
Chapter 7

Projected Quantum Kernel based Link

Prediction in Dynamic Networks

(PQKLP)

In this chapter, A Projected Quantum Kernel-based Link Prediction (PQKLP) 1, a

feature-based framework for quantum-enhanced link prediction problems in dynamic

networks is introduced. It combines the disciplines of social networks and quantum

computing. It employed high-dimensional Hilbert spaces to enhance the prediction data

in this model, which otherwise we only have access to via inner products provided by

measurements. Such enhancement leads to better prediction results from machine

learning-based link prediction techniques. We trained six classical machine learning

models and their quantum-enhanced counterparts based on the enhanced features

generated by the Projected Quantum Kernel (PQK) technique.

1Published in Journal Computer Communications, PQKLP: Projected Quantum Kernel based Link
prediction in Dynamic Networks
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7.1 Introduction

Quantum computing [188–190] is a new branch of computer science that uses quantum

mechanics [191] to solve problems. Quantum theory has been the most thorough account

of small scale physics since its birth at the turn of the twentieth century. Quantum

Machine Learning (QML) is a multidisciplinary field that brings together two of the most

fascinating research areas of quantum computing and classical machine learning.

Quantum computing and machine learning are undeniably “hot” issues in research and

industry. QML models have been shown to have a mathematical structure that is quite

similar to kernel methods, i.e., they analyses data in high-dimensional Hilbert spaces to

which we only have access through inner products revealed by measurements [43].

Machine learning is one of the most intriguing possible uses of quantum computing.

Quantum systems are distinguished by a generalization of probability theory that allows

for unique phenomena such as superposition and entanglement that are impossible to

simulate with a standard computer [42]. Quantum computers can perform rapid linear

algebra on a state space that expands exponentially with the number of “qubits”. This is

one of the main breakthroughs that has led to their use in machine learning. These

quantum accelerated linear-algebra based machine learning algorithms include principal

component analysis [192], support vector machine [193], K-means clustering [194], and

recommendation systems [195]. From the link prediction research perspective, many

supervised machine learning (ML) classification techniques may be used to address the

link prediction problem [1, 50, 196]. Multiple studies have shown that this method

delivers good results; nevertheless, choosing the collection of features (variables) to train

classifiers remains a key challenge.

In this study, we provide a solution to the issue of link prediction in dynamic networks

using supervised learning and the Projected Quantum Kernel (PQK). Integration of

several types of structural data from snapshots is the driving force behind our proposed

technique. The proposed technique utilizes feature vectors of node pairs to account for
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different types of structural topological data from all snapshots. We analysed data in

high-dimensional Hilbert spaces using a number of well-known similarity indices as

features, including Common Neighbors (CN), Adamic/Adar Index (AA), Jaccard

Coefficient (JC), Preferential Attachment (PA), and Shortest Path index (SP). Due to

developments in computer power and algorithmic innovation, machine learning methods

have become effective tools for spotting patterns in data. It is conceivable to expect that

quantum computers may outperform classical computers in machine learning tasks since

quantum systems display aberrant behavior that conventional systems are thought to be

incapable of creating. Quantum machine learning is the study of how to create and

implement quantum algorithms to allow machine learning on conventional computers

that is more accurate.

The following are the primary motivations for developing this approach.

• Machine learning algorithms that naturally rely on quantum features to increase

their performance have attracted much interest. Hsin-Yuan Huang et al. [3] have

shown that quantum machine learning outperforms classical machine learning in

some cases. Based on this assumption, in this research, we expanded the concept of

quantum learning to predict the future or missing link in a temporal network.

• Quantum models have a mathematical framework that is quite similar to kernel

methods, i.e., they evaluate data in high-dimensional Hilbert spaces to which we

can only acquire access via inner products disclosed by measurements [43].

Kernel-based methods have been employed with good results in link prediction

recently [44–46].

• By projecting back from the quantum space to a classical one in the projected

quantum kernel model [3], it is our belief that the underlying patterns in data can

be enhanced.

The main contribution of this work are as follows.
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• In this paper we have formalized the use of QML techniques to solve the problem

of link prediction in social networks. Using the Projected Quantum Kernel and

machine learning models, we present a novel approach, PQKLP, for solving the

link prediction problem employing both local and global information. To the best

of our knowledge this is the first attempt to solve the link prediction problem in

dynamic networks using PQK enhanced techniques.

• Using PQK we have transformed the popularly used snapshot-based feature set

form into quantum space such that the accuracy of machine learning-based link

prediction can be improved.

• Using this PQK transformed feature set, we have demonstrated the relative

superiority of our approach from others which contain even higher number of

individual features. This shows that the proposed transformation enhances data

patterns in such a way so as to make the task of machine learning more accurate.

• We have compared the results of our proposed approach i.e Quantum enhanced

neural Network (PKLPQ-NN), Quantum enhanced XGBoost (PQKLP-XGB),

Quantum enhanced Logistic Regression (PKLPQ-LR), Quantum Random forest

classifier (PQKLP-RFC), Quantum Linear discriminant Analysis (PQKLP-LDA)

and Quantum Gaussian Naive Bayes (PQKLP-GNB) with corresponding machine

learning models Neural Network (NN), XGBoost (XGB), Logistic Regression

(LR), Random forest classifier (RFC), Linear discriminant Analysis (LDA) and

Gaussian Naive Bayes (GNB). Extensive research on five well-known dynamic

datasets with four performance evaluation matrices demonstrates that the proposed

approach produces enhanced results in cases of PQKLP-RFC, PQKLP-XGB and

PQKLP-NN. These approaches even outperform four state-of-the-art algorithms.

• The QML approaches use the huge dimensionality of quantum Hilbert space to get

an optimized solution by modeling the feature space of a classification problem

with a quantum state. To address this issue we have explored supercomputer based

implementation solutions in this paper.
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FIGURE 7.1: Temporal Networks

7.1.1 Quantum Computation

Before we go into our approach, let’s go through the basics of quantum computing (such

as Qubits, Hilbert spaces and circuital implementation using Cirq):

• The Qubit. In a classical computer, a bit is the smallest unit of information. A

quantum bit, also known as a qubit, is the smallest unit of information held in a

two-state quantum computer [188, 191, 197]. A qubit is a quantum mechanical

system with two levels. To show it, quantum states are employed. A qubit is a

quantum particle with two distinct states that can be measured. A qubit differs

from a conventional bit in that a bit in a classical system can only have one of two

values: 0 or 1, whereas a qubit can have any value between 0 and 1, signifying

superposition of states. It is common practice in quantum physics to refer to

elements ψ of abstract complex vector spaces as |ψ〉 kets rather than vectors, and

to use vertical bars and angular brackets to symbolize them. It is represented by by

a pair of complex numbers (α,β ).

State of a Qubit. The state of qubit is a vector represented as|ψ(t)|. It has the

information about system at a particular given time. It is a member of Hilbert Space

and is dynamic in nature. Mathematically, the state of qubit, ψ is represented as.

|ψ〉= α|0〉+β |0〉 (7.1)

The probability amplitudes of the 0 and 1 states are represented by the complex

numbers α , and β respectively. The complex numbers satisfy the following



Chapter 7. PQKLP 138

condition.

