
Chapter 6

Community Enhanced Link Prediction

in Dynamic Networks

This Chapter deals with a novel approach community enhanced framework to predict

missing links on dynamic social networks1. First, a link prediction framework is

presented to predict missing links using parameterized influence regions of nodes and

their contribution in community partitions. Then, a unique feature set is generated using

local, global, and quasi-local similarity-based as well as community information-based

features. This feature set is further optimized using scoring-based feature selection

methods to select only the most relevant features.

6.1 Introduction

The simplest link prediction indices are similarity-based indices, which produce a

similarity score S(x,y) for each pair of x and y. The score S(x,y) is determined by the

structural or node characteristics of the pair under consideration. Scores based on these

1Published in ACM, Transactions on the Web, Community Enhanced Link Prediction in Dynamic
Networks
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properties can be grouped into local, global, and quasi-local similarity measures. These

methods include common neighbors (CN), Adamic/Adar index (AA), Jaccard

Coefficient (JC), Preferential Attachment (PA), and so on. Global similarity-based

methods consider the whole network topological structure rather than local information,

so computational complexity is very high as compared to local similarity indices. Some

examples of global similarity measures are Shortest Path (SP), Cos+ (COSP), Matrix

Forest Index (MFI), and Average Commute Time (ACT). Quasi-local similarity-based

methods achieve a trade-off between both local and global information to improve

quality (compared to local measures) and decrease complexity (compared to global

measures) of prediction. Some examples are Local Path Index (LP), Path of Length-3

(L3), Clustering Coefficient based Link Prediction index (CCLP) and Node and Link

Clustering Coefficient (NLC).

Feature-based link prediction is performed on dynamic networks by dividing the

dynamic network into separate snapshots and then using similarity-based link prediction

algorithms to create features for current, and possible edges [147]. But this approach has

a fundamental flaw in that relations between nodes are not examined in terms of

communities to which the nodes belong. It has been suggested in the literature that nodes

belonging to the same community have a higher chance of forming a link between

themselves [40]. The method proposed by Singh et al. [40] creates communities using

information diffusion-based label propagation and then performs link prediction using

this community information. The method is shown to be significantly different from both

local and quasi-local similarity-based link prediction using statistical tests. One possible

reason is that community detection in itself becomes a social network mining method in

which both local and global information is referenced to find communities in a graph.

Using this reasoning, in this paper, we propose a link prediction feature set that uses

features having characteristics of both traditional similarity-based methods and ones

having community information-based quantification.

The primary motivation behind the framework of link prediction proposed in this work is
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two fold: 1) proposing a similarity calculation method that uses community information

to create a feature that has references both local and global information, 2) studying

different community detection methods and comparing their effect to the overall link

prediction problem on dynamic networks. In this paper, we utilize two different classes

of features, i.e., traditional similarity-based (twelve features) and community

information-based (eight features). We combine these features to create a feature set that

gives enhanced results compared to conventional link prediction algorithms. These

feature sets are used to train four different machine learning models for classification -

Neural Network (NN), XGBoost (XGB), Linear Discriminant Analysis (LDA), and

Random Forest-based Classifier (RFC). This enhanced feature set (also called

COMMLP− FULL in this work) is then optimized using feature selection such that

features with low significance are dropped. We used feature scoring based on three

distinct approaches for this feature selection - tree classifier-based scoring, mutual

information-based regression and F-regression estimation. The result is an optimized

feature set (also called COMMLP − DY N and COMMLP in this paper) whose

performance is compared to three state-of-the-art algorithms [131, 132, 147]. We

performed experiments using six different datasets with three evaluation matrices and

these experiments indicate that our proposed technique considerably enhances

performance.

The main contributions of this paper are as follows:

• We propose a community information-based feature estimation and link prediction

method applied to dynamic graphs in a per snapshot feature estimation-based

setting.

• We compare and contrast the relevance of eight different community detection

methods for community information-based feature estimation. This highlights how

some classes of community detection algorithms are more suitable for the link

prediction task and others that should be avoided for such frameworks.
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• These community information-based are used in combination with other local,

global, and quasi-local similarity-based features for enhancing link prediction in

dynamic networks.

• The enhanced feature set (COMMLP− FULL) is compared individually with

twelve classical link prediction algorithms (four local, four global, and four

quasi-local similarity-based), which shows the improvement in performance in the

per snapshot feature estimation and machine learning classification based setting.

• We perform feature selection on the COMMLP− FULL feature set to create

COMMLP − DY N, which only contains the most relevant features for link

prediction. Finally, COMMLP− DY N is compared with three state-of-the-art

algorithms [131, 132, 147], which shows its improved performance.

• All experiments are performed using six datasets and three separate Ratio values

(representing the training edges to total edges percentage for training testing set

creation). Four different machine learning algorithms are used to estimate better

the effect of feature changes on the overall link prediction process.

6.1.1 Community Detection

A community can be defined as a deeply linked group of entities. Communities are often

used as a form of abstraction where an extremely large sparse graph is converted into

strongly connected smaller sub-graphs to make graph processing more manageable.

These communities are used in different domains for different purposes [157]. Several

approaches have been proposed for community detection in the past few decades, which

can be broadly classified into four categories [13] -

• Modularity optimization-based approaches. These approaches mainly focus on

identifying communities based on density whose quality can be estimated using

modularity. Modularity is defined as the difference of connections between nodes
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within a community to the total number of connections of the same nodes.

Newman [158] introduced the concept of using modularity for community

detection, which was later extended by Yu and Ding [159] using spectral clustering

and by Agarwal and Kempe [160] using heuristic search.

• Information theory-based approaches. The dense communities in this approach

are found by identifying sets of nodes sharing some standard features. These

approaches can be seen as being similar to clustering methods of the data mining

domain. This concept has been combined with random walks [161] as well as node

vectors [162] and semantic information [163].

• Network topology-based approaches. These approaches are based on overall node

arrangement in a network, such as isolated network components are created by

removing sparse bridges that connect these components. Centralities and vertex

similarities can also be used. Newman [164] proposed an edge betweenness and

split betweenness-based algorithm to find communities. Xie and Szymanski [165]

and Zhang et al. [166] proposed another such algorithm based on vertex similarity.

• Hierarchical structure-based approaches. These approaches are based on

similarity measures such that nodes are grouped based on the presence or absence

of such measures. Raghavan et al. [167] proposed one such algorithm based on

label propagation, while Zhang et al. [168] proposed another such method based

on graph diffusion. Xun et al. [169] proposal was based on latent community

discovery, while Wei et al.’s [170] proposal was based on spectral clustering and

random walks.

6.1.2 Community-based Feature Generation Methods

Community detection methods are used to divide a graph into partitions such that

intra-community similarity is minimized and inter-community similarity is maximized.
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FIGURE 6.1: Structure of snapshots of a dynamic network at different time intervals
(green nodes are nodes common with previous snapshot and red nodes are the nodes

being added in current snapshot)

T1 T2 Tn

Time

Different measures are usually used to calculate the fitness of a community such as

modularity, surprise, significance, etc. The following are examples of community

detection methods used in this paper.

• Diffusion Entropy Reducer (DER). Kozdoba and Mannor [171] proposed a node

embedding based community detection algorithm. The algorithm uses random

walks to embed the graph in a space of measures. This step produces node

embeddings, on which a modification of k-means is used to predict communities.

