Chapter 4

Path Weight Aggregation Feature for Link Prediction in Dynamic Networks (PWAF)

The goal of this chapter is to propose Path Weight Aggregation Feature (PWAF), which is a new feature based on ranking multi edge occurrences across the entire network. Different topological aspects of the networks (Local, Global, and Quasi-local) as well as Clustering Coefficient based features are taken into consideration for feature generation, in addition to the suggested Path Weight-Based Aggregation Feature (PWAF). One of the features used for better prediction is the Level-2 node clustering coefficient (CCLP2). This chapter ${ }^{1}$ studies a new path weight based feature of social networks.

[^0]
4.1 Introduction

One of the most basic challenges in complex network analysis is the link prediction problem. Link prediction is useful in a wide variety of disciplines. In the Internet and web science domains, these topics include automatic hyperlink construction [27], website hyper-link prediction [28], and recommendation of friend system on online social networks like Facebook and Instagram [136]. Combinations of different social networks have been also explored as link prediction in multiplex networks [137, 138]. Protein-protein interactions (PPI) and bio-informatics have also assisted from link prediction [31]. Link prediction can be used in the world of security to uncover hidden links between terrorists and their organization. For various sorts of graphs, researchers have used a variety of link prediction techniques. There are several sorts of these strategies, including similarity-based, probabilistic, and learning-based models [1, 139-144] etc. We deal with similarity-based indices in this paper, which cover Local, Global, and Quasi-local indices..

The local similarity scores are obtained using information extracted from the local neighborhood of nodes. Examples of such indices are Common Neighbors (CN), Adamic/Adar Index (AA), Jaccard Coefficient (JC), Preferential Attachment (PA).

The whole topological information of a network is used to create global similarity-based indices. These methods are more computationally intensive than local similarity-based methods, but they provide a more comprehensive view of the graph structure. Global similarity-based indices includes shortest path (SP), COS+ (COSP), Matrix Forest Index (MFI), and Average Commute Time (ACT).

To strike a compromise between the aspects of local and global similarity-based measures, quasi-local similarity-based techniques have been implemented. Quasi-local similarity-based indices includes local path Index (LP), Path of Length 3 (L3), Local Random Walk (LRW) and Superposed Random Walk (SRW). Quasi-local link prediction algorithms are based on random walks [145, 146].

To make the rich feature-set for better prediction we have also taken different clustering algorithms. The clustering algorithms considered are Clustering Coefficient based Link Prediction (CCLP), Node and Link clustering coefficient (NLC), CAR-based Common Neighbor Index (CARCN) . We have also used Level-2 node clustering coefficient (CCLP2) for more accurate prediction. These clustering approaches provide more information about the nodes and edges, improving accuracy.

The existing works can be classified into the following taxonomy from the perspective of pathways shown in Figure 4.1.

Figure 4.1: Path-based approaches to link prediction [2]

The following are the key motivation for developing this approach.

- According to Ajay et al. [1], link prediction accuracy improves with more local, global, quasi-local, and clustering topology information. We extracted information
from the local, global, and quasi-local as well as clustering information from multi hop neighborhoods to achieve this effect in our method.
- In this proposal, we have computed clustering coefficient of Level-1 and Level-2 common neighbor [36] of the seed node pair for more information for better accuracy. In comparison to the Level- 1 frequent neighbors and their corresponding clustering coefficients, Level-2 explores more information about networks [147].
- The proposed method employs feature vectors of node pairs generated from all snapshots to incorporate several types of structural information (topological based which includes Local, Global and Quasi-local similarity, clustering coefficient based algorithm, and PWAF-based).

The following are the major contributions of this paper:

- In this paper, we present a new Path Weight Aggregation Feature (PWAF) feature to address link prediction in dynamic networks.
- In our work, we offer a link prediction framework that uses various semantic topological features (Local, Global and Quasi-local similarity), clustering features like CCLP, NLC, CARCN and Level-2 node clustering coefficient with different machine learning models.
- We tested individual traditional link prediction approaches in several machine learning models with our proposed PWAF model after synthesizing these feature sets.
- Also, we have compared the $P W A F$ machine learning variations PWAF-NN, PWAF-LR, PWAF-XGB, PWAF-RFC and PWAF-LDA with state-of-the-art link prediction algorithms using the five performance evaluation metric. We have observed a significant increase in performance based on the results of these metric.

We deployed a variety of machine learning methods on real-world dynamic datasets to test our methodology. According to Memon et al. [148]., there are various advantages to using various machine learning algorithms over traditional methods. After reviewing the data, we discovered that our method produces better results. On seven different open dynamic datasets with five performance assessment parameters, we compared our performance against five state-of-the-art methods [131-133, 147, 149]. Experiments show that our proposed strategy improves performance significantly.

4.2 Proposed work

The majority of recent research uses network topology to extract feature sets. These characteristics are generic and domain-independent, and they can be used in any network [131, 150, 151]. Other research focuses on identifying node and edge information that are critical for improving link prediction performance. Typical, neighbourhood, and path-based features are examples of such features [152, 153]. Some related literature also shows that the clustering coefficient is related to the link prediction problem [154]. The link prediction problem is described as a binary classification problem. The class label is indicated by the presence or absence of connections. If a link exists between two nodes, the label is set to 1 ; otherwise, the label is set to 0 . Link prediction model using machine learning techniques in dynamic networks is shown in Fig. 4.4

4.2.1 Path Weight Aggregation Feature ($P W A F$) for link prediction

It is based on weight of the paths between two nodes $i \& j$. Since we are creating the graphs from snapshots, we define the weight of each occurring edge in a snapshot as the number of times that edge is encountered in a given snapshot. This gives us the relative significance of edges compared to each other. The PWAF feature is mathematically computed by the following equations (here $\operatorname{SOP}(i, j)$ is the sum of common neighbor

Figure 4.2: Graph of $\mathrm{F}\left(\frac{W}{\sqrt{N}}\right)$ Vs $\frac{W}{\sqrt{N}}$ graph

Figure 4.3: Analysis for selecting \sqrt{N}

paths between nodes $i \& j$ and we are calculating PWAF feature value for one specific snapshot):

$$
\begin{equation*}
S O P(i, j)=\sum_{t=1}^{N} w t g f(i, t)+w \operatorname{tg} f(t, j) \tag{4.1}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{PWAF}(i, j) & = \begin{cases}1 & x_{i j}<2 \\
\frac{F(S O P(i, j))}{2 \times \sqrt{N}} & x_{i j}=2 \\
0 & x_{i j}>2\end{cases} \tag{4.2}\\
F(x) & = \begin{cases}\frac{x}{10} & x \leq 10 \\
1 & x \geq 10\end{cases} \tag{4.3}
\end{align*}
$$

where $x_{i j}$ is the distance between nodes and N is common neighbor nodes between i\& j. The detailed process for the calculation of weight is given in the proposed algorithm Algorithm 2.