α
2 +β

2 = 1 (7.2)

Here, α2 and β 2 are probabilities of qubit in 0 and 1 state. In two-dimensional

complex vector space, a qubit’s quantum state is represented by a unit-length vector

in state space.

• The Hilbert Space. The Hilbert Space(H) is a special kind of linear vector space.

It has all the properties of linear vector space with some additional properties .

Properties of Hilbert Space.

– Hilbert Space has an inner product operation which satisfy certain condition.

This Inner product can be defined as: Let 〈ψ1,ψ2〉 ∈ set of complex numbers.

Inner product o f vectors = ψ1 ·ψ2 (7.3)

Constraints of Inner product.

1. Conjugate property.

〈ψ1,ψ2〉= 〈ψ2,ψ1〉∗ (7.4)

Inner product of two elements in Hilbert space is complex conjugate of

the inner product of two elements in opposite order.

2. Linear with respect to second vector

〈ψ1,aψ2 +bψ3〉= a〈ψ1,ψ2〉+b〈ψ1,ψ3〉 (7.5)

3. Antilinear with respect to first vector

〈aψ1 +bψ2,ψ3〉= a∗〈ψ1,ψ3〉+b∗〈ψ2,ψ3〉 (7.6)

4. Inner product of a vector with itself must not be negative.

〈ψ,ψ〉= |ψ|2 ≥ 0 (7.7)
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It is zero when the vector itself is zero. It is called positive definiteness.

5. Distance between vectors in Hilbert space

|〈ψ1−ψ2〉|=
√
〈ψ2−ψ1,ψ2−ψ1〉= d (7.8)

– Hilbert spaces are separable. They contain a countable, dense subset.

S = {φn} (7.9)

– Helbert spaces are complete (no gaps).

lim
m,n→∞

|ψ1−ψ2|= 0 (7.10)

lim
n→∞
|φ −ψn|= 0 (7.11)

Here φ is an element in Hilbert space.

• Cirq. Cirq [198] is a free software framework for triggering quantum circuits. It

includes the fundamental structures required for describing quantum computations,

such as qubits, gates, circuits, and measurement operators. Quantum calculations

defined by the user can subsequently be run in a virtual environment or on real

hardware. Cirq also includes tools like compilers and schedulers that assist users in

creating efficient NISQ algorithms.

7.1.2 Projected Quantum Kernels (PQK)

PQK kernels [3] function by projecting quantum states into a representation that is mostly

classical, for as by using reduced physical observable or classical shadows [199–203].

Even if the training set space has an enormous dimension, projection enables us to reduce
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FIGURE 7.2: Projected Quantum Kernel [3]

the original feature set to a low-dimensional classical space with enhanced generalization

features. Since it traverses the exponentially vast quantum Hilbert space, the projected

quantum kernel may be difficult to analyze without a quantum computer. In numerical

testing, we observed that for traditional Machine Learning-based (ML) prediction models,

the classical projection actually increases rather than decreases the geometric distance. A

simple quantum model can learn exponentially more samples using the quantum kernel

(Tr(ρ(xi)ρ(x j))) but only a linear number of samples using a classical ML model. The

one-particle reduced density matrix (1-RDM) measurement on all qubits for the encoded

state is one of the simplest types of projected quantum kernel. Based on assumption that

ρk (xi) = Tr j 6=k[ρ(xi)], this kernel [3] is defined as

kPQ (xi,x j
)
= exp

(
−γ ∑

k

∥∥ρk (xi)−ρk
(
x j
)∥∥2

F

)
(7.12)

This kernel provides a 1-RDM feature map function that may express arbitrary functions
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of quantum state 1-RDM powers. According to the non-intuitive implications of density

functional theory, even one-body densities may be sufficient for determining the exact

ground state [204] and time-dependent density characteristics of many-body systems

given reasonable assumptions [205]. This provides a method for efficiently building a

kernel function with all orders of RDMs using local randomised measurements and the

traditional shadows formalism [200]. The typical shadow formalism permits the quick

construction of RDMs from a minimal quantity of data. In a newly suggested learning

problem based on discrete logarithms [206], projected versions of quantum kernels

provide a straightforward and rigorous quantum speedup.

The conventional ML models and quantum-enhanced ML models are depicted in Figure

7.2. The data points A, B, C,...,etc., are in different spaces. An arrow represents the kernel

function, which is a measure of data similarity. The effective dimension of the data set is

d, and the geometric difference between similarity measures in different machine learning

models is g in the quantum Hilbert space. The quantum Hilbert space is utilized to define

the kernel function that will be used to train the model in the quantum kernel technique.

Hsin-Yuan Huang et al. [3] has shown the advantage of quantum-enhanced machine

learning over classical machine learning and vice-versa. In this work we have use the

concept of quantum learning and extended the idea of quantum learning to predict future

or missing link in dynamic network. The basic code for quantum transformation of data

is available as an open source 2. The formulation of model using Projected Quantum

Kernel and Link prediction is shown in Fig. 7.3.

The performance of the machine learning-based prediction approaches can be

significantly enhanced by projecting back from the quantum space to a classical one in

the projected quantum kernel model, according to [3]. When the complete exponential

quantum state space is used to generate the kernel function, k(xi,x j) = Tr(ρ(xi)ρ(x j)),

we have observed that employing the native quantum state space to define the kernel

function can fail to learn even a basic function. Otherwise, the quantum machine

2https://www.tensorflow.org/quantum/tutorials/quantum data/
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learning model may be reproduced traditionally and a significant advantage would be

lost [3]. RDMs are defined in a classical vector space to reduce the learning difficulty

imposed by the exponential dimension in the quantum Hilbert space. PQKs by

definition, on the other hand, continue to be evaluated in the increasingly huge quantum

Hilbert space. Below are some simple choices based on reduced density matrices

(RDMs) of the quantum state.

• The use of 1-RDMs to create a linear kernel function.

Q1
l (xi,x j) = ∑

k
Tr[Trm 6=k[ρ(xi)]Trn6=k[ρ(x j)]] (7.13)

where Trm 6= k(ρ) represents a partial trace of the quantum state ρ over all qbits

except the k− th qubit. Any observable that can be expressed as a sum of one-body

terms could be learned by it.

• 1-RDMs are used to create a Gaussian kernel function.

Q1
g(xi,x j) = exp(−γ ∑

k
(Trm 6=k[ρ(xi)]−Trn6=k[ρ(x j)])

2) (7.14)

where γ > 0 represents here as a hyper-parameter. Any nonlinear function of the

1-RDMs could be learned by it.

• kRDMs are used to create a linear kernel. k−RDMs are used to create linear

kernel. Mathematically, it is expressed as.

Qk
l (xi,x j) = ∑

K∈Sk(n)
Tr[Trn6∈k[ρ(xi)]Trm 6∈k[ρ(x j)]] (7.15)

where Sk(n) represents the set of subsets of k qbits from n, and Trn6∈K denotes a

partial trace of qbits not in subset K. Any observable that can be expressed as a sum

of k-body terms could be learned.