The algorithm is highly distrbutable and the node embeddings, which preserve the

network structure in a low dimensional space, can be further used for other

purposes such as influence maximization.

• Surprise communities (SURP). This community detection method was proposed

by Traag et al. [172], where the authors have proposed a new method called

surprise to estimate the quality of network partitions. They propose an

approximation method to optimize surprise. This surprise is free of the limit of

identifying small communities which plagues modularity based algorithms, and

hence is more discriminate in identifying communities for sparse networks.

• Stochastic Block Model (SBM). This method was proposed by Peixoto et al. [173]

in which communities of a graph are identified using a stochastic block model. This
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method is especially useful in identifying smaller communities which are removed

from consideration in greedy hierarchical structure based methods. This method

is based on the principle of parsimony, which filters noise from the overall model,

thus preventing the identification of noise based communities.

• LEIDEN. This community detection method was proposed by Traag et al. [174]

which gives communities with guarantee of connections between them. Also, it

provides convergence guarantee for partitions such that all subsets of all

communities are locally optimized. The authors have modelled this method to

address anamolies in the Louvain algorithm and this algorithm works better than

and also in a more time efficient manner than Louvain.

• Significant communities (SIGNI). This community detection method was

proposed by Traag et al. [175] in which the underlying modular structure of a

graph is exploited for community detection. This method also incorporates the

concept of significance for detecting thresholds of community detection. As a

result, the final communities can be said to give the greatest gain in overall

encoding of the graph. Significance can viewed as an alternate to modularity for

estimation of community fitness.

• Constant Potts Model (CPM). Traag et al. [176] proposed a

“resolution-limit-free” method (unlike standard modularity based methods) where

instead of being compared to a random null model, the whole graph is compared to

a constant factor. The main task of community detection is divided into optimizing

internal and external densities with a boundary variable. The communities itself

can be considered to be independent from the actual graph.

• Eigenvector (EIGEN). Newman [177] proposed a recursive algorithm which

works on the principle of modularity maximization. This maximization is carried

out on eigenvectors of the modularity matrix, almost like the process of calculating

Laplacian matrix for graph partitioning. This process can also be viewed as greedy

modularity optimization of eigenspectrum.
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• Greedy Modularity (GREED). Clauset et al. [178] proposed this method which

is a hierarchical community detection algorithm, i.e., at each step of iteration, two

communities with highest contribution to the global modularity are merged to create

a bigger community till a certain threshold is achieved across all communities.

6.1.3 Classification Models

To make use of network topological properties and attribute information, the link

prediction problem is considered as a learning-based model. A vertex-pair in the network

corresponds to a point (training data), and the label of the point indicates whether or not

there is an edge (connection) between the vertex-pairs. The problem is treated as a

supervised classification model, in which a point (training data) corresponds to a network

vertex-pair and the label of the point denotes the existence or absence of an edge

(connection) between the pair. This is usually a binary classification task in which many

classifiers (e.g., Neural Network (NN), XGBoost (XGB), Linear Discriminant Analysis

(LDA), and Random Forest Classifier (RFC)) are used to predict the label of unknown

data points (corresponding to missing links in the network) [147, 179, 180]. The

selection of relevant feature sets is one of the primary concerns of the machine learning

approach [181]. The vast majority of existing research extracts feature sets from network

topology (i.e., topological information of the network) [77, 182]. These features are

general and cross-domain, and they can be used in any network. Common neighborhood

and path-based features are examples of such features. Other research focuses on

extracting node and edge information, which is important for improving link prediction

performance [77, 183].
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6.2 Proposed work

This section discusses the proposed framework COMMLP−DY N, which proposes a

community-enhanced feature set for link prediction in dynamic networks. The outline of

our proposed feature set generation is shown in Fig. 6.2. The figure outlines the feature

generation process from snapshots of the dynamic network. We propose two broad

classes of features - topological similarity-based (local L1, ...,L4, global G1, ...,G4 and

quasi-local Q1, ...,Q4) as well as community information-based (LS1, ...,LS8). First, four

dynamic network snapshots T1,T2,T3,T4 are used to generate twelve topological features

based on local, global, and quasi-local similarity indices. Also, eight community-based

features are generated based on the three-degree theory. Then we have utilized these

twenty features (twelve topological features and eight community-specific features) for

training machine learning models NN, XGB, LDA, and RFC for the COMMLP−FULL

prediction model. We have also presented another version of the proposed solution

COMMLP−DY N by applying feature selection methods TREECL, KBMIR & KBREG

to optimize the feature to enhance the link prediction accuracy. The community

information-based features are derived using 3-degrees-of-influence theory [184, 185] on

the community partitions of the graph. The 3-degrees-of-influence theory states that the

influence of a central node can be perceived at a maximum distance of three hops from it.

Using this theory, we find two nodes’ common regions of influence. This common

region of influence is then evaluated using community partitions for a quantitative

measure of rigidity. This is the community information-based link prediction

(likelihood) score. The feature set which contains all features, i.e., four local (L1, ...,L4),

four global (G1, ...,G4), four quasi-local (Q1, ...,Q4) similarity-based and eight

community information-based (LS1, ...,LS8), is termed as COMMLP − FULL.

COMMLP−DY N is the optimized form of the COMMLP− FULL feature set that is

created after performing feature scoring-based elimination.
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6.2.1 Topological Feature Generation

Topological similarity-based features are features which are generated directly from

snapshots of the dynamic graph using traditional link prediction algorithms. Most of the

features we have selected have been used in some combination in the literature

[131, 147, 179, 180] and have proved to be highly successful for link prediction in

dynamic networks. The local similarity-based methods are Common Neighbors (CN),

Adamic/Adar Index (AA), Jaccard Coefficient (JC), and Preferential Attachment (PA),

which are represented as L1,L2,L3,L4 respectively. Global similarity-based methods are

Shortest Path (SP), Cos+ (COSP), Matrix Forest Index (MFI), and Average Commute

Time (ACT), which are represented as G1,G2,G3,G4 respectively. Quasi-local

similarity-based methods are Local Path Index (LP), Path of Length 3 (L3), Clustering

Coefficient based Link Prediction (CCLP) and Node and Link clustering coefficient

(NLC), which are represented as Q1,Q2,Q3,Q4 respectively.

6.2.2 Community-based Feature Generation

In this section, we provide the methodology of generating community information-based

link prediction features. For this we take the community detection algorithm as input

parameter and generate different sores for different algorithms accordingly. The

calculation of community information-based link prediction features can be broadly

divided into three parts.

• Community Detection. Using some common community detection algorithms

described in Section 6.1.2, we divide the graph into separate non-overlapping

communities. A point to be noted here is that all nodes are considered to be part of

some community, even if the community has a single node as its membership. The

partitions are represented as NCL1, ...NCLm (node community labels) where m is

the total number of partitions. The nodes are related to the community labels using
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the notation CL(x) = NCLm, where the community label of node x is NCLm. A

further extension to this notation is the type of community detection algorithm

used to generate communities on graph, i.e., CLCOM(x) = NCLCOM
m , where COM is

the community detection method from DER, SURP, SBM, LEIDEN, SIGNI,

CPM, EIGEN, & EIGEN (explained in Section 6.1.2). For example,

CLSBM(x) = NCLSBM
4 , represents that when stochastic block model-based

community detection was used on graph, node x was assigned node label NCL4.