4.2.2 Analysis for selecting \sqrt{N}

The Fig. 4.2 shows the graph of $\mathrm{F}\left(\frac{W}{\sqrt{N}}\right)$ Vs $\frac{W}{\sqrt{N}}$.
Here, when x is less than equal to 10 , it is a straight line with slope $\frac{1}{10}$. when x is greater than 10 then the value of the function is constant that is 1 , which is parallel to x-axis. In this case $x=\frac{w}{\sqrt{N}}$ which is calculated using the summation of weight and number of links [155]. Here, w is equal to $\operatorname{SOP}(i, j)$ (Equation 4.1). The example is shown in Fig. 4.3.

4.2.3 Proposed PWAF Feature Generation Algorithm

The detailed algorithm of Path Weight-Based Aggregation Feature (PWAF) is shown in Algorithm 2. In this algorithm, the line number 1-2 is the initialization phase. We have initializes num_indirect and wt_indirect with value 0 . We have taken variables wty and numy to store weight and number of links respectively. Lets consider an edge between nodes $x \& y(e[0] \& e[1]$ in algorithm $)$ for prediction. The for loop in line number 6 is

FIGURE 4.4: Representations of link prediction model using machine learning techniques in dynamic networks
Figure 4.5: PWAF model overview


```
Algorithm 2: Path Weight-Based Aggregation Feature (PWAF) algorithm
Input: \(G(V, E)\) : Dynamic social graph, \(v\) : no. of nodes, \(e\) : edge for which the value
    is to be calculated, \(w t g f\) : frequency of edge occurence, \(t=\) current snapshot
Output: Return feature value
num_indirect \(\leftarrow 0 \quad \triangleright\) Initialization Phase
wt_indirect \(\leftarrow 0\)
if \([e[0], e[1]] \in E\) then
    return 1
else
    for each \(i \in n\) do
        if \(i==e[0]-i==e[1]\) then
            Pass
                                    \(\triangleright\) if node \(i\) acts as a common neighbor then
                    \(\triangleright\) add weight of both edge to wt_indirect and increment num_indirect
        if \((w \operatorname{tg} f[t][e[0]][i] \neq 0) \&(w \operatorname{tg} f[t][i][e[1]] \neq 0)\) then
            num_indirect \(=\) num_indirect +2
            \(w t\) _indirect \(=w t\) _indirect \(+w \operatorname{tg} f[t][e[0]][i]+w t g f[t][i][e[1]]\)
    if \(w t_{\text {_indirect }}==0\) then
        return 0
    else
        \(P W A F=\frac{w t \text { _indirect }}{10 \times \sqrt{\text { num_indirect }}} \quad \triangleright\) Feature value
        if \(P W A F>1\) then
            \(P W A F=1 \quad \triangleright\) Normalizing exceptional cases using Eq. 4.3
        return \(P W A F\)
```

for iteration among all nodes. Line 6-12 is used for iteration over all possible common neighbors to update values of variables num_indirect and wt_indirect. In Line 7-8, if i is equal to any node of edge e then it will it go for next iteration. In line $9-11$, it is checked if intermediate node i is common neighbor of $x \& y$ in that particular snapshot. If considered node i is an intermediate node i.e., if edges $[x, i]$ and $[i, y]$ are present, add weight of edges $[x, i]$ and $[i, y]$ to wt_indirect and increase num_indirect by 2 . In lines 13-14, if the value of wt indirect is zero it will return zero. In lines 16-19, we will get the feature value. Here we will normalize for some special cases and then we put these values of wt indirect and num_indirect in the formula given in Equation 4.2. The formula is used to calculate the feature value of all the links in a particular snapshot which is
further used for link prediction. An important point to note in the calculation procedure for our proposed feature $P W A F$ is that the added computation is mostly carried out at the time of snapshot creation where we define the weight of each edge as the number of times the edge has occurred in that particular snapshot. Since the whole edge list of dynamic network would have to be compulsorily read for time based edge sorting and snapshot graph creation, this does not constitute much added complexity. After this weight dictionary has been calculated for each snapshot at the time of snapshot creation, the individual $P W A F$ features calculated for every snapshot have a maximum complexity of $\mathscr{O}(V * D)$, for lines 6-12, where we iterate over the whole list of nodes and check for the existence of indirect paths. Here D is the average degree of graph. After the variables wt_indirect and num_indirect have been computed in these lines, the calculation of final $P W A F$ feature value using line 16 is trivial.

The overall process of link prediction using our PWAF model is depicted in Figure 4.5.

4.3 Result Analysis

All of the experiments in this study were carried out using a system with an AMD Ryzen 2700 8-core processor, 32 GB of DDR4 RAM running at 2666 MHz , and a 512 GB NVME SSD hard drive. Python version 3.6 was used to programme. The experimental results obtained from the experiments are examined in this section. To begin, we compare the PWAF result to individual features in different machine learning algorithms such as Neural Network (NN), Logistic Regression (LR), XGBoost(XGB), Random Forest Classifier (RFC), and Linear Discriminant Analysis (LDA) using five performance evaluation metrics: AUPR, F1 score, Average Precision, Balance Accuracy score, and AUC on seven well known temporal datasets. We have also compared the performance of PWAF different machine learning variations to five state-of-the-art algorithms, RA [149], PROXM [133], WEAK [131], Node2Vec [132] and LGQ [147]. On seven