The basic approach uses three steps to generate quantum features. The steps includes.
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1. Datasets are preprocessed in this step to create a data set with fewer dimensions. A

total of 5 snapshots were analyzed.

2. To relabel the dataset, embed this preprocessed data in quantum circuits. The

Projected Quantum Kernel (PQK) feature can be computed after the dataset has

been relabeled.

3. A standard machine learning model is trained after obtaining the PQK enhanced

feature set, also known as quantum enhanced machine learning-based prediction

model, on the re-labeled data sets. Training and testing sets are separated after

projection.

The individual steps of this workflow are defined as follows:

• Data preprocessing. The dimensionality of datasets are lowered during the data

preprocessing procedure. Data sets are preprocessed in this step to create a data

set with fewer dimensions. The feature was reduced using Principal Component

Analysis (PCA). The number of features in PCA is reduced to ten (20 originally

due to five snapshots and five individual link prediction features, CN, JC, PA, AA,

and SP). After PCA, each feature is transformed into 3d qubits. One more qubit

is added, bringing the total number of qubits to 11. PQK features = 11 ∗ 3(3 for

the qubit dimension= 33). The data preprocessing process includes obtaining the

dataset, importing the appropriate libraries, importing the dataset, identifying and

handling missing values, splitting the dataset, and feature scaling.

• Computation of PQK features and Relabeling. We will now build “stilted”

quantum datasets by adding quantum components and re-labeling in a more

condensed form. We’ll first produce PQK features and then relabel outputs based

on their values to obtain the largest separation between quantum and classical

procedures.
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1. PQK features and quantum encoding. Based on x−train, y−train, x−test,

and y− test, We’re going to make a different set of features. On all qubits, It

is defined as the 1-RDM on all qubits of the following.

V (xtrain/ntrotter)
ntrotterU1qb|0〉 (7.16)

where U1qb is a single qubit rotation’s wall and

V (θ̂) = e−i∑i θ̂i(XiXi+1+YiYi+1+ZiZi+1) (7.17)

First, we generate the wall of single qubit rotations by using a for loop for

qubits and their rotations. Then, we prepare V (θ̂) utilizing

t f q · util · exponential which is capable of exponentiating any commuting

cirq ·PauliSum objects. we use pauli X, Y and Z gates.

We now have all of the components necessary to construct complete encoding

circuits. In this scenario, The number of qubits is kept at the same level as the

number of features, which is 10. We create the above-mentioned random

single qubit rotation wall with size (number of qubits, 3) and parameterized

V using V (θ̂). The data is then converted into tensors using the resolve

parameters of the tensor flow quantum library. Then, using the 1-RDM of the

dataset shown above, we compute the PQK features and save the results in

RDM, a tensor with dimension 33 (number of samples, number of qubits, 3).

rdm[i][ j][k] = 〈ψiOPj
K

ψi〉 (7.18)

where i represents data points indexes, j represents qubits indexes and k is

indexed on {X̂ ,Ŷ , Ẑ}.

2. PQK features relabeling.



Chapter 7. PQKLP 145

We have the quantum generated features in x− train− pqk and x− test− pqk.

Based on the spectrum information in the dataset, we can label it. x− train−

pqk and x− test− pqk .

7.2 Proposed Method

Recent research has focused mostly on network topology to infer feature sets. These

characteristics are non-domain-specific and general, therefore they may be implemented

in any network [131, 150, 151]. Another research focuses on finding key node and edge

information for improving the effectiveness of link prediction. These traits include

topological, neighbourhood, and path-based characteristics [152, 153]. Several related

studies [154, 207] indicate that the clustering coefficient is also closely associated with

the link prediction issue. The complexity of link prediction is characterised as a binary

classification issue. The categorization of a class is determined by the existence or

absence of links. The label is assigned value 1 if there is a link between two nodes;

conversely, it is set to 0.

7.2.1 Algorithms used in the proposed framework

This section will go over the numerous algorithms used in this work. The methods

employed in this paper are feature generation techniques for classical machine learning

models in the proposed model and quantum feature enhancement algorithms. We

explained the feature generation of the suggested model in the feature generation

algorithm for classical machine learning models. We used a variety of algorithms in the

quantum feature generation process [208], including an algorithm for producing a wall of

single qubit rotations, the creation of a circuit that produces V (θ̂), kernel matrix

computation, for the production of PQK feature circuits around an input dataset, to get
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Algorithm 6: Feature generation algorithm for proposed PQKLP approach
Input: Dynamic network D, number of snapshots m
Output: Feature Set (edge f s)

1 all edges←{} . Initialization Phase
2 true edges←{}
3 f alse edges←{}
4 true edges← true edges(Gm) . Edge dictionary for combining feature set between

snapshots
5 f alse edges← randomized f alse edges(Gm)
6 all edges← true edges+ f alse edges
7 edge f s← dict
8 for t← 0 to m−1 do
9 G← t graph[t]

10 for edge in all edges do
11 FeatureSet←{}
12 i← edge[0], j← edge[1]
13 FeatureSet← append CommonNeighbour(G, i, j)
14 FeatureSet← append JaccardCoe f f icient(G, i, j)
15 FeatureSet← append Adamic/Adar(G, i, j)
16 FeatureSet← append Pre f entialAttachment(G, i, j)
17 FeatureSet← append ShortestPath(G, i, j)
18 if edge f s(edge) not empty then
19 temp← edge f s[edge] . For last snapshot

20 else
21 temp←{}
22 edge f s[edge]← temp+FeatureSet

23 edge f s reduce← PCA(edge f s) . Transforming topological based feature set into
informationally denser

24 edge f s pqk← PQK(edge f s reduce) . Transforming reduced feature set into its
quantum representation

25 return edge f s pqk . Return feature set
26 **This enhanced feature set is used with classical machine learning models for

training and testing
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PQK features, to generate kernel data point eigenvalues and eigenvectors, and to

generate new labels that maximize geometric distance between kernels.

7.2.2 Feature generation algorithm for proposed PQKLP approach

In the proposed framework, Algorithm 6 illustrates the steps involved in feature

generation for a traditional machine learning model and then its transformation using

PQK. Line 1-3, is the initialization phase. all edges, true edges, f alse edges and

true edges are initialized as empty lists. true edges and randomized f alseedges of the

snapshots are stored in true edges and f alse edges in Line 4 and 5. In Line 6,

true edges and f alse edges are stored in combination as all edges. An empty dictionary

edge f s is created in Line 7 which with iteratively store edge features calculated on

individual snapshots. Line 8, the for loop iterates to m−1 snapshots. Line 10-22, is used

to generate features using various similarities indices like CN, JC, PA, AA and SP. It will

loop over all edges for each snapshot in line 10. It will append similarity measures

derived by similarity techniques listed above. After calculating topological feature set

over all snapshots, PCA transformation is applied to the feature set to generate an

informationaly dense representation, edge f s reduce (line 23), which is then projected

into quantum vector space using PQK in line 24 (edge f s pqk). Finally, in line 25,

edge f s pqk, feature set is returned. This enhanced feature set is used with classical

machine learning models for training and testing to produce performance evaluation of

the proposed PQKLP technique.