The total nodes in each community are also stored in dictionary with notation

NodeCount(NCL1) which represents total number of nodes with community label

NCL1 and NodeCount(CLCOM(x)) is number of nodes with same label (same

community) as node x when using COM community detection algorithm.

• Common Influence Region Estimation. The 3-degrees-of-influence theory

[184, 185] states that the influence of a central node can be perceived at a

maximum distance of three hops from it. Using this theory, we find two nodes’

common region of influence. The node neighborhoods are represented by notation

HOP− n(X) where n is the number of hops the other node is maximum distant

from node X . We can take an example of nodes X&Y in Fig. 6.3. Here

HOP − 1(X)={1,2,5,6} and HOP − 2(X)=HOP − 1(X) ∪ {3,7}. Similarly,

HOP− 1(Y )&HOP− 2(Y ) can be defined. In this figure based example we

assume that influence of a central node extends to 2 hops from it, then common

influence region of nodes X&Y , CIR(X ,Y )=HOP−2(X)∩HOP−2(Y )={1,3,5}.

In actual formulation and experiments, by 3-degrees-of-influence theory,

CIR(X ,Y )=HOP−3(X)∩HOP−3(Y ).

• Link Likelihood Score Estimation. The link likelihood estimation part of our

proposal is based on the rigidity of the common influence region between two

nodes. We can infer how much effect the nodes of the same community have on

the common influence region through the rigidity concept. Hence we estimate the

normalized effect of each community on the CIR, using the total number of nodes

in each community as a normalization factor. One special case is introduced,
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FIGURE 6.3: Example of Common Influence Region of nodes X&Y (represented as
orange color nodes 1,3,5) when influence is assumed to be spread to 2-hop region from

the central node - CIR(X ,Y ).
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which skips the normalization step. This is the case when community node labels

of the two nodes between which likelihood is to be estimated match with the

community node label of the node within the common influence region. Equation

6.1 gives the exact calculation procedure for community information-based link

prediction measure (for community detection method COM).

LS(x,y)COM = ∑
n∈CIR(x,y)


1, iff CLCOM(x) ==CLCOM(y)

==CLCOM(n)

1
NodeCount(CLCOM(n)) , otherwise

(6.1)

This equation represents the main additional complexity of our approach. After

community detection of the entire graph, the determination of common influence

region between two nodes (CIR(x,y)) determines the overall link prediction score.

The common influence region calculation involves matching 3 Degree of Influence

regions of of nodes x&y. Assuming that determination of common neighbors

between two nodes depends on the average degree of graph (Davg) such that its
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complexity is O(Davg) (matching two neighbor lists of Davg length), the overall

complexity of calculating common influence region would be O(D3
avg).

6.2.3 Feature Set Engineering and Link Prediction

The combination of local, global, quasi-local similarity-based and community

information based features (L1,L2,L3,L4, G1,G2,G3,G4, Q1,Q2,Q3,Q4,

LS1,LS2,LS3,LS4,LS5,LS6,LS7,LS8) is the enhanced feature set COMMLP− FULL.

The steps for using this enhanced feature set for link prediction are as follows:

• In the first step, the overall graph’s edge list is utilized as input. It’s made up of

the network’s whole edge list, which includes source and target nodes as well as a

timestamp for when the edge happened.

• We divide the entire edge list into equal-time interval snapshots (G0,G1, ...,Gn). In

order to make the time difference between each snapshot nearly equal, we divide

the dataset’s whole time range (the moment the first and last edges appear) into

equal-sized pieces. Each snapshot features edges that are exclusive to this time

period.

• For our analysis, we used five snapshots. We combine the most recent snapshot with

the randomized non-existing edges to create our training and testing edge lists. To

better measure performance change of algorithm with associated information, the

combined set of true and non-existing edges is randomly separated into training and

testing edge sets, with the ratio of a number of training edges to all edges ranging

between 0.7&0.9.

• The following phase entails developing edge features based on snapshots for each

edge of the training and testing edge sets. The feature set is based on local

similarity-based features, global similarity-based features explained in Section,

quasi-local similarity-based features explained in Section 6.1, and our newly
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proposed community information-based features presented in Section 6.2.2 which

makes a total of twenty features.

• Depending on whether an edge exists in the training or testing subset, we divide the

data into training and testing sets. Five snapshots were taken in total, with the class

label being determined from the fifth snapshot. Four of the snapshots were used to

create features.

• The training data is then fed into machine learning models, which consist of Neural

Network (NN), XGBoost (XGB), Linear Discriminant Analysis (LDA), Random

Forest Classifier (RFC). These models are then used to predict the probabilities of

existing edges on the test subset.

• Finally, we use three performance matrices to contrast our proposed COMMLP

approach against state-of-the-art algorithms.

6.2.4 Feature Reduction

Feature reduction is used to enhance the performance of COMMLP−FULL feature set by

eliminating less relevant features. The final feature set created after scoring-based feature

elimination from COMMLP−FULL is called COMMLP−DY N. The feature relevance

scores have been calculated using two separate techniques.

• Extra Trees Classifier (TREECL) This method is a meta estimator that employs

averaging to increase prediction accuracy and control over-fitting by fitting a

number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of

the dataset [156]. The total decrease (normalized) of the criteria brought by a

characteristic is used to calculate its significance. It’s also known as Gini’s

significance.

• Mutual information (KBMIR). A non-negative quantity that reflects how reliant

two random variables are on each other is called mutual information [186, 187]. It
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calculates how much information can be gleaned from one random variable given

another. It is 0 if and only if two random variables are independent, whereas higher

values suggest greater dependency. Non-parametric approaches based on entropy

estimates from k-nearest neighbors distances are used for scoring. Under the

condition of target estimation, it may be stated to quantify entropy reductions.

• F-regression (KBREG). If every feature is positively correlated with the target,

F − regression, which is derived from R− regression, will rank the features in the

same order [156]. However, please note that r regression values, in contrast to

F − regression, are in the [-1, 1] range and might thus be negative. Therefore,

regardless of the direction of the connection with the target variable, F− regression

is advised as a feature selection criterion to uncover potentially predictive features

for a downstream classifier.

6.2.5 Algorithm Description

The Algorithm 5 demonstrates how the likelihood of possible edges is calculated using

our proposed COMMLP−DY N approach. The input to the algorithm is the dynamic

graph in snapshot form Gi | i ∈ (1,n). The output is the likelihood probability of possible

edges using both COMMLP−FULL and COMMLP−DY N feature sets. The algorithm

can be divided into three major modules - initialization (lines 1-3), feature generation

and reduction (4-14), and training and testing machine learning model phase (lines