L8994．0	L66t $L^{\circ} 0$	tols ${ }^{\circ} 0$	t8s $L^{\circ} 0$	L00S $L^{\circ} 0$	Etolico	£̇ıLぐ0	E965LO	ze9s $\iota^{\circ} 0$	ちてEtく゚0	$6+82 L 0$	96ISL＇0	6L892．0	S80SL＇0	60LLL＇0	s9zsL＇0	LSISLO		
£800＜0	86Lt90	98¢L90	t¢6L90	L69L90	E80t9 0	980t9 0	E9t690	†1989\％	6128900	198590	881890	801890	668890	E1£890	＋6LL9 0	てzt890	моуглочрих	
18St90	zocos0	912S00	6Iszs 0	166050	80zzs 0	s8zs 0	I6LE90	68865\％0	965z90	S9z9s 0	E09¢9\％	LtIE90	¢ıZLS 0	z6IIS\％	ISEOS 0	†LEOS0		
$6 z 7880$	ちtてIS 0	¢E0ts 0	t898s 0	て6¢zs\％	ILIzs．0	LS8IS\％	269580	¢z¢\＆L0	$81978{ }^{\circ}$	SLtI90	$92898{ }^{\circ}$	E£6¢80	tLZ8S 0	90¢ك 0	Izozs：0	Ltsisio	uniof－q］	Onv
E80z60	＋868 ${ }^{\circ} \mathrm{O}$	¢ILI8＊0	†LI080	zSLI80	LILOS 0	zILOS\％	†0¢z80	LIGLLO	sc9s80	S0L6S0	280060	9zoz60	6LS8500	60¢6L0	9\＆86L＇0	6E88 ${ }^{\circ} 0$	ข．oo－ng	
1018．0	198890	60t0 0 \％	8EtL90	6020	t9LOS 0	z8LOS 0	96SL90	£̇9990	t¢86200	8Stt90	L96080	9t96 ${ }^{\circ} 0$	2zt190	$8+800^{\circ}$	＋20690	£¢ $\angle 89^{\circ}$		
L6sz80	99\＆EL＇0	$60 ¢ \mathcal{L}{ }^{\circ} 0$	L9E9L＇0	ャてIEL＊	£9t190	Et0090	ャてL9LO	zzts ${ }^{\text {co }}$	1080	6LI9LO	ItLz8．0	£Lsz8．0	It8s $L^{\circ} 0$	＋88890	LESOLO	เ0zL＇0	！	
$1899{ }^{\circ} 0$	L66t $L^{\circ} 0$	toLs ${ }^{\circ} \mathrm{O}$	t8s $L^{\circ} 0$	IOOSLO	Etol $L^{\circ} 0$	£とıuく0	E96SLO	ze9s $\sim^{\circ} 0$	tzetcoo	6＋8zL．0	96ISL $L^{\circ} 0$	6L89 ${ }^{\circ} 0$	S80SLLO	60LLL＇0	¢9zsL＇0	Lsislo		
£800＜0	86Lt90	98SL90	tS6L90	L69L90	E80t9 0	980t90	E9t690	†19890	612890	198590	88189°	801890	668890	ย1E890	†6LL90	2で890	монглочрии	
18St90	zocos 0	912S00	6Iszs 0	1660¢0	80zzs．0	s8zs．0	I6LE90	$68865^{\circ} 0$	96¢z90	S9z9S0	E09¢9 0	LtIE90	sizLs 0	z61IS．0	Isfos 0	†LEOS0		
678880	セtてIS 0	¢ $¢ 0 t \mathrm{~s}{ }^{\circ}$	t898¢ 0	て6£zs\％	ILZzs．0	LS81s．0	269580	¢z£EL＇0	819780	¢ 4 ti90	97898．0	Eย6880	tLZ8S 0	90¢ร．0	Izozs：0	Ltsisso	uniof－q］	gyous Jov Tvg
E80z60	＋868 ${ }^{\circ} \mathrm{O}$	¢ILI8\％	tıl080	zSLI80	LILOS 0	zthos：0	ャ0¢z80	LIGLL＇0	¢E9¢80	S0L6S0	280060	9zoz60	6LS850	60¢6L0	9886L 0	6E88 ${ }^{\circ} 0$	ข๐o－ng	
101800	198890	60to 0 ＇0	8EtL90	6020	t9LOS 0	z8LOS 0	96SL90	£̇9990	t¢8620	8Stt90	L9608．0	9t96 ${ }^{\circ} 0$	zztı90	8 5800°	† $2069^{\circ} 0$	EEL8900		
L6S780	99\＆EL＇0	$60 ¢ \varepsilon L^{\circ} 0$	L9E9L＇0	ャてIยL＊0	£9t190	Et009\％	ャてL9LO	zztsc．0	1080	6LI9L0	ItLz8．0	ELsz80	It8SL＇0	188890	$\angle E S 0 L^{\circ}$	IOZL＇0	！̣！	
8S9ts\％	IStiso 0	$88+25^{\circ} 0$	İczs：0	t9Liso	Et80t 0	1880t 0	610¢5：0	81815\％0	206t＊ 0	9LOLt゚	tsels 0	6680¢0	S86050	688050	t661s 0	L6tis：0		
68Stro	て68LE0	\＆ $180 \mathrm{t}^{\circ} 0$	6とちIt゚0	L9E0ヶ0	S9tico 0	Essicio	E90¢t0	9L6けで0	ちてS6800	£6tLE\％ 0	\＆LtIto	てL80t0	ع0LIt 0	6てL0ヶ0	zz90t＊ 0	9890ヶ0	мошәлочрии	
9zı9E0	£169「0	86L810	\＆I610	6t08．0	S00810	868610	て8てもを゙0	6 tLLz 0	¢\＆tで0	¢8E\＆z\％	¢9tを0	98LSE0	LE8Eで0	t6LLI0	IE9LI 0	z8zlio		
9sszio	696Lİ0	IL602\％ 0	8EE0z\％	6e£610	8tt810	†18Lİ0	ttt890	9¢6で0	LSIt9 0	Lてt6z\％	ELI6900	2II690	$6 L 8+て ゙ 0$	$9 \mathrm{LG6} 0$	¢19810	6e8100	uniof－q］	NOISIDEXd 9 DV
E80s Lo	LI60¢0	20LSO	Isits 0	ャL9sco	£¢L910	8L8910	LI8sco	LLS6t＇0	6LI6S 0	606さz 0	tEt690	Stz91．0	Lzsz＇0	LE0ISO	ILIZS 0	LSEOSO	ขัо－пп	
$9666 \mathrm{~S}^{\circ} 0$	H68E0	9980t 0	¢698E0	ちぃIt゚	Es80z\％	でtozo	เャ8¢ 0		ャL28s．0	8L9tE 0	St86S 0	Los090	26t0¢0	9£91t0	ャEt6e：0	1816E0	［！вшә－ме｜Sорел	
IL6LS 0	6Iでだ0	L6LSt＇0	L9z8t＇0	LLItだ0	1002E 0	ES80E＊0	zLzos：0	L9ILt゚0	689Es＊0	\＆LE6t＊	ssc6s：0	6 SOLS 0	LIt6t＇0	S66\％＇0	LLt0t＊ 0	68IE゙0	！！	
960290	IIIt900	6S2S900	I6ES9 0	tSてt900	ItEsc 0	IStSS 0	91LS900	988t9 0	LOtて9 0	Lt0090	L97t9 0	SIZS900	I I0t9 0	†20990	809t9 0	662t90		
LILSE0	92ISt゚0	¢I80¢ 0	9LSIS 0	8580¢0	9とでか0	て6とで0	Itets 0	9sLzs．0	8ε Is 0	¢zolto	9¢6IS 0	zs9iso	E80¢S 0	LI6IS 0	z601s 0	6s0zs：0	монәлочри	
sıztoto	$9290{ }^{\circ}$	2IL600	เยยıI0	zE9500	808010	9\＆zı0	9Iをで0	8LLてE゙0	＋6t6e\％	SL6zz\％	9\＆6Iち0	101Iか	ILO9z\％	てt0900	6LEE00	¢8990\％		
686880	108S00	E81910	9zosio	IL9010	89t010	9EE600	80L6LO	七てt85＊0	1889 ${ }^{\circ} 0$	919980	E0S080	6 ¢1080	6116z\％	zs8zio	It\＆600	8EZLOO	uniof－q	200s IS
898580	Et9990	$91 L^{\circ} 0$	¢61690	6060 0	9LLLOO	L8IS00	6ztilo	8t¢590	IIEtL ${ }^{\circ} 0$	66をzを0	E89180	z1098	9696z\％	£96990	LE8L9 0	£¢ร990	ข๐о－n⿴	
$60 \leq z L \cdot 0$	E08IS0	98Its 0	L86tº	s90ss：0	เて6¢0\％	Lてto 0	z00s： 0	818が0	1980 ${ }^{\circ} 0$	L66Eさt 0		8691L＇0	6SSLE 0	£zzsso	sยzzs：0	s9liso 0		
910zL＊0	285850	9L96S 0	† $\left\llcorner 6 z 9^{\circ} 0\right.$	20885：0	ZLGLE 0	LS6tE゙0	89Et90	218190	†E\＆8900	Stseg 0	166zL＊	I091く．0	¢0¢£90	Lt8IS 0	tzets 0	8E89500	！̣ш	
L90t $L^{\circ} 0$	SELIL＇0	ZStzL＇0	S0ヶてL＇0	80ZL＇0	tsoz90	S60z900	¢ $182 L^{\circ} 0$	${ }^{6}$ LIL $L^{\circ} 0$	9690	8188900	6ESIL＇0	6S66900	LtてIL＇0	9910 0	L9IzL＇0	97LIL＇0		
19tL90	S0t9 0	て185900	LIES9\％	896£90	8tIEs 0	†0¢Es\％	$91099{ }^{\circ}$	zses9 0	Lzzz90	IELI90	8EIS900	ع0¢t90	L89t9 0	188E90	IIEt90	I89E90	мошглочреи	
tiligo	6て\＆Lで0	IESte 0	L6ISE 0	826Lで0	9z0ع0	てIz9E0	＋988s：0	SLt6t＇0	z69950 0	zoosto 0	t9L6s 0	S66z900	s9strio	9\＆ozを0	E6LIで0	Lてı6で0		
$6 \mathrm{SIS8} 0$	8ELSE\％ 0	ト06It 0	69S0ヶ0	¢869E0	19tてE0	LEIOE：0	zzsz80	てt9e90	IZ9620	Isozs 0	68280	$9 \mathrm{t6280}$	699tro	tSt6e\％	İOSE 0	EtIte 0	uniof－9］	ydnv
$66+980$	¢ ¢00Lo	¢ $¢ 9+L^{\circ} 0$	เ\＆̧zL＇0	E0LELO	¢t8tE 0	6116\％ 0	t¢LELO	E66890	96£9 ${ }^{\circ} 0$	士をL9ャ゙0	IIE80	ISILE 0	tて6St゚0	90z0＜0	6z01L 0	829690	ของ－n⿴	
$6699{ }^{\circ} 0$	\＆806¢0	ttS090	80z6s 0	91It90	て†ยLE00	ャ0ヶてを＂0	LEL8S0	ILELS 0	$68 t S L^{\circ} 0$	＋68ts 0	6LS9L．0	S6ELL＇0	¢8L6tº	8LI90	9L96S0	8SE6¢0		
LIISLO	989E90	IS6t9 ${ }^{\circ}$	で¢L9 0	ع09¢90	9¢86t＊ 0	92I8t＇0	LE8890	86£99 0	196IL＇0	IE1890	£เz9L．0	$\angle 6 S+L^{\circ} 0$	L80890	2z6850	＋86\％ 0	sz9z90	ท！̣	
gDX－aVMd	NOyto	गTN	てdาวอ	dาวบ	му7	M ${ }^{\text {S }}$	$\varepsilon 1$	dTVOOT	IHW	LכV	dSOJ	dS	Vd	or	VV	NO	${ }^{\text {PSPEPIG }}$	