Computational Complexity

Let N be the size of the dataset, m be the number of snapshots, then the number of real

edges in the last snapshot would be N/m, remember that we add a similar amount of

randomized f alse edges to the final classification edges i.e. all edges, that makes it

2∗(N/m). During the feature extraction phase, we first iterate over initial m−1 snapshots

(leaving the final snapshot for classification), each time traversing over the 2 ∗ (N/m)
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classification edges and for each of the edges, we try to populate the features. The network

metrics used as features and their complexities are Common Neighbor O(k2), Jaccard

Coefficient O(k3), Adamic Adar O(k3), Preferential Attachment O(k2) and Shortest Path

O(ElogV ) Considering V: number of nodes, k: degree of the nodes, E: number of edges.

Note that the complexity is only for two fixed pairs of nodes not for all pairs hence an

iteration of size V can be removed. It is clear that k� E, hence taking the maximum time

complexity for the shortest path i.e. O(V logV ). Now, overall complexity of the algorithm

comes out to be of order

O(m∗2(N/m)∗ (E logV )) = O(2N ∗E logV )≈ O(N ∗E logV ). (7.19)

7.3 Result Analysis

The results will be discussed and analyzed in this section. First, we compare the

performance of our proposed PQKLP model with its component individual link

prediction algorithms using six different machine learning models. All these methods

use quantum kernel-based feature transformation. Finally, we compare and contrast the

performance of the proposed PQKLP model with that of state-of-the-art approaches.

7.3.1 Performance comparison and analysis of PQKLP model with

its component individual link prediction methods using Neural

Network (NN)

Table 7.1 compares the performance of our proposed PQKLP model with its component

individual link prediction methods using Neural Network (NN). In the Accuracy metric,

our proposed model PQKLP is the best performing one in all datasets except Mit. In the

Mit dataset, PQKLP is marginally outperformed by CN, JC, and AA. In the AUC metric,
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TABLE 7.1: Performance comparison and analysis of PQKLP model with its component
individual link prediction methods using Neural Network (NN)

Data set SP CN JC AA PA PQKLP

Mit 0.5282 0.8094 0.7910 0.8377 0.7563 0.7746
Fb-forum 0.6303 0.6397 0.6669 0.6566 0.6586 0.9124

Accuracy Radoslaw-email 0.5360 0.8320 0.8415 0.8270 0.7365 0.8755
Eu-core 0.5400 0.8875 0.9130 0.9130 0.7025 0.9154

CollegeMsg 0.5452 0.6112 0.5655 0.5980 0.6376 0.7289

Mit 0.5574 0.8938 0.8672 0.9151 0.7682 0.8662
AUC Fb-forum 0.7317 0.6346 0.6840 0.6891 0.6995 0.9437

Radoslaw-email 0.5793 0.9050 0.9106 0.8987 0.7426 0.9293
Eu-core 0.5998 0.9519 0.9687 0.9688 0.7288 0.9454

CollegeMsg 0.6199 0.6108 0.5773 0.6151 0.6830 0.8511

Mit 0.5091 0.8319 0.8153 0.8474 0.7587 0.7662
F1 score Fb-forum 0.7096 0.5742 0.6108 0.6255 0.7222 0.9136

Radoslaw-email 0.5931 0.8468 0.8575 0.8391 0.7678 0.8777
Eu-core 0.5900 0.8956 0.9166 0.9122 0.7529 0.9151

CollegeMsg 0.6732 0.4283 0.6106 0.4423 0.7157 0.7746

Mit 0.4528 0.8135 0.7750 0.8235 0.8630 0.7709
Precision Fb-forum 0.7414 0.7002 0.7511 0.6872 0.6651 0.9280

Radoslaw-email 0.6566 0.8056 0.8246 0.8098 0.7589 0.8697
Eu-core 0.6657 0.8704 0.9053 0.9125 0.6484 0.9063

CollegeMsg 0.6593 0.7688 0.6950 0.7997 0.6095 0.8373

PQKLP is the best performing method in Fb-forum, Radoslaw-email, and CollegeMsg

datasets. In the remaining Mit and Eu-core datasets, our method is marginally

outperformed by CN, JC, and AA. In the F1 score metric, our method PQKLP is the best

performing method in all datasets except Mit and Eu-core. In the Mit dataset, our

method is marginally outperformed by CN, JC, and AA, while in the Eu-core dataset, it

is only the second-best behind AA. In the Precision metric, our method PQKLP is the

best performing method in all datasets except Mit and Eu-core. In the Mit dataset, our

method is marginally outperformed by CN, JC, and AA, while in the Eu-core dataset, it

is only the second-best behind AA. Overall we can conclude that our algorithm has good

performance in all datasets except Mit when using NN-based classifier.
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TABLE 7.2: Performance comparison and analysis of PQKLP model with its component
individual link prediction methods using Logistic Regression (LR)

Data set SP CN JC AA PA PQKLP

Mit 0.5726 0.8321 0.7799 0.8520 0.8053 0.6707
Fb-forum 0.7103 0.6345 0.6069 0.6310 0.7927 0.8800

Accuracy Radoslaw-email 0.5410 0.8250 0.8205 0.8185 0.7600 0.7985
Eu-core 0.6015 0.9070 0.8860 0.9150 0.7900 0.8823

CollegeMsg 0.6294 0.6081 0.5594 0.6335 0.6873 0.7279

Mit 0.5527 0.9037 0.8606 0.9262 0.8571 0.7162
AUC Fb-forum 0.7390 0.6685 0.6585 0.6679 0.8987 0.9339

Radoslaw-email 0.5590 0.9009 0.8909 0.8998 0.8702 0.8674
Eu-core 0.6117 0.9720 0.9643 0.9723 0.9096 0.9280

CollegeMsg 0.6128 0.6300 0.5980 0.6416 0.7210 0.7585

Mit 0.6770 0.8296 0.7763 0.8481 0.8050 0.6700
F1 score Fb-forum 0.6429 0.5754 0.5177 0.5291 0.7526 0.8832

Radoslaw-email 0.6509 0.8261 0.8295 0.8253 0.7542 0.7992
Eu-core 0.4417 0.9025 0.8798 0.9126 0.7578 0.8805

CollegeMsg 0.3973 0.4521 0.3757 0.4789 0.5995 0.7720

Mit 0.5434 0.8692 0.7985 0.8879 0.8570 0.6350
Precision Fb-forum 0.8746 0.7067 0.6768 0.7024 0.9119 0.8866

Radoslaw-email 0.5275 0.8516 0.8501 0.8533 0.8124 0.7992
Eu-core 0.7221 0.9482 0.9513 0.9587 0.8845 0.8746

CollegeMsg 0.9100 0.8636 0.7796 0.8507 0.8513 0.8373

7.3.2 Performance comparison and analysis of PQKLP model with

its component individual link prediction methods using

Logistic Regression (LR)

Table 7.2 compares the performance of our proposed PQKLP method with its component

individual link prediction methods using Logistic Regression (LR). For the Accuracy

metric, PQKLP is the best performing method in Fb-forum and CollegeMsg datasets.