15-22). We create graphs from snapshots (line 1) in the initialization phase and generate

training and testing edge sets (lines 2,3). In lines 4-8, we calculate the similarity-based

link prediction scores for training edges. In lines 9-12, we calculate community

information-based link prediction scores for training edges. Line 12 is the concatenation

of all features to create COMMLP− FULL feature set, and line 14 is feature scoring

based reduction of COMMLP−FULL to create COMMLP−DY N. Lines 15-17 train

machine learning-based classification models using these feature sets created on the
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Algorithm 5: COMMLP-DYN: Community Enhanced Link Prediction Algorithm for
Dynamic Networks
Input: Social Networks: Gi(Vi,Ei), 0≤ i≤ 4, Ratio: Training edges to total edges

percentage
Output: Likelihood Score of Possible Links

1 Generate graphs [T1, . . . ,T5] for different snapshots [S1, . . . ,S4] for training and
testing.

2 ETOTAL← E4∪non edges of 4-th snapshot . Possible true and false edges
3 ET RAIN ,ET EST ← ETOTAL. Possible edges randomly divided into training and testing

sets on basis of Ratio variable
4 . Calculating topological features
5 for each edge (x,y) ∈ ET RAIN do
6 Li=1..4(x,y)←{CN,JC,AA,PA} . Local Features
7 Gi=1..4(x,y)←{SP,COSP,MFI,ACT} . Global Features
8 Qi=1..4(x,y)←{LP,L3,CCLP,NLC} . Quasi-Local Features

9 [CF1,CF2, . . . ,CF8]← Identify node community labels using eight community
detection methods DER, SURP, SBM, LEIDEN, SIGNI, CPM, EIGEN, and
EIGEN. . Community Label

10 for each edge (x,y) ∈ ET RAIN do
11 for i= 1 to 8 do
12 LSi(x,y)← Community Information-based Features . Using Eq. 6.1

13 COMMLP−FULL← [L1, . . . ,L4,G1, . . . ,G4,Q1, . . . ,Q4,LS1, . . . ,LS8] . Full
feature-set

14 COMMLP−DY N← Generate a reduced feature-set [F1,F2, . . . ,F12] using feature
scoring based on TREECL and KBMIR methods

15 for i ∈ {NN,XGB,LDA,RFC} do
16 Model−Fulli← Fit(COMMLP−FULL) . Training model on full feature-set
17 Model−Optii← Fit(COMMLP−DY N) . Training model on reduced

feature-set
18 . Creation of COMMLP−FULL&COMMLP−DY N feature sets for testing edge set

ET EST
19 for each (u,v) ∈ ET EST do
20 for i ∈ {NN,XGB,LDA,RFC} do
21 LSi

FULL(u,v)←Model−Fulli(PredictProbab(u,v)) . Probability prediction
based on full feature-set

22 LSi
OPT I(u,v)←Model−Optii(PredictProbab(u,v)) . Probability prediction

based on reduced feature-set

23 Return LSi
FULL,LSi

OPT I;

training edge set. In line 18, we create COMMLP−FULL&COMMLP−DY N for the

testing edge set using the same procedure for the training edge set (lines 4-13). In lines
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19-22, we estimate probabilities of testing edges using both feature sets,

COMMLP−FULL&COMMLP−DY N.

6.2.6 Demonstration with Example

FIGURE 6.4: Example Graph for Feature Calculation
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In this section, we provide an example graph and demonstrate the calculation process for

the proposed community-based link prediction feature by using Equation 6.1. Fig. 6.4

provides the demonstrative graph we use for calculations. This graph has nine nodes

numbered from 1−9 divided into two assumed community partition sets, {1,2,3,4} and

{5,6,7,8,9}. The true edges of the graph are represented with solid lines, and dashed

lines represent the non-edges we will use in our example. Table 6.1 provides this graph’s

localized edge features of all true and non-edges. Columns labelled CN, JC, PA, AA, SP,

L3, CCLP, and NLC contain the feature values calculated using classical link prediction

algorithms. The column labeled COM − DY N gives value for the proposed

community-based link prediction feature, and other columns provide the information

required for its calculation. First, let us consider intra-community non-edges, i.e.,

possible edges inside the same community. Let us take the example of a possible edge

between nodes 2&4 (shown with a dashed line inside COMMUNITY − 1). Since this is

an intra-community edge, the labels of the endpoints (CL−COM(2) and CL−COM(4))

are the same. Also the nodes within 3-hop region of influence of nodes 2&4 are,
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HOP−3(2)={1,3,4,5,6,7} and HOP−3(4)={1,2,3,5}. The common influence region

of nodes 2&4 (CIR(2,4)) is set {1,3,5}. This CIR has been calculated using

methodology explained in Section 6.2.2 and Fig. 6.3. The CIRs and community labels

for all possible node pairs can be found listed in Table 6.1. In CIR(2,4), nodes 1&3

belong to the same community and hence each of their individual contribution is equal to

1 (using Equation 6.1). For node 5, the second case of Equation 6.1 applied whereby the

node contribution becomes 1
NodeCount(CL−COM(5)) which is equal to 0.2. Hence the

COM−DY N for node pair 2&4 becomes 2.2. Let us take another case of node pair 5&8

in COMMUNITY −2. The community labels are same and CIR(5,8) is the set {6,9,7}

(from Table 6.1). Since all nodes of this set belong to COMMUNITY − 2 itself then

COM−DY N for this node pair would be 3. Now let us take example of edge pair 3&8

which is an inter-community edge, i.e., the end points of this edge belong to different

communities. The CIR(3,8) set for this pair is {5,6} (from Table 6.1). Since both nodes

5&6 belong to COMMUNITY − 2 and number of nodes in this community is 5 then
1

NodeCount(CL−COM(5)) = 1
NodeCount(CL−COM(6)) = 0.2. Hence the COM − DY N for

inter-community node pair 3&8 would be 0.4. Apart from the calculation of

COM −DY N features, the formulae for calculation of other link prediction methods

shown in Table 6.1. Taking the case of non-edges discussed above,

CN(2,4)=|Γ(2) ∩ Γ(4)|=|{1,3,5} ∩ {1,3}|=|{1,3}|=2 and

PA(2,4)=|Γ(2)| ∗ |Γ(4)|=|{1,3,5}| ∗ |{1,3}|=3 ∗ 2=6. Here, Γ(x) represents immediate

neighbor set of node x. We can make a final observation from Table 6.1 by noting that in

many cases of non-edges, immediate common neighbor-based similarities, as well as

path and clustering-based similarities, do not provide much information for prediction

(value 0 in non-edges between nodes 1&6, 1&7, 1&8, etc.). Even in those cases, the

COM−DY N feature provides some measure for the possibility of edge existence.
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TABLE 6.1: Scoring of different link prediction methods in comparison to our proposed
feature in example graph (CIR(X ,Y ) is Common Influence Region between X&Y , CL−
COM(X)&CL−COM(Y ) are community labels of X&Y and COMMLP−DY N is the

feature calculated using this information)

Category Edge(X-Y) CN JC PA AA SP L3 CCLP NLC CIR(X,Y) CL-COM(X) CL-COM(Y) COM-DYN

TRUE EDGES

1 - 2 1.0 0.2 9.0 0.9 1.0 2.2 0.7 1.0 3, 4, 5, 6 1 1 2.40
1 - 3 2.0 0.5 9.0 2.4 1.0 1.8 1.3 2.3 2, 4, 5, 6 1 1 2.40
1 - 4 1.0 0.3 6.0 0.9 1.0 1.8 0.7 1.0 2, 3, 5 1 1 2.20
2 - 3 1.0 0.2 9.0 0.9 1.0 2.2 0.7 1.0 1, 4, 5, 6 1 1 2.40
2 - 5 0.0 0.0 6.0 0.0 1.0 1.5 0.0 0.0 1, 3, 4, 6, 7, 9 1 2 1.35
3 - 4 1.0 0.3 6.0 0.9 1.0 1.8 0.7 1.0 1, 2, 5 1 1 2.20
5 - 6 0.0 0.0 6.0 0.0 1.0 1.6 0.0 0.0 1, 2, 3, 7, 8, 9 2 2 3.75
6 - 7 0.0 0.0 6.0 0.0 1.0 2.2 0.0 0.0 8, 9, 2, 5 2 2 3.25
6 - 9 0.0 0.0 6.0 0.0 1.0 2.2 0.0 0.0 8, 2, 5, 7 2 2 3.25
7 - 8 0.0 0.0 4.0 0.0 1.0 1.8 0.0 0.0 9, 5, 6 2 2 3.00
8 - 9 0.0 0.0 4.0 0.0 1.0 1.8 0.0 0.0 5, 6, 7 2 2 3.00