TABLE 4．1：Performance of PWAF model and its machine learning variations－XGBoost（ $X G B$ ）
Table 4.2: Performance of PWAF model and its machine learning variations- Random Forest Classifier (RFC)

	Dataset	CN	AA	JC	PA	SP	COSP	ACT	MFI	LOCALP	L3	SRW	LRW	CCLP	CCLP2	NLC	CARCN	PWAF-RFC
AUPR	mit	0.55936	0.5916	0.53592	0.67012	0.70546	0.71285	0.68237	0.71668	0.65341	0.66824	0.47016	0.4788	0.56775	0.65203	0.60391	0.58651	0.78
	radoslaw-email	0.52742	0.59078	0.58602	0.5003	0.80918	0.79987	0.54783	0.79148	0.56092	0.58373	0.412	0.40654	0.59529	0.57766	0.60115	0.56907	0.81991
	Eu-core	0.65703	0.72692	0.70351	0.39398	0.86129	0.86251	0.43611	0.80594	0.67968	0.76218	0.23019	0.24003	0.73735	0.72628	0.75203	0.68188	0.90094
	fb-forum	0.24188	0.22507	0.25416	0.40396	0.84152	0.81633	0.49603	0.83065	0.65634	0.82422	0.25828	0.24996	0.24954	0.26328	0.26712	0.28978	0.86375
	CollegeMsg	0.20956	0.20554	0.21106	0.29562	0.49765	0.46035	0.31815	0.45151	0.36595	0.48568	0.27387	0.25489	0.20686	0.24648	0.2353	0.22715	0.55706
	mathoverflow	0.62268	0.61983	0.61349	0.59191	0.59564	0.59717	0.54289	0.55275	0.60027	0.59898	0.50971	0.50855	0.61337	0.61695	0.62308	0.6214	0.63686
	1kml-reply	0.72107	0.71577	0.69933	0.69146	0.70169	0.67772	0.65904	0.67497	0.70306	0.69519	0.60386	0.60161	0.71515	0.70405	0.72432	0.71974	0.7399
F1 score	mit	0.58805	0.61386	0.54797	0.64533	0.7327	0.72207	0.67485	0.71172	0.6245	0.65409	0.51504	0.52652	0.60118	0.6695	0.61931	0.61404	0.75758
	radoslaw-email	0.55221	0.56869	0.5684	0.52001	0.67829	0.68737	0.53934	0.67687	0.56696	0.58684	0.46747	0.47035	0.5663	0.57755	0.57157	0.56423	0.69715
	Eu-core	0.63776	0.65758	0.64173	0.41488	0.84103	0.80931	0.42721	0.74663	0.62985	0.70037	0.31021	0.31616	0.67849	0.65569	0.67114	0.65138	0.82693
	fb-forum	0.27366	0.25717	0.28058	0.39608	0.80374	0.7644	0.46846	0.74497	0.59296	0.71723	0.32805	0.32325	0.28911	0.3	0.29926	0.1951	0.78619
	CollegeMsg	0.20767	0.19409	0.20915	0.3162	0.39318	0.39817	0.33461	0.38206	0.36668	0.41935	0.29325	0.28905	0.18013	0.21383	0.19172	0.11637	0.46203
	mathoverflow	0.52992	0.52664	0.52833	0.53741	0.51474	0.52575	0.50237	0.51241	0.54074	0.5385	0.51333	0.51171	0.5159	0.52293	0.51489	0.46328	0.55742
	1kml-reply	0.6461	0.65174	0.65348	0.63485	0.65215	0.63164	0.61331	0.61257	0.64239	0.64146	0.60384	0.60362	0.65169	0.64967	0.65657	0.64063	0.65899
AVG PRECISION	mit	0.56331	0.59347	0.53874	0.67025	0.68212	0.71229	0.68314	0.71999	0.65399	0.6704	0.4736	0.48186	0.57102	0.65673	0.60746	0.59008	0.78113
	radoslaw-email	0.52657	0.58914	0.5841	0.4989	0.77613	0.79572	0.54554	0.78688	0.55894	0.58217	0.41098	0.40585	0.59298	0.57584	0.59832	0.56771	0.81697
	Eu-core	0.65644	0.72429	0.70089	0.39275	0.87395	0.85825	0.43438	0.80312	0.67659	0.75879	0.23163	0.24089	0.7344	0.72336	0.74865	0.67695	0.89868
	fb-forum	0.2328	0.21536	0.24276	0.40347	0.83448	0.80091	0.49453	0.82533	0.65253	0.81675	0.26029	0.25238	0.22984	0.23971	0.23834	0.20973	0.85941
	CollegeMsg	0.19621	0.19471	0.19169	0.2909	0.47723	0.41648	0.31251	0.4328	0.35212	0.46043	0.2704	0.25298	0.19291	0.21123	0.20072	0.18132	0.53456
	mathoverflow	0.48461	0.47182	0.46779	0.5163	0.52288	0.47411	0.46548	0.49382	0.52605	0.50197	0.44357	0.44227	0.46053	0.45885	0.46247	0.41888	0.56066
	1kml-reply	0.62362	0.61391	0.59975	0.63348	0.64124	0.60591	0.59275	0.61802	0.64213	0.62009	0.55339	0.55099	0.61258	0.59637	0.61284	0.58421	0.67979