For Radoslaw-email and Eu-core datasets, our method outperforms the CN, JC, and AA

algorithms. For the remaining Mit dataset, our method is outperformed by CN, JC, AA,

and PA algorithms. For the AUC metric, our proposed PQKLP is the best performing

algorithm in Fb-forum and CollegeMsg datasets. In Mit and Radoowslaw-email datasets,

our algorithm is outperformed by CN, JC, AA, and PA algorithms, while in the

remaining Eu-core dataset, it outperforms only SP and PA algorithms. In the F1 score

metric, PQKLP is the best performing algorithm in Fb-forum and CollegeMsg datasets.
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TABLE 7.3: Performance comparison and analysis of PQKLP model with its component
individual link prediction methods using Linear Discriminant Analysis (LDA)

Data set SP CN JC AA PA PQKLP

Mit 0.5706 0.8156 0.7727 0.8148 0.8604 0.6764
Fb-forum 0.6961 0.6066 0.5970 0.6152 0.7397 0.8710

Accuracy Radoslaw-email 0.5510 0.8215 0.8280 0.8030 0.7745 0.8000
Eu-core 0.5900 0.8610 0.8545 0.8725 0.7600 0.8750

CollegeMsg 0.6081 0.6020 0.5695 0.5959 0.7096 0.7239

Mit 0.5273 0.9124 0.8701 0.9015 0.9292 0.7295
AUC Fb-forum 0.7299 0.6399 0.6270 0.6747 0.8687 0.9314

Radoslaw-email 0.5646 0.9137 0.9037 0.8964 0.8845 0.8678
Eu-core 0.6111 0.9596 0.9554 0.9713 0.9089 0.9242

CollegeMsg 0.5933 0.6136 0.6019 0.5978 0.7582 0.7306

Mit 0.6912 0.8033 0.7750 0.8116 0.8516 0.6752
F1 score Fb-forum 0.6008 0.5333 0.5231 0.5147 0.6935 0.8738

Radoslaw-email 0.6519 0.8198 0.8360 0.8020 0.7701 0.8008
Eu-core 0.4415 0.8413 0.8417 0.8576 0.7105 0.8723

CollegeMsg 0.3616 0.4574 0.3539 0.4125 0.5909 0.7699

Mit 0.5593 0.8583 0.8039 0.8412 0.9116 0.6416
Precision Fb-forum 0.8536 0.7064 0.6731 0.7246 0.8729 0.8855

Radoslaw-email 0.5465 0.8657 0.8490 0.8463 0.8308 0.8011
Eu-core 0.7505 0.9583 0.9499 0.9725 0.9078 0.8700

CollegeMsg 0.8521 0.8238 0.8073 0.7878 0.8799 0.8339

In Radoslaw-email and Eu-core datasets, our algorithm outperforms the CN, JC, and AA

algorithms. In the Mit dataset, the performance of our algorithm is only better than the

SP algorithm. In the Precision metric, in Mit, Radoslaw-email, and Eu-core datasets, the

performance of our algorithm is only better than the SP algorithm. In the remaining

Fb-forum and CollegeMsg datasets, our algorithm is only slightly outperformed by the

algorithms with the best performance. Overall we can conclude that the performance of

our algorithm is suitable only for Fb-forum and CollegeMsg datasets while using a

LR-based classifier.
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7.3.3 Performance comparison and analysis of PQKLP model with

its component individual link prediction methods using Linear

Discriminant Analysis (LDA)

Table 7.3 compares the performance of our proposed PQKLP method with its component

individual link prediction methods using Linear Discriminant Analysis (LDA). In the

Accuracy metric, our proposed method performs best in Fb-forum, Eu-core, and

CollegeMsg datasets. In Radoslaw-email, it is outperformed by CN, JC, and AA

algorithms, while in the Mit dataset, it only outperforms the SP algorithm. In the AUC

metric, PQKLP is the best performing algorithm in the Fb-forum dataset and the

second-best performing one in the CollegeMsg dataset, just behind the PA algorithm. In

Mit and Radoslaw-email datasets, our algorithm only outperforms the SP algorithm,

while in the Eu-core dataset, it is the fourth-best performing algorithm. For the F1 score

metric, our algorithm performs best in Fb-forum, Eu-core, and CollegeMsg datasets. In

the Mit dataset, it only outperforms the SP algorithm, while in the Radoslaw-email

algorithm, it outperforms both SP and PA algorithms. For the Precision metric, our

proposed PQKLP is the best performing algorithm in the Fb-forum dataset and the

second-best performing algorithm in the CollegeMsg dataset, just behind the PA

algorithm. For the remaining datasets, our algorithm only outperforms the SP algorithm.

Overall we can conclude that the performance of our algorithm is suitable only for

Fb-forum and CollegeMsg datasets while using a LDA-based classifier.

7.3.4 Performance comparison and analysis of PQKLP model with

its component individual link prediction methods using

XGBoost (XGB)

Table 7.4 compares the performance of our proposed PQKLP method with its component

individual link prediction methods using XGBoost (XGB). In the Mit dataset for all four
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TABLE 7.4: Performance comparison and analysis of PQKLP model with its component
individual link prediction methods using XGBoost (XGB)

Data set SP CN JC AA PA PQKLP

Mit 0.5717 0.8461 0.8072 0.8351 0.8517 0.7442
Fb-forum 0.7345 0.6510 0.6483 0.6510 0.8152 0.9000

Accuracy Radoslaw-email 0.5640 0.8185 0.8375 0.8310 0.7940 0.8455
Eu-core 0.6045 0.9120 0.9090 0.9075 0.8075 0.8892

CollegeMsg 0.6132 0.6102 0.6020 0.6345 0.7695 0.7827

Mit 0.5661 0.8464 0.8088 0.8354 0.8530 0.7505
AUC Fb-forum 0.7341 0.6516 0.6451 0.6483 0.8152 0.9006

Radoslaw-email 0.5482 0.8146 0.8368 0.8298 0.7916 0.8455
Eu-core 0.5977 0.9123 0.9084 0.9080 0.8065 0.8894

CollegeMsg 0.6230 0.6067 0.6067 0.6353 0.7647 0.8072

Mit 0.6870 0.8538 0.8172 0.8463 0.8554 0.7543
F1 score Fb-forum 0.6654 0.6174 0.5742 0.5923 0.8217 0.9015

Radoslaw-email 0.6727 0.8360 0.8464 0.8442 0.8112 0.8470
Eu-core 0.4021 0.9137 0.9111 0.9069 0.8143 0.8866

CollegeMsg 0.4322 0.4228 0.4244 0.4698 0.7990 0.7988

Mit 0.5510 0.8454 0.7901 0.8416 0.8258 0.7125
Precision Fb-forum 0.8945 0.6907 0.7042 0.6949 0.8261 0.9142

Radoslaw-email 0.5558 0.8123 0.8123 0.7942 0.7823 0.8445
Eu-core 0.7768 0.9135 0.9063 0.8984 0.7987 0.8928

CollegeMsg 0.8915 0.7973 0.8117 0.8576 0.7453 0.8839

performance evaluation metrics, our algorithm only outperforms the SP algorithm, while

in the Eu-core dataset, our algorithm outperforms both SP and PA algorithms. In the three

remaining datasets, Fb-forum, Radoslaw-email, and CollegeMsg, our algorithm PQKLP

has the best performance across all evaluation metrics. Overall we can conclude that the

performance of our algorithm is suitable for Fb-forum, Radoslaw-email, and CollegeMsg

datasets while using a XGB-based classifier.

