsequently utilised to calculate edge probabilities in machine learning models.

Malhotra and Goyal[119] have investigated correlations between single-layer and

multiplex networks for similarity-based embedding. Quasi-local methods (L3 by Kovács

et al.[27] and SHOPI by Kumar et al.[1]), which find a middle ground between

complexity and accuracy, have been recommended for single-layer networks and

demonstrate significantly better link prediction performance than either local or global

approaches, while in this thesis an attempt is made to develop a method based on the

same underlying principles for multiplex networks. Random walk-based link prediction

approaches, such as those developed by Berahmand et al.[70, 71], are also classified as

quasi-local link prediction methods.
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2.4.2 Experimental Setup

All experiments mentioned in this work were performed on a machine with Ryzen 2700

8 core CPU, 32 GB 2666 MHz DDR4 memory, and 512 GB NVME SSD hard disk. The

programming has been done on Python language version 3.6. The code for link

prediction on specific layers is available on Github at

https://github.com/shivansh-mishra/linkpredict-multiplex-layer. Each experiment was

executed for each algorithm and testing edges to total edges percent value (Ratio) 100

times.

2.4.3 Datasets

For verification of the performance of the proposed link prediction approaches in this

thesis, the following real world multiplex networks are used. In Table 2.2 some structural

information of these datasets are listed. All multiplex networks are initially treated as

unweighted and undirected. All datasets can be found in Manlio De Domenico’s

repository7.

• Lazega-Law-Firm [120, 121] - This network has three layers and close to 70 nodes

in all layers. These nodes represent employees of a law partnership firm and layers

are different kinds of relationships between them.

• CA-Aarhus [122] - The nodes of this five-layered dataset represent workers of

Computer Engineering department at Aarhus university. The five layers represent

five kinds of collaborative relationships between these employees such as

co-authorship etc.

• Vickers-Chan-7thGraders [123] - This three-layered dataset represents the kind of

relationship between students of an Australian university.

7https://manliodedomenico.com/data.php



Chapter 2. Preliminaries 31

TABLE 2.2: Datasets and their basic topological characteristics

DATASET LAYER NODES EDGES AVG SHORTP. CLUSTER COE. ASSOR. COE. AVG CONNECT.

Lazega-Law-Firm
1 71 717 1.76 0.52 0.02 15.42
2 69 399 2.15 0.48 0.08 7.07
3 71 726 1.72 0.51 -0.08 15.69

CS-Aarhus

1 60 193 3.13 0.66 0 2.49
2 32 124 1.84 0.28 0 1.41
3 25 21 0.83 0.11 0.02 0.03
4 47 88 3.02 0.3 -0.01 1
5 60 194 2.35 0.63 -0.21 3.15

Vickers-Chan-7thGraders
1 29 240 1.36 0.75 -0.16 13.33
2 29 126 1.75 0.68 -0.15 5.47
3 29 152 1.7 0.71 -0.11 6.83

Kapferer-Tailor-Shop

1 39 158 1.99 0.46 -0.18 5.27
2 39 223 1.73 0.5 -0.05 8.17
3 35 76 2.43 0.28 -0.08 2.11
4 37 95 2.13 0.32 -0.16 2.55

CKM-Physicians-Innovation
1 215 449 3.1 0.23 -0.14 0.69
2 231 498 3.32 0.25 -0.1 0.84
3 228 423 3.89 0.2 0.1 0.66

Xenopus-Genetic

1 17 15 0.37 0 -0.29 0
2 232 214 4.1 0.01 -0.13 0.02
3 277 289 5.03 0.06 -0.19 0.09
4 46 33 0.48 0 -0.17 0
5 10 7 0.09 0 -0.58 0

Pierreauger 1 22 60 0.35 0.04 0.56 0.83
2 165 550 3.56 0.28 0.59 0.84
3 232 5433 2.49 0.41 0.64 0.93
4 49 76 0.55 0.07 0.4 0.72
5 71 105 0.58 0.1 0.36 0.82
6 87 191 1.14 0.14 0.53 0.88
7 24 61 0.33 0.04 0.66 0.9
8 73 184 1.74 0.11 0.54 0.87
9 45 80 0.33 0.08 0.56 0.93

10 15 21 0.08 0.02 0.94 0.98
11 28 51 0.72 0.04 0.36 0.74
12 76 211 1.7 0.12 0.34 0.74
13 26 53 0.22 0.03 0.79 0.96
14 15 18 0.07 0.02 1 1
15 27 38 0.15 0.04 0.79 0.92
16 10 21 0.08 0.02 1 1

Rattus-Genetic 1 2035 2772 3.71 0.07 -0.23 0
2 1017 982 6.8 0.01 -0.12 0.01
3 149 116 0.42 0.01 -0.1 0.19
4 39 21 0.03 0 -0.3 0
5 8 5 0.01 0 -0.43 0
6 15 9 0.01 0 -0.34 0

• Kapferer-Tailor-Shop [124] - This is one of the oldest and most researched

multiplex network with four layers in which staff and customers of a tailor shop in

Zambia are considered as nodes and four different interaction types are modeled as

layers of the network.