BAL ACC SCORE	mit	0.76332	0.78212	0.73823	0.80679	0.85671	0.85318	0.82605	0.84933	0.78789	0.80367	0.70919	0.71195	0.78432	0.82272	0.79426	0.78081	0.88564
	radoslaw-email	0.76087	0.77557	0.77527	0.73327	0.83567	0.84342	0.74869	0.83692	0.77204	0.78579	0.68831	0.69397	0.77181	0.78296	0.7745	0.77123	0.85601
	Eu-core	0.83703	0.85907	0.84222	0.67823	0.94347	0.9366	0.68971	0.91513	0.83978	0.88699	0.57749	0.57935	0.86718	0.85292	0.86294	0.84557	0.94618
	fb-forum	0.54835	0.5429	0.56522	0.66052	0.89896	0.88562	0.72192	0.883	0.80712	0.86608	0.58827	0.58486	0.57316	0.57952	0.58	0.5437	0.89724
	CollegeMsg	0.52372	0.51931	0.52908	0.58744	0.64509	0.6361	0.59461	0.6343	0.62059	0.65567	0.56756	0.55507	0.51515	0.54262	0.52903	0.51796	0.68935
	mathoverflow	0.69648	0.69289	0.69401	0.7129	0.71073	0.69656	0.69398	0.70433	0.71364	0.70921	0.70367	0.70235	0.68645	0.68878	0.68306	0.65557	0.72556
	1kml-reply	0.77974	0.77667	0.77933	0.78037	0.7836	0.77446	0.7668	0.77557	0.78426	0.77799	0.76974	0.76986	0.77608	0.77064	0.77115	0.75823	0.79538