7.3.5 Performance comparison and analysis of PQKLP model with

its component individual link prediction methods using

Random Forest Classifier (RFC)

Table 7.5 compares the performance of our proposed PQKLP method with its component

individual link prediction methods using Random Forest Classifier (RFC). For the

Accuracy metric, our algorithm PQKLP performs best in Fb-forum and Radoslaw-email
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TABLE 7.5: Performance comparison and analysis of PQKLP model with its component
individual link prediction methods using Random Forest Classifier (RFC)

Data set SP CN JC AA PA PQKLP

Mit 0.5474 0.8173 0.8347 0.8373 0.8620 0.7906
Fb-forum 0.7184 0.6531 0.6531 0.6310 0.8117 0.9041

Accuracy Radoslaw-email 0.5700 0.8055 0.8285 0.8350 0.7945 0.8605
Eu-core 0.6015 0.9050 0.9045 0.9110 0.8100 0.9062

CollegeMsg 0.6193 0.6193 0.6264 0.6193 0.7838 0.7827

Mit 0.5597 0.9123 0.9086 0.9148 0.9400 0.8622
AUC Fb-forum 0.7387 0.6726 0.6597 0.6281 0.8907 0.9391

Radoslaw-email 0.5829 0.8749 0.8996 0.9025 0.8683 0.9209
Eu-core 0.6063 0.9514 0.9570 0.9603 0.8865 0.9411

CollegeMsg 0.6393 0.6253 0.6179 0.6270 0.8794 0.8827

Mit 0.6535 0.8179 0.8376 0.8383 0.8622 0.7809
F1 score Fb-forum 0.6506 0.6086 0.5740 0.5312 0.8181 0.9069

Radoslaw-email 0.6722 0.8167 0.8437 0.8460 0.8111 0.8651
Eu-core 0.4138 0.9046 0.9056 0.9121 0.8179 0.9055

CollegeMsg 0.4241 0.4330 0.4235 0.4476 0.8044 0.7994

Mit 0.5215 0.8074 0.8072 0.8439 0.8362 0.7656
Precision Fb-forum 0.8874 0.7001 0.7702 0.6967 0.7970 0.9132

Radoslaw-email 0.5570 0.7990 0.8303 0.8193 0.7785 0.8601
Eu-core 0.7762 0.9057 0.9017 0.9014 0.8093 0.9028

CollegeMsg 0.9337 0.8180 0.7937 0.8530 0.7253 0.8842

datasets. In CollegeMsg, it is just slightly behind the PA algorithm, while in the Eur-core

dataset, it is only slightly behind the AA algorithm. In the Mit dataset, our algorithm

only outperforms the SP algorithm. For the AUC metric, our proposed PQKLP performs

best in Fb-forum, Radoslaw-email, and CollegeMsg datasets. In the Mit dataset, it only

outperforms the SP algorithm, while in the Eu-core dataset, it outperforms both SP and

PA algorithms. For the F1 score metric, PQKLP performs best in Fb-forum and

Radoslaw-email datasets. In the CollegeMsg dataset, it is only slightly outperformed by

the PA algorithm. In the Mit dataset, it only outperforms the SP algorithm, while in the

Eu-core dataset, it outperforms both SP and PA algorithms. For the Precision metric, our

algorithm performs best in Fb-forum, Radoslaw-email, and CollegeMsg datasets. In the

Eu-core dataset, it is only slightly outperformed by the CN algorithm, but in the Mit

dataset, it only outperforms the SP algorithm. Overall we can conclude that the

performance of our algorithm is suitable for Fb-forum, Radoslaw-email, Eu-core, and

CollegeMsg datasets while using a RFC-based classifier.
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TABLE 7.6: Performance comparison and analysis of PQKLP model with its component
individual link prediction methods using Gaussian Naive Bayes (GNB)

Data set SP CN JC AA PA PQKLP

Mit 0.5614 0.8323 0.7744 0.8020 0.8460 0.6851
Fb-forum 0.6894 0.6315 0.6321 0.6041 0.7324 0.8876

Accuracy Radoslaw-email 0.5570 0.7975 0.8090 0.8220 0.7555 0.8290
Eu-core 0.6160 0.8920 0.8610 0.8925 0.7235 0.8818

CollegeMsg 0.5898 0.6162 0.5299 0.6396 0.6670 0.7269

Mit 0.5669 0.8988 0.8638 0.8826 0.9147 0.7702
AUC Fb-forum 0.7245 0.6778 0.6724 0.6752 0.8779 0.9391

Radoslaw-email 0.5398 0.8913 0.8817 0.9147 0.8836 0.8947
Eu-core 0.6287 0.9684 0.9609 0.9663 0.8432 0.9316

CollegeMsg 0.6051 0.6099 0.5263 0.6398 0.8138 0.7942

Mit 0.6791 0.8314 0.7783 0.7961 0.8359 0.6964
F1 score Fb-forum 0.5919 0.4615 0.5037 0.4227 0.6659 0.8907

Radoslaw-email 0.6639 0.7922 0.8128 0.8127 0.7456 0.8291
Eu-core 0.4466 0.8815 0.8507 0.8825 0.6402 0.8790

CollegeMsg 0.3892 0.3908 0.4107 0.4459 0.5591 0.7727

Mit 0.5474 0.8414 0.7678 0.8234 0.8818 0.6483
Precision Fb-forum 0.8969 0.8304 0.7275 0.8018 0.9018 0.8916

Radoslaw-email 0.5588 0.8444 0.8200 0.8788 0.8472 0.8365
Eu-core 0.8010 0.9410 0.9597 0.9484 0.8880 0.8843

CollegeMsg 0.8498 0.8296 0.7763 0.8616 0.9170 0.8332

7.3.6 Performance comparison and analysis of PQKLP model with

its component individual link prediction methods using

Gaussian Naive Baiyes classifier (GNB)

Table 7.6 compares the performance of our proposed PQKLP method with its component

individual link prediction methods using the Gaussian Naive Bayes classifier (GNB). For

the Accuracy metric, our proposed algorithm PQKLP performs best in Fb-forum,

Radoslaw-email, and CollegeMsg datasets. In the Eu-core dataset, PQKLP has the

third-best performance, and it only outperforms SP in the Mit dataset. For the AUC

metric, PQKLP has the best performance in the Fb-forum dataset and second-best

performance in Radoslaw-email and CollegeMsg datasets. In the Mit dataset, PQKLP

only outperforms the SP algorithm, while in the Eu-core dataset, it outperforms both SP

and PA algorithms. For the F1 score metric, our proposed PQKLP performs best in

Fb-forum, Radoslaw-email, and CollegeMsg datasets. In the Eu-core dataset, it is only
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TABLE 7.7: Performance Comparison of link prediction in different machine learning
models with proposed projected Quantum machine learning model