NON EDGES

1 - 5 1.0 0.3 6.0 0.9 2.0 0.3 0.3 0.2 2, 3, 4, 6 1 2 0.95
1 - 6 0.0 0.0 9.0 0.0 3.0 0.4 0.0 0.0 2, 3, 5 1 2 0.70
1 - 7 0.0 0.0 6.0 0.0 4.0 0.0 0.0 0.0 2, 5, 6 1 2 0.65
1 - 8 0.0 0.0 6.0 0.0 5.0 0.0 0.0 0.0 5, 6 1 2 0.40
1 - 9 0.0 0.0 6.0 0.0 4.0 0.0 0.0 0.0 2, 5, 6 1 2 0.65
2 - 4 2.0 0.7 6.0 1.8 2.0 0.7 1.3 1.3 1, 3, 5 1 1 2.20
2 - 6 1.0 0.2 9.0 1.4 2.0 0.0 0.0 0.0 1, 3, 5, 7, 9 1 2 1.10
2 - 7 0.0 0.0 6.0 0.0 3.0 0.4 0.0 0.0 9, 5, 6 1 2 0.60
2 - 8 0.0 0.0 6.0 0.0 4.0 0.0 0.0 0.0 9, 5, 6, 7 1 2 0.80
2 - 9 0.0 0.0 6.0 0.0 3.0 0.4 0.0 0.0 5, 6, 7 1 2 0.60
3 - 5 1.0 0.3 6.0 0.9 2.0 0.3 0.3 0.2 1, 2, 4, 6 1 2 0.95
3 - 6 0.0 0.0 9.0 0.0 3.0 0.4 0.0 0.0 1, 2, 5 1 2 0.70
3 - 7 0.0 0.0 6.0 0.0 4.0 0.0 0.0 0.0 2, 5, 6 1 2 0.65
3 - 8 0.0 0.0 6.0 0.0 5.0 0.0 0.0 0.0 5, 6 1 2 0.40
3 - 9 0.0 0.0 6.0 0.0 4.0 0.0 0.0 0.0 2, 5, 6 1 2 0.65
4 - 5 0.0 0.0 4.0 0.0 3.0 0.7 0.0 0.0 1, 2, 3 1 2 0.75
4 - 6 0.0 0.0 6.0 0.0 4.0 0.0 0.0 0.0 1, 2, 3, 5 1 2 0.95
4 - 7 0.0 0.0 4.0 0.0 5.0 0.0 0.0 0.0 2, 5 1 2 0.45
4 - 8 0.0 0.0 4.0 0.0 6.0 0.0 0.0 0.0 5 1 2 0.20
4 - 9 0.0 0.0 4.0 0.0 5.0 0.0 0.0 0.0 2, 5 1 2 0.45
5 - 7 1.0 0.3 4.0 0.9 2.0 0.0 0.0 0.0 8, 9, 2, 6 2 2 3.25
5 - 8 0.0 0.0 4.0 0.0 3.0 0.8 0.0 0.0 9, 6, 7 2 2 3.00
5 - 9 1.0 0.3 4.0 0.9 2.0 0.0 0.0 0.0 8, 2, 6, 7 2 2 3.25
6 - 8 2.0 0.7 6.0 2.9 2.0 0.0 0.0 0.0 9, 5, 7 2 2 3.00
7 - 9 2.0 1.0 4.0 2.4 2.0 0.0 0.0 0.0 8, 2, 5, 6 2 2 3.25

6.3 Result Analysis

In this section, we’ll explore the experimental results from six well-known dynamic

datasets using three evaluation metrics, AUC, AUPR and AVG PREC. We evaluate and

analyze the performance of the proposed COMMLP technique individually as well as

three state-of-the-art algorithms with four different machine learning models (NN, XGB,

LDA, and RFC). As state-of-the-art algorithms, we have selected three feature-based link

prediction algorithms. The first algorithm is the one proposed by Mukesh et al. [147],

referred to as LGQ in this paper. Chiu et al.’s [131] proposal is the second algorithm that

is employed in this framework and is referred to as WEAK in this work. The third
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state-of-the-art algorithm in this paper is N2V, which is taken from work by De Winter et

al. [132].

Additionally, we have evaluated the feature scores of community-based features and

individual link prediction features. We have enhanced the proposed approach based on

the feature score. In this section, we’ll explore the experimental results from six

well-known dynamic datasets using three evaluation metrics. The evaluation of

performance is accomplished using three different training and testing ratios, which are

0.7,0.8,&0.9. We employ Python’s Scikit-learn package’s default settings for our

predictive models [156].

6.3.1 Performance comparison of COMMLP−FULL with individual

feature based methods using Neural Network model

Table 6.2 compares the performance of the COMMLP−FULL feature set with twelve

individual link prediction algorithm-based feature sets on five datasets and three Ratio

values on an Neural Network-based classifier. The learning rate we used to train the

model is 0.001. We trained the model for 5 epochs with a batch size of 32. We employed

2 layers, each with 1024 RELU activators, a learning rate of 0.001, 5 epochs, and a batch

size of 32 samples for the hidden layer architecture.

With respect to the AUC performance metric, our proposed COMMLP−FULL feature

set is the seventh-best performing algorithm behind SP, COSP, MFI, L3, LOCALP, NLC

and CCLP. In the AUPR metric, our algorithm performs worse than global

similarity-based algorithms, SP, COSP, and MFI. In EU-Core, FB-Forum, and

CollegeMsg datasets, it is outperformed by the L3 algorithm and also by NLC and CCLP

algorithms only in EU-Core dataset. In the Average Precision (AVG PREC) metric, the

performance of our algorithm follows a similar pattern to the AUPR metric, where it is

consistently outperformed by global similarity-based features. In EU-Core, FB-Forum,

and CollegeMsg datasets, it is outperformed by the L3 algorithm and also by NLC and
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CCLP algorithms only in EU-Core dataset. We can observe from the Neural Network

model that there is a scope for improvement of our algorithm.

6.3.2 Performance comparison of COMMLP−FULL with individual

feature based methods using XGBoost model

Table 6.3 compares the performance of the COMMLP−FULL feature set with twelve

individual link prediction algorithm-based feature sets on five datasets and three Ratio

values on an XGBoost-based classifier. For this classification, we employed 50 estimators

with a learning rate of 0.01.