8LIIS0	8S0sLo	¢sz6L0	9¢z9L0	Et68 ${ }^{\circ} \mathrm{O}$	S98L．0	6998 ${ }^{\circ} 0$	96LL＇0	9L6LLO	†LL8L＊	s8zzLo	SE06L ${ }^{\circ}$	9629L0	sz8L＇0	St68 ${ }^{\circ} \mathrm{O}$	Es09L＇0	8009 ${ }^{\circ} 0$		
8LEL＇0	Lt8590	z97690	9500 ${ }^{\circ} 0$	L89690	9190 ${ }^{\circ} 0$	60LOLO	9zLzL＇0	9E9zLo	82z690	E169900	985020	z0z890	8861く ${ }^{\circ}$	tol0 ${ }^{\circ}$	Stioto	696900	моуглочрии	
L9tS $\sim^{\circ} 0$	ttoos：	L6LZS＇0	695s．0	6IEES 0	ESE6S0	8265°	8tてL9 0	LZ9t90	＋て9z90	I6zess 0	t6ts9 0	9zts ${ }^{\circ}$	SLて900	896050 0	8IでSく0	¢sits 0		
8 88E60	H6¢50	$9 \angle 865^{\circ} 0$	9ISI90	8608500	て68£90	6LIt90	L00160	I8LI80	216280	£689 0	L86280	8686 $L^{\circ} 0$	IESEL＇0	LIt99 0	£9zLs：0	z0Lss 0	unio－4t	गกV
8ztL60	LSS880	908560	8 t 6260	＋81560	E8tts 0	szzts 0	88tt60	Escz60	†て6580	L069L＇0	L8Lz80	80ZL60	Lt9sL＇0	¢6Iz60	6z9z60	It0z60	ข．o－ng	
zoIz60	¢95s80	£66580	zzIs80	¢0¢980	£zsolo	6160 ${ }^{\circ} 0$	Ľ2980	62S580	2L9080	819LL＇0	くさてtく ${ }^{\circ}$	918980	8 8z80	L9tS80	Et6580	99580		
LEIz60	800180	991280	199L80	208280	IIIS90	910590	£ย1880	＋0ts80	£ L9¢9 0	906080	L85980	¢วte80	£8¢980	80¢ $L^{\circ} 0$	£9¢z80	89780	！	
tt8 $L^{\circ} 0$	8L86500	LILE9 0	6¢L690	tてt9900	SLE8900	6＋28900	1601 $L^{\circ} 0$	sz91＜${ }^{\text {co }}$	I $18 \varepsilon L^{\circ} 0$	tut0900	9869 ${ }^{\circ} 0$	＋Ez690	Lz6900	ISIELLO	L80ZL＇0	LzzzL̇0		
LItIL＇0	LZILSO	£8ILS 0	6Izt90	992090	Itts9 0	zoss90	¢9L99．0	†けんL90	$8859{ }^{\circ}$	LL9 ${ }^{\circ} 0$	66L9900	L6ILG9	¢0859\％	998L900	E9L9 0	2L08900	моуглочри	
616290	6960¢0	6ャLZS．0	Et9ss：0	เozzs．0	96E9¢0	st09s：0	¢LZ9900	96LI9\％	¢0619\％	SIEtS 0	2zt90	toress 0	＋0809\％	I6L6t＇0	zoss． 0	LIIES＊0		
E8IL80	†L9¢S0	$98 t<S^{\circ} 0$	90t850	LoEsco	808LS0	Lt08s：0	IStt80	Itszlo	6LI8LO	Ezts9 ${ }^{\circ}$	IE9180	£ ¢ $88 L^{\circ} 0$	LL89900	EHI9S．0	8965s\％	EEStS 0	wniof－q］	gyous วכ\％TVg
Lszz60	9\＆zzLo	szt8 $L^{\circ} 0$	LIS080	829180	910¢S：0	6LOES 0	290t8 ${ }^{\circ}$	ISII800	＋096 ${ }^{\circ} 0$	$6+8590$	t6Lz80	\＆S0¢60	てItL9 0	t8EE80	It6I80	LSZI80	200－ng	
s91t80	Lscolo	91IS $\iota^{\circ} 0$	$L t L^{\circ} 0$	$6869 L^{\circ} 0$	9¢¢E90	£SE90	L68SL＇0	zs09L0	z60EL＇0	9＋890	£69 $L^{\circ} 0$	$9 \varepsilon 8 L^{\circ} 0$	ャレてEL＇0	£ $218 L^{\circ} 0$	1899 ${ }^{\circ} 0$	88L9 ${ }^{\circ} 0$		
zze980	£ozslo	$9 \angle 9 \downarrow L^{\circ} 0$	てL0080	$888 \leqslant L^{\circ} 0$	8866： 0	6£96¢0	620180	＋618 ${ }^{\circ} 0$	¢8585 0	zs¢zL＇0	L69E80	เ\＆で80	ャ0z080	£ 5869°	zozat 0	tıs9 ${ }^{\circ} \mathrm{O}$	！̣！	
SIS990	LL8LSO	tS9890	¢scı900	262890	LOS6t 0	8IS6t0	28St9 0	811t900	t8950	28IIE0	Iz9t900	＋81980	8LOt9 0	18t85 ${ }^{\circ} 0$	LEL1900	tSL0900		
zttts\％	とozで0	ISL9t＇0	IL68t＇0	£80くち 0	¢8t8E0	て6s8E0	9z9tc：0	£ย6をร0	LE6け＊ 0	Lzsezo	ع186t0	tLILで0	6ISES\％ 0	108tto 0	6086t0	Lscsto	моуглочри	
L096＊0	LZ6LIO	109zz0	sozszo	976ıで0	E66Lで0	£¢LLで0	¢ $¢ ¢\llcorner$ H＇0	L68tE 0	8986E0	IS8Lİ0	¢Itetio	EยE810	ยૃยz์0	selio	＋¢80で0	628020		
8 89t80	6L9Iで0	8ss0č0	L8ZOE0	$6 t \angle t て ゙ 0$	It69z0	IL69z＇0	IS080	Eozzs 0	26L890	LISczio	L9LZL＇0	88LセE゙0	990\＆t＇0	LES6100	E0Isz＇0	เ9てど0	unoo－q］	NOISIDEyd 9 SV
L86580	919L90	6ISLL＇0	269t $L^{\circ} 0$	196LLO	tic8io	8LL810	て60LL＇0	CLLIL＇0	It099 0	\＆゙LEtio	66S690	E8zs80	9t9tro	8ES690	6t0¢L＇0	EL6690	ว．00－n⿴	
tt16\％ 0	£S09¢0	99t6 $5^{\circ} 0$	1608s：0	6E685 0	LS062＇0	8ıt6で0	¢Stı90	905850	9t18t 0	ちで9を00	L998t 0	296£90	8802s 0	t19sco	£10Ls：0	98tLS 0		
$t<S L^{\circ} 0$	6ZILS 0	28Its 0	80S590	¢0950	L009E0	L6I9E0	E88L90	IE609\％	981 ¢゙0	＋8tてsco	8119900	905s 0	ztsç 0	16でで0	88Sts 0	$t \angle t S c_{0}$	！！	
Ett990	£66てE0	88tIt 0	1009¢0	2616to	£6S6t 0	七て\＆6to	¢9t85 0	£zz6c0	¢885s\％	££てtを0	z885900	9089t＇0	288ts 0	ELE65\％0	†10090	tSi09\％	${ }_{\text {¢ }}^{\text {Ida－－Iuxy }}$	
Lozes\％	LOOSで0	zozszo	9\＆6をt＊	ISOtを\％	\＆Stをtio	£8¢Et0	676tio	t650s0	£0ıで0	16ヤLで0	8816t0	とL8てtio	でとLか0	9z00s．0	t8LOS 0	¢てtIs\％	моуглочреи	
tL8t＊ 0	6E1600	zยzย10	ャ8¢で0	てItitio	¢\＆$¢ 8$ で0	七IE8で0	609t0	Itt9e\％ 0	ャ6LLE：0	10s6z＇0	\＆でっ0	L69820 0	91セを0	985920	LSt610	ILS610		
tL0180	966910	6\＆8Lで0	91toc：0	¢96tで0	ยzย0¢0	£ยLOE0	LSSLL＇0	8S6IS\％	201890	9¢¢8800	£9¢EL 0	tгz9500	EOS\＆゙0	sz88200	817820	6LESz\％	uniof－q］	${ }^{\text {aoos }} \mathrm{IH}$
ssltso	$68085^{\circ} 0$	982890	LI0690	568IL＇0	L6¢8で0	L0¢6て＇0	£9LzL＇0	6S6L90	¢8t9900	zL9LE0	9¢£EL＇0	¢19180	Stutut 0	t000 ${ }^{\circ} 0$	$60 \varepsilon 690$	8ZZL90	วกо－n⿴	
££9¢ ${ }^{\circ} 0$	I89ES 0	ze885＊0	†E9LS 0	92t090	8180が0	Lと80ヶ0	ャ868¢ ${ }^{\circ}$	5085 ${ }^{\circ}$	zع6zs．0	SILtto 0	L6E090	ちて1900	tosts 0	LLt6s 0	6016¢ 0	91t65\％		
L88t $L^{\circ} 0$	26L650	EEILS＊0	ILZ8900	89865\％	でILE＊ 0	91£9¢0	$88169^{\circ} 0$	ちてEt900	sZL9E0	tozs．0	IZ6IL＇0	£ $8800^{\circ} 0$	L6IL9＇0	8SISC0	ĖE09 0	2891900	！！	
${ }_{6 \varepsilon I} L^{\circ} 0$	£891く0	IEL ι°	978IL＇0	z98zLo	206を¢0	6885°	9850 ${ }^{\circ} 0$	S000 ${ }^{\circ} \mathrm{O}$	18¢1900	L9LSE 0	£96690	8t86\％ 0	t＋6890	£8L90	L08ILO	zesıL0		
SLI090	6LOz90	169090	6tSz90	986090	16Lで「0	¢68で0	89090	IE0090	て199t＊	LOLLで0	88665\％	£̇İ0	H1185 0	16085 0	t6Lz90	¢єLz9\％	моуглочрии	
9ヶてzs\％	8L8Lで0	くもけで0	9zs9z0	80¢Ez 0	9LLZ＇0	¢SLで0	†てLLt 0	890¢E： 0	9900t 0	8で8で0	898St＊0	L06610	sooze 0	L6S810	ILtです。	เட£zz＇0		
609780	ゅIcLで0	£191¢00	ていIte：0	6tSszo	9¢59z0	L8S920	It080	It8IS 0	86t890	Lsz9z0	£662L＇0	¢¢でを゙0	¢¢Lで・0	zszoz＇0	Itsszo	9t6Ez0	uniof－q］	ydnv
608580	ILLL9 0	LEtLL＇0	209tLo	てS8LL＇0	$6285^{\circ} 0$	198810	¢969 ${ }^{\circ} \mathrm{O}$	609120	86L590	9でEt゚0	9¢E690	LE9080	けでせt゚ 0	L97690	£682L 0	208690	эоо－ng	
6S06L．0	60855°	6zz65\％	IL8LS 0	L69850	$9687^{\circ} 0$	81£6で0	68Z1900	$85885^{\circ} 0$	†I6ぐか	6LZ9E0	I958t 0	t908t 0	Eย8L¢ 0	60tss 0	LL9S 0	8ELLS 0	ІІешә－ме［soper	
LzEs ${ }^{\circ} 0$	$6 \pm$ ¢9s． 0	66zEs 0	ES8t90	tszsso	ESSE์0	¢89¢E0	$\angle t \angle 9^{\circ} 0$	LIL09\％	セ6IEE゙0	L8IS 0	It9¢9 ${ }^{\circ}$	88ILt 0	IL6z900	8SIち゚	ILES 0	66LES：0	！̣！	
VGT－IVMd	NOY＊D	JTN	2dาวง	dาวบ	му1	Mys	£1	dTVJOT	IHW	LכV	dSOO	dS	Vd	गr	VV	NO	${ }^{\text {Paselea }}$	