Datasets NN Q-NN XGB Q-XGB LR Q-LR RFC Q-RFC LDA Q-LDA GNB Q-GNB

Accuracy

Mit 0.7608 0.7746 0.8797 0.7442 0.8116 0.6707 0.8986 0.7906 0.8623 0.6764 0.8333 0.6851
Fb-forum 0.7861 0.9124 0.8413 0.9000 0.7552 0.8800 0.8034 0.9041 0.8207 0.8710 0.8069 0.8876

Radoslaw-email 0.7175 0.8755 0.8495 0.8455 0.7875 0.7985 0.8600 0.8605 0.8350 0.8000 0.8075 0.8290
Eu-core 0.8220 0.9154 0.9235 0.8892 0.8425 0.8823 0.9500 0.9062 0.9175 0.8750 0.9225 0.8818

CollegeMsg 0.7310 0.7289 0.7929 0.7827 0.6650 0.7279 0.8274 0.7827 0.6751 0.7239 0.6751 0.7269

AUC

Mit 0.7671 0.8662 0.8800 0.7505 0.9005 0.7162 0.9345 0.8622 0.9096 0.7295 0.8638 0.7702
Fb-forum 0.7885 0.9437 0.8412 0.9006 0.8624 0.9339 0.8864 0.9391 0.8692 0.9314 0.8825 0.9391

Radoslaw-email 0.7192 0.9293 0.8486 0.8455 0.8758 0.8674 0.9355 0.9209 0.9222 0.8678 0.9123 0.8947
Eu-core 0.8326 0.9454 0.9236 0.8894 0.9311 0.9280 0.9808 0.9411 0.9818 0.9242 0.9789 0.9316

CollegeMsg 0.8037 0.8511 0.7914 0.8072 0.7149 0.7585 0.8796 0.8827 0.7318 0.7306 0.7113 0.7942

F1 Score

Mit 0.7967 0.7662 0.8823 0.7543 0.8143 0.6700 0.9054 0.7809 0.8652 0.6752 0.8435 0.6964
Fb-forum 0.7726 0.9136 0.8319 0.9015 0.7171 0.8832 0.8055 0.9069 0.7953 0.8738 0.7879 0.8907

Radoslaw-email 0.7341 0.8777 0.8594 0.8470 0.7658 0.7992 0.8600 0.8651 0.8308 0.8008 0.7843 0.8291
Eu-core 0.8311 0.9151 0.9245 0.8866 0.8174 0.8805 0.9468 0.9055 0.9065 0.8723 0.9122 0.8790

CollegeMsg 0.7768 0.7746 0.8120 0.7988 0.5926 0.7720 0.8482 0.7994 0.6000 0.7699 0.5844 0.7727

Precision

Mit 0.7625 0.7709 0.8699 0.7125 0.8906 0.6350 0.9306 0.7656 0.9385 0.6416 0.8732 0.6483
Fb-forum 0.8440 0.9280 0.8413 0.9142 0.8411 0.8866 0.7919 0.9132 0.9182 0.8855 0.8667 0.8916

Radoslaw-email 0.7412 0.8697 0.8298 0.8445 0.8323 0.7992 0.8431 0.8601 0.8351 0.8011 0.8696 0.8365
Eu-core 0.8296 0.9063 0.9166 0.8928 0.8813 0.8746 0.9319 0.9028 0.9524 0.8700 0.9583 0.8843

CollegeMsg 0.6768 0.8373 0.7451 0.8839 0.8571 0.8373 0.8051 0.8842 0.8889 0.8339 0.9375 0.8332

marginally outperformed by CN and AA algorithms, while in the Mit dataset, it only

outperforms the SP algorithm. Our algorithm has the worst relative performance for the

Precision metric out of all performance evaluation metrics. PQKLP is the second-best

performing algorithm in the Fb-forum dataset, third-best in the CollegeMsg dataset, and

fourth-best in the Radoslaw-email dataset. For Mit and Eu-core datasets, our algorithm

only outperforms the SP algorithm.

7.3.7 Performance comparison and analysis of classical machine

learning model with proposed PQKLP-based machine

learning model with same feature set

Table 7.7 compares the performance of classical and quantum machine learning models

for the same feature set (CN,JC,PA,AA,&SP). We analysed the results of six classical

machine learning models: NN, XGB, LR, RFC, LDA, and GNB. For better

understanding, PKQLP is abbreviated as Q in this section. Q-NN outperforms NN in

terms of Accuracy on the Mit dataset. Other than the Q-NN based model, all other

quantum machine learning models perform worse than their non-quantum-based
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counterparts on the Mit dataset. In the Fb-forum dataset, all quantum-machine

learning-based models perform much better than their non-quantum learning-based

counterparts. The Q-NN algorithm outperforms NN on the Radoslaw-email dataset. The

outcome of Q-XGB is comparable to that of XGB. The results of the Q-LR and LR pair

and Q-RFC and RFC pair are nearly identical. Compared to Q-LDA, LDA performs

better. In comparison to GNB, Q-GNB produces superior results. On the Eu-core

dataset, Q-NN and Q-LR give better results than NN and LR, respectively. XGB, RFC,

LDA, and GNB give better performance than Q-XGB, Q-RFC, Q-LDA, and Q-GNB

respectively. On the CollegeMsg dataset, Q-NN and Q-XGB have marginally better

performance than NN and XGB. Q-LR performs better than LR, and Q-RFC performs

better than RFC. Compared to LDA and GNB, Q-LDA and Q-GNB produce better

results.

In terms of AUC, Q-NN perform better than NN while all other quantum-based

algorithms perform worse than their non-quantum-based counterparts on the Mit dataset.

On the Radoslaw-email dataset, all quantum-based machine learning models perform

better than their non-quantum-based counterparts. Even though Q-NN outperforms NN

in the Eu-core dataset, XGB and LR pair have comparable performance to Q-XGB and

Q-LR pair, respectively. RFC, LDA, and GNB have better performance than Q-RFC,

Q-LDA, and Q-GNB. On the CollegeMsg dataset, all quantum-based models have better

performance thair their non-quantum-based counterparts except LDA, which gives better

performance than Q-LDA.

Regarding the F1 score, all non-quantum-based machine learning models give better

results than their quantum-based machine learning counterparts on the Mit dataset. On

the Fb-forum dataset, the situation becomes precisely the reverse of the Mit dataset, such

that quantum-based machine learning models perform better. On the Radoslaw-email

dataset, Q-NN, Q-LR, Q-RFC, and Q-GNB gives better performance than NN, LR, RFC,

and GNB while other give worse. On the Eu-core dataset, Q-NN and Q-LR give better

performance than NN and LR. Other non-quantum-based machine learning models
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perform better than their quantum-based counterparts. On the CollegeMsg dataset,

Q-LR, Q-LDA, and Q-GNB have better performance than LR, LDA, and GNB. XGB

and RFC have better performance than Q-XGB and Q-RFC while the remaining NN

based pair is comparable.