With respect to the AUC performance metric, our proposed COMMLP−FULL feature

set outperforms all other individual link prediction features for all datasets and Ratio

values except one. That is Ratio = 0.9 for the CollegeMsg dataset, where it is slightly

outperformed by L3 and SP, but the values are still very close. Both SP and COSP

algorithms show a consistently high performance across all datasets, and Ratio values are

only slightly worse than COMMLP− FULL. In the AUPR performance metric, our

algorithm COMMLP−FULL is the best performing algorithm in MIT and FB-Forum

datasets and second-best in other datasets. In Radoslaw-Email, EU-Core, and

CollegeMsg datasets, the SP algorithm slightly outperforms our COMMLP− FULL

algorithm. In the Average Precision (AVG PREC) metric, the performance of

COMMLP−FULL follows a similar pattern as to the AUPR metric, where it is the best

performing algorithm in MIT and FB-Forum datasets and the second-best algorithm in

the rest of the datasets.
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6.3.3 Performance comparison of COMMLP−FULL with individual

feature based methods using Linear Discriminant Analysis

model

Table 6.4 compares the performance of the COMMLP−FULL feature set with twelve

individual link prediction algorithm-based feature sets on five datasets and three Ratio

values on a Linear Discriminant Analysis-based classifier.

We have used default Scikit-Learn [156] implementation for this classifier.

With respect to the AUC performance metric, our proposed COMMLP−FULL feature

set outperforms all other individual link prediction features for all datasets and Ratio

values. The AUC values of individual feature-based link prediction algorithms are also

quite high when compared with other machine learning models. In the AUPR

performance metric, our proposed COMMLP−FULL feature set outperforms all other

individual link prediction features for all datasets and Ratio values. Other algorithms

which show decent performance in this metric are SP, L3, NLC, and CCLP for datasets

MIT, Radoslaw-Email, and EU-Core. For FB-Forum and CollegeMsg, COSP and MFI

show much better performance than SP, NLC and CCLP. In the Average Precision (AVG

PREC) performance metric, our proposed COMMLP−FULL feature set outperforms all

other individual link prediction features for all datasets except EU-Core. In EU-Core

dataset, COMMLP−FULL is slightly outperformed by SP for Ratio = 0.7,0.8.

6.3.4 Performance comparison of COMMLP−FULL with individual

feature based methods using Random Forest Classifier model

Table 6.5 compares the performance of the COMMLP−FULL feature set with twelve

individual link prediction algorithm-based feature sets on five datasets and three Ratio
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values on a Random Forest-based classifier. We have used 100 estimators as a setting to

create this classifier and used the default Scikit-Learn implementation.

With respect to the AUC performance metric, our proposed COMMLP−FULL feature set

outperforms all other individual link prediction features for all datasets and Ratio values.

Some global similarity-based feature-based link prediction methods, i.e., SP, COSP, and

MFI, show significantly better performance than other individual link prediction features.

L3, which is a quasi-local similarity-based, is also a feature with exceptional performance,

just behind the global similarity-based features. With respect to the AUPR metric, our

proposed COMMLP−FULL feature set outperforms all other individual link prediction

features for all datasets and Ratio values. Some global similarity-based feature-based

link prediction methods, i.e., SP, COSP, and MFI, show significantly better performance

than other individual link prediction features. L3, which is a quasi-local similarity-based,

is also a feature with exceptional performance, just behind the global similarity-based

features. In the Average Precision (AVG PREC) metric, our proposed COMMLP−FULL

feature set outperforms all other individual link prediction features for all datasets and

Ratio values.

6.3.5 Comparison of Individual and Community Information based

Link Prediction Features

In this section, we are going to discuss the three feature selection methods, T REECL,

KBMIR and KBREG which we have used in this paper. Table 6.6 shows the features

scores obtained by different link prediction features and community features. Initially,

we experimented with twenty features. Out of twenty, twelve we have taken link

prediction feature, like AA, JC, PA, CN, COSP, ACT, MFI, SP, L3, LOCALP, CCLP,

NLC and eight community detection features such as DER, SURP, SBM, LEIDEN,

SIGNI, CPM, EIGEN, and GREED. A large number of features is associated with

computational complexity. More relevant features also lead to an increase in the overall
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FIGURE 6.5: ROC curve based comparison of COMMLP (COMMLP−DY N) with
other state-of-the-art feature based methods on Random Forest Classifier-based machine

learning prediction
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TABLE 6.6: Features Scores of all individual features using TREECL, KBMIR and
KBREG methods across all datasets

METHOD DATASET CATEGORY

Individual Link Pred AA JC PA CN COSP ACT MFI SP L3 LOCALP CCLP NLC

TREECL

MIT 0.4935 0.4229 0.7103 0.5111 0.6579 0.462 0.4634 1 0.9623 0.6993 0.468 0.5159
Radoslaw-Email 0.2468 0.2689 0.1939 0.2547 0.5376 0.1775 0.3354 1 0.3494 0.2906 0.2068 0.193

EU-Core 0.279 0.252 0.0829 0.2471 0.5054 0.083 0.2312 1 0.3837 0.225 0.2191 0.1679
FB-Forum 0.0572 0.0718 0.1457 0.0615 0.763 0.1391 0.4281 0.61 1 0.19 0.0323 0.0329

CollegeMsg 0.1265 0.1518 0.5201 0.1271 0.8218 0.4583 0.6619 0.5137 1 0.4194 0.1117 0.1178

COMMLP Based GREED EIGEN DER SURP SBM LEIDEN SIGNI CPM - - - -

MIT 0.2876 0.617 0.4517 0.3481 0.5816 0.2803 0.3342 0.3644
Radoslaw-Email 0.1933 0.372 0.2155 0.2093 0.2634 0.2134 0.1755 0.1997 - - - -

EU-Core 0.111 0.1978 0.2006 0.3395 0.1805 0.1007 0.1254 0.1439 - - - -
FB-Forum 0.1367 0.1559 0.1344 0.2084 0.1502 0.1452 0.1383 0.1683 - - - -

CollegeMsg 0.4031 0.3561 0.3994 0.4614 0.3723 0.352 0.3407 0.3708 - - - -

Individual Link Pred AA JC PA CN COSP ACT MFI SP L3 LOCALP CCLP NLC

KBMIR

MIT 0.8512 0.7407 0.994 0.8007 0.7493 1 0.9052 0.7616 0.9843 0.8816 0.8327 0.8915
Radoslaw-Email 0.6894 0.6612 0.5667 0.6628 0.9821 0.6297 1 0.8424 0.6716 0.64 0.6871 0.6756

EU-Core 0.7591 0.7243 0.2729 0.7015 0.9954 0.29 0.9098 1 0.8183 0.7049 0.7799 0.7906
FB-Forum 0.0565 0.066 0.282 0.0434 0.9321 0.4051 0.8444 1 0.9001 0.5717 0.0538 0.0883

CollegeMsg 0.2153 0.25 0.5249 0.1937 0.9028 0.589 0.7965 1 0.9585 0.6613 0.213 0.2569

COMMLP Based GREED EIGEN DER SURP SBM LEIDEN SIGNI CPM - - - -

MIT 0.7672 0.8874 0.7904 0.7217 0.8986 0.5144 0.6874 0.7296 - - - -
Radoslaw-Email 0.56 0.5841 0.6109 0.6153 0.6211 0.4907 0.5952 0.5853 - - - -

EU-Core 0.4409 0.5559 0.5393 0.6684 0.5169 0.3042 0.4513 0.4899 - - - -
FB-Forum 0.3054 0.3178 0.3552 0.3926 0.2949 0.2271 0.2996 0.3496 - - - -