[^1]well-known dynamic networks with five evaluation metrics, the experimental results showed that PWAF machine learning variations yield higher accuracy.

4.3.1 Performance of PWAF model and its machine learning variations- XGBoost (XGB)

In this section, we assess the performance of the PWAF model and its variations on feature sets using XGB as a training and testing model. We have used 50 estimators with learning rate of 0.01 as settings for this classification.

Table 4.1 compares the performance of the PWAF-XGB model against that of other similarity indexes using XGB. In terms of AUPR, COSP and SP gives better performance on mit, radoslaw-email and Eu-core daases. PWAF-XGB gives better result on fb-forum dataset among all other methods. SP gives better performance on CollegeMsg dataset. PWAF-XGB gives better performance on mathoverflow and lkml-reply datasets. When the F1 score is included, PWAF-XGB outperforms all other techniques. On Eu-core dataset, PWAF-XGB gives similar result as SP. In terms of AVG PRECISION, COSP gives better performance on mit dataset whereas SP gives better performance on radoslaw-email and Eu-core dataset. On the fb-forum CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-XGB outperforms all other approaches by a significant margin. The best performing approach among all algorithms in terms of BAL ACC SCORE is PWAF-XGB on all datasets. SP and COSP also produce comparable results. JC gives better performance on lkml-reply datasets. On the mit dataset, PWAF-XGB, SP, and COSP perform similarly to and better than other approaches in terms of AUC. PWAF-XGB gives better performance on all other datasets.On lkml-reply datasets, JC, SP, and PWAF-XGB perform comparably to other approaches and produce superior results.

4.3.2 Performance of PWAF model and its machine learning variations- Random Forest Classifier (RFC)

In this section, we evaluate the performance of the proposed PWAF approach. We have used 100 estimators as setting to create this classifier and used default Scikit-Learn [156] implementation.

Using RFC, Table 4.2 compares the PWAF-RFC model's performance to that of various other similarity indexes. On all datasets tested, PWAF-RFC beats all other approaches when the AUPR score is taken into account. On the mit and radoslaw-email datasets, PWAF-RFC outperforms all other algorithms in terms of F1 score. On the Eu-core and fb-forum datasets, SP outperforms all other algorithms. On the CollegeMsg and mathoverflow datasets, PWAF-RFC produces better results. On the 1 kml -reply dataset, PWAF-RFC, AA, JC, SP, CCLP, and NLC produce similar results. On all datasets, PWAF-RFC surpasses all other approaches in terms of AVG PRECISION. On all datasets except fb-forum, where it performs similarly to SP in terms of BAL ACC SCORE, PWAF-RFC outperforms all other approaches in terms of BAL ACC SCORE. On all datasets, PWAF-RFC surpasses all other algorithms by a considerable margin when it comes to AUC.

4.3.3 Performance of PWAF model and its machine learning variations- Linear Discriminant Analysis (LDA)

In this section, we'll see how well the PWAF approach and its variations perform on feature sets using the LDA training and testing model. We have used default Scikit-Learn [156] implementation for this classifier.

Table 4.3 compares the performance of the PWAF-LDA model to specific features in the LDA machine learning classifier. On the mit, radoslaw-email, Eu-core, fb-forum, and CollegeMsg datasets, PWAF-LDA performs better in terms of AUPR. AA and NLC
outperform on mathoverflow and lkml-reply, respectively. On the mit, radoslaw-email, Eu-core, fb-forum, CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-LDA performs better in terms of F1 score. On the mit, radoslaw-email, Eu-core, fb-forum, CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-LDA shows the best performance of AVG PRECISION. On the mit, radoslaw-email, Eu-core, fb-forum, CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-LDA achieves a higher BAL ACC SCORE. On the mit, radoslaw-email, Eu-core, fb-forum, CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-LDA performs better in terms of AUC.