In terms of Precision, Q-NN gives a superior result than NN on the Mit dataset. Other

than this exception, all other non-quantum-based machine learning models perform

better than quantum-based models. On the Fb-forum dataset, quantum-based machine

learning models perform better than their non-quantum-based counterparts except for the

LDA and Q-LDA pair, where this pattern is reversed. On the Radoslaw-email dataset,

Q-NN, Q-XGB, and Q-RFC have superior results than NN, XGB, and RFC. LR, LDA,

and GNB give better results than Q-LR, Q-LDA, and Q-GNB. On the Eu-core dataset,

NN outperforms Q-NN, while the non-quantum-based machine learning models

outperform the quantum-based ones for all other cases. On CollegeMsg dataset, Q-NN,

Q-XGB, Q-RFC give better results than NN, XGB and RFC, and LR, LDA and GNB

have better performance than Q-LR, Q-LDA and Q-XGB.

7.3.8 Performance comparison and analysis of Projected Quantum

Kernel based Link Prediction (PQKLP) model with various

state-of-the art algorithms

Table 7.8 compares the performance of the proposed PQKLP approach with four

state-of-the-art algorithms. For the Accuracy metric, the results of our three best

algorithm variations, i.e., PQKLP-RFC, PQKLP-XGB, and PQKLP-NN, are better than

N2V, WEAK, and CTDNE algorithms, falling only slightly behind XGB. For the AUC

metric, the results of the proposed PQKLP-RFC and PQKLP-NN are better than all

state-of-the-art algorithms for all datasets except Eu-core. In the Eu-core dataset, N2V

and WEAK slightly outperform the proposed algorithms. For the F1 score, the results of

PQKLP-RFC, PQKLP-NN, and PQKLP-XGB are better than all the state-of-the-art
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TABLE 7.8: Performance comparison and analysis of Projected Quantum Kernel based
Link Prediction (PQKLP) model with various state-of-the art algorithms

Datasets N2V WEAK CTDNE LGQ PQKLP-RFC PQKLP-XGB PQKLP-NN

AUC

Mit 0.69057 0.75855 0.61008 0.83272 0.8622 0.7505 0.8662
Fb-forum 0.85458 0.9182 0.70761 0.88449 0.9391 0.9006 0.9437

Radoslaw-email 0.77295 0.90627 0.79913 0.81328 0.9209 0.8455 0.9293
Eu-core 0.94527 0.97181 0.72765 0.91646 0.9411 0.8894 0.9454

CollegeMsg 0.70554 0.67802 0.55264 0.63538 0.8827 0.8072 0.8511

F1 Score

Mit 0.43384 0.48768 0.39541 0.728 0.7809 0.7543 0.7662
Fb-forum 0.55886 0.73225 0.39994 0.82953 0.9069 0.9015 0.9136

Radoslaw-email 0.45745 0.66927 0.50486 0.72753 0.8651 0.8470 0.8777
Eu-core 0.70746 0.82317 0.38405 0.84601 0.9055 0.8866 0.9151

CollegeMsg 0.40279 0.35695 0.24717 0.41832 0.7994 0.7988 0.7746

Precision

Mit 0.29159 0.51329 0.29692 0.70149 0.7656 0.7125 0.7709
Fb-forum 0.44561 0.8954 0.29888 0.87108 0.9132 0.9142 0.9280

Radoslaw-email 0.3184 0.73699 0.37426 0.79833 0.8601 0.8445 0.8697
Eu-core 0.57848 0.82944 0.25906 0.82414 0.9028 0.8928 0.9063

CollegeMsg 0.33454 0.78033 0.18709 0.78376 0.8842 0.8839 0.8373

Accuracy

Mit 0.50947 0.7818 0.58761 0.8722 0.7906 0.7442 0.7746
Fb-forum 0.80559 0.89733 0.69534 0.94461 0.9041 0.9000 0.9124

Radoslaw-email 0.61177 0.83337 0.69551 0.8993 0.8605 0.8455 0.8755
Eu-core 0.87149 0.93163 0.59771 0.9477 0.9062 0.8892 0.9154

CollegeMsg 0.73844 0.62566 0.63071 0.86546 0.7827 0.7827 0.7289

algorithms across all datasets. The precision score evaluation metric also follows the

same pattern like the F1 score, whereby the results of our proposed approaches are much

better than state-of-the-art algorithms in all cases. Out of all the proposed

quantum-based machine learning approaches, PQKLP-NN provides better results than

PQKLP-RFC in most cases. It’s worth noting that we only use features generated by five

typical link prediction methods in our approach, but state-of-the-art methods like LGQ

use several more. The number of dimensions used in embedding-based techniques is also

quite significant. As a result, we achieve better results in our suggested PQKLP with

considerably less data.

7.4 Conclusion

As a result of recent technological developments, the world is moving towards quantum

computing. In this paper, we propose a novel strategy for addressing the link prediction

problem using Projected Quantum Kernel (PQK) enhanced machine learning models,
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which utilize both local and global information for feature generation. The goal of our

research is to create a quantum-assisted feature-based new approach for link prediction

that integrates Projected Quantum Kernel (PQK) with machine learning models to

increase prediction performance. By using PQK, we enhanced our data using

high-dimensional Hilbert spaces to achieve improved link prediction. Quantum models

look at data in high-dimensional Hilbert spaces, to which in other cases we can only have

access through inner products revealed by measurements because they have a

mathematical structure that is similar to that of quantum mechanics. We compared the

experimental results of the proposed approach i.e Quantum enhanced Neural Network

(PQKLP-NN), Quantum enhanced XGBoost (PQKLP-XGB), Quantum enhanced

Logistic Regression (PQKLP-LR), Quantum enhanced Random forest classifier

(PQKLP-RFC), Quantum enhanced Linear discriminant Analysis (PQKLP-LDA) and

Quantum enhanced Gaussian Naive Bayes classifier (PQKLP-GNB) to those of

corresponding classical machine learning models. As validation of our feature set choice,

we also compared the results of the full feature set of link prediction with its individual

components, i.e., CN, JC, PA, AA and SP. The experimental results demonstrate that the

new quantum-assisted feature-based technique outperforms the corresponding machine

learning models for some cases, especially for PQKLP-NN and PQKLP-RFC. We used

four performance matrices on five well-known dynamic datasets to compare our

quantum-assisted methodology to individual link prediction approaches (in

quantum-enhanced setting) as well as state-of-the-art methods, demonstrating that the

suggested approach outperforms them in most cases. We can build on this work in the

future by experimenting with expanded feature sets, possibly embedding-based, and

feature ranking based on their performance in this framework. This work can also be

expanded to the domain of other types of networks such as multiplex and attributed ones.
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