• CKM-Physicians-Innovation [125] - This dataset records relationships between

doctors in different towns of USA and their collaborations at the time of adoption
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of a new medicine.

• Xenophus-Genetic [126] - This multiplex network considers different types of

genetic interactions for organisms in the Biological General Repository for

Interaction Datasets (BioGRID, thebiogrid.org) for african clawed frog. The layers

are of type association, direct interaction, physical association, colocalization and

suppressive genetic interaction.

• Pierreauger [127] - This multiplex network is a combination of different types of

tasks in the Pierre Auger Collaboration which studies cosmic rays coming from

the outer space. These tasks are divided into 16 subtypes (layers) based on their

keywords and content.

• Rattus-Genetic [128] - This multiplex network considers different types of genetic

interactions for organisms in the Biological General Repository for Interaction

Datasets (BioGRID, thebiogrid.org). The layers are of type physical association,

direct interaction, colocalization, association, additive and suppressive genetic

interaction.

2.4.4 Baseline Methods

For the performance evaluation and comparison of the proposed algorithms, the following

baseline methods have been used. These are standard link prediction methods used on

weighted networks [129] and the equations are used from that work.

1. Common Neighbor index - weighted (CN-WT) [16]:

S(n1,n2) = ∑
z∈N(n1)∩N(n2)

w[n1,z]+w[z,n2]

2
(2.21)
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2. Jaccard coefficient index- weighted (JC-WT) [130]:

S(n1,n2) =
∑x∈N(n1)∩N(n2)(w[n1,x]+w[x,n2])

∑y∈N(n1)∪N(n2)(w[n1,y]+w[y,n2])
(2.22)

3. Preferential Attachment index- weighted (PA-WT) [131]:

S(n1,n2) = ∑
z∈N(n1)∪N(n2)

w[n1,z]+w[z,n2]

2
(2.23)

4. Adamic Adar index - weighted (AA-WT) [17]:

S(n1,n2) = ∑
z∈N(n1)∩N(n2)

w[n1,z]+w[z,n2]

log(∑x∈N(z)w[x,z])
(2.24)

5. Resource Allocation index - weighted (RA-WT) [132]:

S(n1,n2) = ∑
z∈N(n1)∩N(n2)

1
∑x∈N(z)w[x,z]

(2.25)

6. Clustering coefficient index - weighted (CC-WT) [133]:

S(n1,n2) =CC(n1)+CC(n2) (2.26)

where,

CC(x) =
1

△(x)∗ (△(x)−1)
∗ ∑

m,n∈△(x)

w[x,m]+w[n,x]

2∗∑z∈△(x)
w[z,x]
|△(x)|

(2.27)

7. Local path index - weighted (LocalP-WT) [18]:

S(n1,n2) = ∑
z∈N(n1)∩N(n2)

(w[n1,z]+w[z,n2])

+ p∗ ∑
x,y∈path(n1,x,y,n2)

w[n1,x]+w[x,y]+w[y,n2]
(2.28)
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8. Node Similarity Index based on Layer Relevance (NSILR-MUL): In Yao et al.[30],

the authors proposed a method which combines current layer similarity with

weighted similarity of other layers by evaluating dependence between layers using

a direct matching approach.

Sα(n1,n2) =
(
(1−φ)∗ simα(n1,n2)

)
+

(
φ ∗∑

βi

(
µ

αβi ∗ simβi(n1,n2)
))

(2.29)

Here µαβi is layer similarity of layer βi on layer α and simα(x,y) is similarity

between nodes for layer α calculated using common edges (GOR). φ i.e., relative

weightage is set as 0.5 and resource allocation is taken as similarity calculation

function.

9. Mutiple Attribute based Decision Making for multiplex networks

(MADMLP-MUL): In Luo et al.[31], the link prediction problem is treated as a

multiple attribute decision making problem with same layer similarity calculated

using resource allocation index and cosine similarity is used for calculating

similarity between layers.

10. MultiVERSE - Multiplex Network Embedding (MVERSE-EMB): In this approach,

the link prediction problem is solved using node embedding technique proposed by

Pio-Lopez et al. [134], in combination with neural network based deep learning for

training and predictions for edge embeddings8.

2.5 Concluding Remarks

In this chapter the background information about the field of link prediction was

presented. Also, information about the evaluation frameworks which will be followed in

8https://github.com/LPioL/MultiVERSE
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this thesis was introduced. Further sections present the differences in link prediction on

simple and multiplex networks as well as the datasets, baseline algorithms and the recent

research which has been conducted in literature. All this information has helped us in

identifying the research gap which in addressed in this thesis. The algorithms which have

been recently proposed for link prediction in simple networks have shown the relative

superiority of quasi-local link prediction methods over its more local information-based

counterparts. In simple unweighted networks, the individual importance of edges has

been overlooked. This importance can be extracted by evaluating the extended

neighborhood of the edges themselves. Furthermore, this importance can be used at the

time of local similarity-based link prediction and hence provides us with an avenue of

extension towards quasi-local information-based method. This assumption has been

explored in the next chapter. Edge relevance can also be exploited for link prediction in

multiplex networks by summarizing the network’s different layers and finding common

patterns across layers and their individual applicability based on the structural overlap.

This facet is also explored in further chapters of this thesis.