CollegeMsg 0.3441 0.4028 0.5233 0.4967 0.3877 0.2828 0.3738 0.3873 - - - -

Individual Link Pred AA JC PA CN COSP ACT MFI SP L3 LOCALP CCLP NLC

KBREG

MIT 0.6434 0.2551 0.8125 0.6783 0.0116 0.1743 0.0056 0.486 1 0.8426 0.512 0.5408
Radoslaw-Email 0.8579 0.5309 0.6149 0.9123 0.0479 0.2548 0.0051 0.5596 1 0.9753 0.562 0.3958

EU-Core 0.8917 0.7346 0.2229 0.8385 0.3887 0.048 0.0949 0.6341 1 0.7549 0.5919 0.405
FB-Forum 0.0131 0.0015 0.1724 0.0166 0.4314 0.0356 0.1611 0.1416 1 0.2908 0.0151 0.0099

CollegeMsg 0.0308 0.0028 0.1947 0.0339 0.522 0.0243 0.191 0.0404 1 0.3418 0.055 0.0457

COMMLP Based GREED EIGEN DER SURP SBM LEIDEN SIGNI CPM - - - -

MIT 0.2031 0.548 0.0064 0.0647 0.5829 0.1697 0.051 0.0597 - - - -
Radoslaw-Email 0.2111 0.7489 0.3648 0.2469 0.7068 0.4259 0.1541 0.2434 - - - -

EU-Core 0.316 0.5962 0.53 0.6526 0.5752 0.2813 0.3309 0.3399 - - - -
FB-Forum 0.1422 0.2011 0.0716 0.2173 0.192 0.1665 0.1346 0.1664 - - - -

CollegeMsg 0.246 0.2018 0.2222 0.3094 0.2696 0.2144 0.1155 0.1876 - - - -

performance of predictions. Therefore, we have applied feature selection techniques to

optimize the features based on their higher feature score.

In the MIT, Radoslaw-Email, Eu-Core, Fb-Forum, and CollegeMsg datasets, AA, CN,

PA, MFI, COSP, SP, L3, and LOCALP have the highest feature scores for the Extra Trees

Classifier (T REECL), Mutual information (KBMIR), and f regression feature selection

technique. Additionally, community features like SBM, EIGEN, SURP, and LEIDEN

give the highest score across all datasets.

We have selected twelve optimized features - eight similarity-based link prediction

methods e.g AA, CN, PA, MFI, COSP, SP, L3, LOCALP and four community

information-based link prediction features, SBM, EIGEN, SURP and LEIDEN. The

experimental result shows that the optimized features produce better results, and it is less

complex and more efficient to create the reduced feature set. From this point on this
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reduced and optimized feature set is referred to as COMMLP−DY N (COMMLP in

tables and figures) and this will be the feature set using which we will evaluate our

proposal against state-of-the-art algorithms.

6.3.6 Comparison of COMMLP-DYN with State-of-the-Art Methods

after Optimization

Table 6.7 compares the performance of COMMLP−DY N feature set, in combination

with four different prediction machine learning models, with three other state-of-art

algorithms. This comparison is done for three different performance metrics and on five

datasets with respect to three Ratio values. The performance metrics are AUC, AUPR

and Average Precision (AVG PREC). COMMLP−DY N feature set is optimized form of

COMMLP−FULL feature set which is defined on the basis of feature optimization as

mentioned in Section 6.3.5. The machine learning models used are Neural Network

(NN), XGBoost (XGB), Logistric Regression (LR) and Random Forest Classifier (RFC).

COMMLP−DY N and COMMLP have been used interchangeably from this point. In

this table we also use an additional dataset Mathoverflow in addition to the five datasets

already used for experimental analysis in this paper. This dataset is much larger than the

other datasets (with respect to number of nodes and edges) and provides a better

validation for application of our proposed method on larger graphs.

For the AUC metric, COMMLP-RFC has the best performance in all datasets and all

three Ratio values except on the FB-Forum dataset, and COMMLP-LDA is the

second-best performing algorithm on the same datasets. On the FB-Forum dataset,

COMMLP-LDA is the best performing method, and COMMLP-RFC becomes the

second-best. The performance of COMMLP-XGB and LGQ are comparable in most

cases, and in MIT and Radoslaw-Email datasets, they are the third best-performing

algorithms. WEAK is the third-best performing algorithm in EU-Core, FB-Forum, and

Mathoverflow datasets, and N2V is the third-best performing algorithm in the



Chapter 6. Community Enhanced Link Prediction in Dynamic Networks 130

TABLE 6.7: Comparison of COMMLP (COMMLP−DY N) with state-of-the-art methods
after optimization using truncated feature set on six datasets, 3 Ratio values and three

performance metrics

METRIC DATASET RATIO LGQ WEAK N2V COMMLP-NN COMMLP-XGB COMMLP-LDA COMMLP-RFC

AUC

MIT 0.7 0.82457 0.74640 0.68493 0.68090 0.82580 0.91682 0.92608
0.8 0.83272 0.80896 0.69057 0.66225 0.83594 0.91899 0.93222
0.9 0.83336 0.80606 0.68747 0.60387 0.84222 0.91307 0.94468

Radoslaw-Email 0.7 0.80236 0.90524 0.76220 0.67049 0.81458 0.92109 0.93374
0.8 0.81328 0.91033 0.77295 0.71584 0.80979 0.92268 0.93196
0.9 0.80299 0.90818 0.77245 0.72748 0.80923 0.91898 0.93524

EU-Core 0.7 0.92349 0.96852 0.94412 0.77109 0.91658 0.97380 0.98138
0.8 0.91646 0.97156 0.94527 0.76865 0.92003 0.97367 0.98071
0.9 0.91872 0.97142 0.94409 0.77202 0.91920 0.97315 0.98273

FB-Forum 0.7 0.87610 0.91943 0.85460 0.69459 0.88105 0.94539 0.93826
0.8 0.88449 0.92775 0.85458 0.72479 0.88796 0.94912 0.93976
0.9 0.87626 0.92894 0.86869 0.69153 0.87132 0.94538 0.93025

CollegeMsg 0.7 0.64675 0.66709 0.70704 0.57110 0.63702 0.73710 0.76734
0.8 0.63538 0.68110 0.70554 0.57086 0.64632 0.75737 0.77158
0.9 0.64934 0.69361 0.71619 0.59396 0.65169 0.75656 0.77455

Mathoverflow 0.7 0.69930 0.73470 0.71503 0.69546 0.69930 0.72646 0.75179
0.8 0.69727 0.73450 0.71744 0.68851 0.69884 0.72620 0.75154
0.9 0.70007 0.73452 0.71513 0.69373 0.69686 0.72775 0.75190

AUPR

MIT 0.7 0.75740 0.53872 0.36867 0.60315 0.75377 0.75228 0.74281
0.8 0.75814 0.58337 0.36480 0.57784 0.75867 0.75899 0.79029
0.9 0.75234 0.56599 0.36802 0.52222 0.76503 0.74837 0.82569

Radoslaw-Email 0.7 0.75921 0.70671 0.45262 0.45310 0.77061 0.79815 0.82331
0.8 0.76708 0.72562 0.47347 0.51195 0.77106 0.79043 0.81473
0.9 0.75536 0.72082 0.45347 0.50327 0.77305 0.79478 0.82125

EU-Core 0.7 0.87210 0.81660 0.74446 0.61259 0.86206 0.85590 0.90539
0.8 0.85773 0.83603 0.75661 0.62116 0.86657 0.84522 0.89420
0.9 0.86247 0.84588 0.74345 0.61295 0.86475 0.84059 0.90308

FB-Forum 0.7 0.84120 0.81673 0.65383 0.51525 0.85016 0.85595 0.86934
0.8 0.84979 0.83521 0.65677 0.55129 0.85237 0.86383 0.87306
0.9 0.83992 0.83014 0.67583 0.53498 0.83424 0.85789 0.86437

CollegeMsg 0.7 0.58994 0.28444 0.40990 0.30339 0.59673 0.53671 0.52643
0.8 0.59497 0.26556 0.40954 0.31418 0.61853 0.51634 0.54185
0.9 0.57978 0.30956 0.42606 0.32818 0.58726 0.52342 0.53369

Mathoverflow 0.7 0.66867 0.60224 0.48991 0.31525 0.67400 0.58255 0.63948
0.8 0.66826 0.60429 0.49383 0.32045 0.67157 0.58344 0.63899
0.9 0.66847 0.60445 0.48863 0.36679 0.67108 0.58532 0.63916

AVG PREC

MIT 0.7 0.58805 0.53375 0.37463 0.44116 0.58351 0.75259 0.75457
0.8 0.58729 0.58701 0.37293 0.38452 0.58754 0.76234 0.79146
0.9 0.58060 0.57146 0.38215 0.38785 0.59499 0.75500 0.82532

Radoslaw-Email 0.7 0.58845 0.70808 0.45423 0.41578 0.60570 0.79852 0.82040
0.8 0.60070 0.72720 0.47600 0.47085 0.60598 0.79123 0.81199
0.9 0.58416 0.72333 0.45809 0.47891 0.60860 0.79582 0.81881

EU-Core 0.7 0.76286 0.81778 0.74616 0.55060 0.74569 0.85720 0.90367
0.8 0.73858 0.83773 0.75853 0.58622 0.75388 0.84752 0.89251
0.9 0.74643 0.84840 0.74757 0.59356 0.75042 0.84383 0.90188

FB-Forum 0.7 0.71131 0.81697 0.65568 0.44136 0.72628 0.85602 0.86523
0.8 0.72591 0.83552 0.65894 0.49220 0.73090 0.86344 0.86923
0.9 0.71072 0.83057 0.68043 0.49351 0.70175 0.85887 0.86060

CollegeMsg 0.7 0.35874 0.34834 0.40491 0.23903 0.33975 0.48389 0.52941
0.8 0.34798 0.37843 0.42116 0.24405 0.35478 0.52044 0.53867
0.9 0.35052 0.42090 0.41345 0.27960 0.36840 0.52288 0.53153

Mathoverflow 0.7 0.44033 0.53671 0.44281 0.31153 0.44433 0.52331 0.56364
0.8 0.43852 0.53695 0.44688 0.28714 0.44186 0.52400 0.56301
0.9 0.44086 0.53719 0.44154 0.30157 0.44031 0.52633 0.56373
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CollegeMsg dataset. For the AUPR metric, COMMLP-RFC is the best performing

algorithm in all datasets except CollegeMsg and Mathoverflow. Especially in MIT

dataset for Ratio = 0.7, the performance of COMMLP-RFC is slightly worse than

COMMLP-XGB, COMMLP-LDA and LGQ algorithms but it sees a significant

performance increase for Ratio = 0.8&0.9. COMMLP-XGB and COMMLP-LDA have

comparable performance in MIT, EU-Core, and FB-Forum datasets. In the MIT dataset,

LGQ also has comparable performance, and in the EU-Core dataset, it has the

second-best performance out of all algorithms, just behind COMMLP-RFC. In

CollegeMsg and Mathoverflow datasets, COMMLP-XGB has the best performance but

is closely followed by the LGQ method. COMMLP-LDA has the third-best performance

in the CollegeMsg dataset, and COMMLP-RFC has the third-best performance in the

Mathoverflow dataset. For the Average Precision (AVG PREC) metric, COMMLP-RFC

performs best across all datasets and all three Ratio values. COMMLP-LDA is the

second-best performing algorithm in all datasets except the Mathoverflow dataset, where

the WEAK algorithm slightly outperforms it. WEAK has decent performance in

EU-Core and FB-Forum datasets also. COMMLP-XGB and LGQ have comparable

performance in all datasets except the MIT dataset.

A point to note here is that different state-of-the-art algorithms have been proposed using

various machine learning classification algorithms in their original research papers. To

provide more uniform validation conditions, we fix Random Forest Classifier as the

prediction algorithm for feature sets generated using COMMLP, LGQ, WEAK, and N2V

algorithms. We perform link prediction using this approach on five datasets and present a

graphical representation of the ROC-curve results in Fig.6.5. We run thirty iterations for

each specific algorithm and each particular ratio. We also change the Ratio from

0.7,0.8,&0.9 to 0.5,0.7,&0.9 to gain a better understanding of algorithm performance

changes with respect to incomplete information. The averaged-out AUC values for these

experiments are listed in the graphs’ legend, along with color-coded identifiers for each

algorithm and their relevant ROC curves. The non uniformity of lines is because of

averaging of ROC curves over multiple iterations of link prediction. We can observe
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from graph legends that in terms of AUC value, our proposed COMMLP gives the best

results in all cases of dataset and ratio combinations.

6.4 Conclusion

This work proposed a framework to generate community information-based link

prediction features. These features enhance link prediction performance, typically

conducted only with local, global, and quasi-local similarity-based features. Using

feature relevance scoring, we demonstrated the superiority of our community features

compared to some standard topological link prediction features. Finally, we provide an

optimized feature set version of a combination of our community-based features with

traditional link prediction-based features, COMMLP−DY N. This feature set performs

better than other state-of-the-art algorithms for link prediction on dynamic networks in a

snapshot-based setting. The experiments were conducted on six real-world datasets,

three ratio training values to total edges, and three different performance metrics. In the

future, this work can be extended using community detection methods that have been

explicitly defined for dynamic graphs. Also, a new formulation can be researched on

which takes into account overlapping community information rather than

non-overlapping methods whose performance was discussed in this work.


	6 Community Enhanced Link Prediction in Dynamic Networks
	6.1 Introduction
	6.1.1 Community Detection
	6.1.2 Community-based Feature Generation Methods
	6.1.3 Classification Models

	6.2 Proposed work
	6.2.1 Topological Feature Generation
	6.2.2 Community-based Feature Generation
	6.2.3 Feature Set Engineering and Link Prediction
	6.2.4 Feature Reduction
	6.2.5 Algorithm Description
	6.2.6 Demonstration with Example

	6.3 Result Analysis
	6.3.1 Performance comparison of COMMLP-FULL with individual feature based methods using Neural Network model
	6.3.2 Performance comparison of COMMLP-FULL with individual feature based methods using XGBoost model
	6.3.3 Performance comparison of COMMLP-FULL with individual feature based methods using Linear Discriminant Analysis model
	6.3.4 Performance comparison of COMMLP-FULL with individual feature based methods using Random Forest Classifier model
	6.3.5 Comparison of Individual and Community Information based Link Prediction Features
	6.3.6 Comparison of COMMLP-DYN with State-of-the-Art Methods after Optimization

	6.4 Conclusion