4.3.4 Performance comparison of PWAF model machine learning variations

In this subsection, we'll look at how different PWAF model machine learning variants performed on seven well-known dynamic networks using five different performance metrics. PWAF-NN, PWAF-LR, PWAF-XGB, PWAF-RFC, and PWAF-LDA are the machine learning variations employed. The comparison and analysis of several PWAF machine learning variations is shown in Figure 4.6. On the mit, radoslaw-email, Eu-core, and fb-forum datasets, PWAF-RFC outperforms PWAF-RFC in terms of AUPR. On the CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-XGB produces the best results. On the mit, radoslaw-email, Eu-core, and fb-forum datasets, PWAF-RFC outperforms all other variations in terms of AUPR. On the CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-XGB produces the best results. On the mit and radoslaw-email datasets, PWAF-RFC and PWAF-LDA produce the best on F1 score. On the Eu-core and fb-forum datasets, PWAF-XGB performs best. On the CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-LDA, PWAF-RFC, and PWAF-XGB yield the greatest results. On the mit, radoslaw-email, Eu-core, fb-forum, CollegeMsg, mathoverflow, and lkml-reply datasets, PWAF-RFC outperforms all other variations in terms of AVG PRECISION, BAL ACC SCORE, and AUC.

Figure 4.6: Performance Comparison among PWAF machine-learning variations

(A) AUPR

(B) F1 score

(C) Average Precision

Figure 4.6: Performance Comparison among PWAF machine-learning variations (contd..)

(D) Balance Score

(E) AUC

4.3.5 Comparison of PWAF variations with state-of-the-art methods

In this section we compare the performance of proposed Path Weight Aggregation Feature (PWAF) for Link Prediction in Dynamic Networks with five state-of-the-art approaches. The result of five state-of-the-art methods are compared to the performance of our proposed optimal machine learning variations, namely PWAF-XGB, PWAF-RFC, and PWAF-LDA, in Table 4.4. These results are compared on seven well-known open dynamic datasets using five performance evaluation metrics: AUPR, F1 Score, AVG PRECISION, BAL ACC SCORE and AUC. PWAF-RFC can be seen to be overall the best performing algorithm on all datasets. In terms of the AUPR evaluation measure,

Table 4.4: Performance comparison of PWAF machine learning variation with state-of-the-art methods

	Dataset	RA-RFC	PROXM	Node2Vec	WEAK	LGQ	PWAF-XGB	PWAF-RFC	PWAF-LDA
AUPR	mit	0.58164	0.37668	0.34857	0.55145	0.74443	0.75111	0.78	0.75327
	radoslaw-email	0.58913	0.43212	0.41985	0.33067	0.75981	0.76699	0.81991	0.79059
	Eu-core	0.74903	0.66827	0.7356	0.48863	0.86477	0.86499	0.90094	0.85809
	fb-forum	0.20723	0.58368	0.65555	0.38666	0.84059	0.85159	0.86375	0.84609
	CollegeMsg	0.22062	0.25977	0.42017	0.29695	0.609	0.61114	0.55706	0.52246
	mathoverflow	0.61734	0.56755	0.49082	0.54906	0.67385	0.67461	0.63686	0.60175
	1kml-reply	0.7181	0.72403	0.64506	0.61187	0.73993	0.74067	0.7399	0.7139
F1 score	mit	0.61092	0.23581	0.42454	0.41404	0.71414	0.72016	0.75758	0.74881
	radoslaw-email	0.57081	0.25144	0.42119	0.28952	0.71774	0.72509	0.69715	0.73633
	Eu-core	0.68485	0.48031	0.69285	0.43604	0.85376	0.85368	0.82693	0.84755
	fb-forum	0.25453	0.47254	0.57337	0.35492	0.81832	0.82989	0.78619	0.81074
	CollegeMsg	0.21895	0.24988	0.38145	0.29882	0.44578	0.44215	0.46203	0.4874
	mathoverflow	0.52522	0.49236	0.47727	0.54243	0.55416	0.55717	0.55742	0.53207
	lkml-reply	0.65232	0.56876	0.59426	0.63416	0.67244	0.67096	0.65899	0.66413
AVG PRECISION	mit	0.58341	0.38432	0.3569	0.38221	0.56731	0.57971	0.78113	0.7574
	radoslaw-email	0.5866	0.43367	0.42233	0.2934	0.59009	0.59996	0.81697	0.79144
	Eu-core	0.74572	0.63934	0.73792	0.37745	0.74961	0.75083	0.89868	0.85987
	fb-forum	0.19778	0.53808	0.65866	0.34988	0.71055	0.72856	0.85941	0.84638
	CollegeMsg	0.19928	0.19046	0.41533	0.25821	0.3669	0.36126	0.53456	0.49601
	mathoverflow	0.47005	0.48114	0.44387	0.49389	0.44408	0.44589	0.56066	0.54442
	lkml-reply	0.61696	0.69856	0.59778	0.57838	0.54653	0.54658	0.67979	0.66515
BAL ACC SCORE	mit	0.78267	0.78816	0.63489	0.65212	0.82818	0.82597	0.88564	0.86322
	radoslaw-email	0.77531	0.82508	0.6507	0.59196	0.80618	0.8101	0.85601	0.84165
	Eu-core	0.87033	0.93282	0.88257	0.68926	0.92357	0.92083	0.94618	0.92257
	fb-forum	0.54646	0.82043	0.78762	0.61863	0.87505	0.88229	0.89724	0.87183
	CollegeMsg	0.53498	0.64007	0.63855	0.56032	0.64732	0.64581	0.68935	0.67919
	mathoverflow	0.69241	0.78381	0.69452	0.71551	0.69913	0.70083	0.72556	0.71417
	1 kml -reply	0.77711	0.88832	0.77343	0.78094	0.76838	0.76681	0.79538	0.7844
AUC	mit	0.83885	0.89392	0.68906	0.65496	0.82818	0.82597	0.93635	0.92137
	radoslaw-email	0.84999	0.91898	0.73568	0.60541	0.80618	0.8101	0.93462	0.92102
	Eu-core	0.9242	0.9552	0.94494	0.70495	0.92357	0.92083	0.98174	0.97428
	fb-forum	0.53959	0.79522	0.85596	0.64254	0.87505	0.88229	0.93679	0.93838
	CollegeMsg	0.54697	0.63843	0.71109	0.57384	0.64732	0.64581	0.77693	0.75461
	mathoverflow	0.69462	0.78762	0.71539	0.73463	0.69913	0.70083	0.75081	0.7378
	1kml-reply	0.78708	0.92316	0.80217	0.79669	0.76838	0.76681	0.81885	0.81178

PWAF-RFC outperforms all other algorithms on the mit, radoslaw-email, Eu-core, fb-forum, and CollegeMsg datasets, but PWAF-XGB outperforms all other algorithms on mathoverflow and lkml-reply datasets. When it comes to F1 scores, PWAF-RFC outperforms all other algorithms on the mit dataset, whereas PWAF-LDA outperforms all other algorithms on the radoslaw-email and CollegeMsg datasets. PWAF-XGB outperforms the competition on the Eu-core and fb-forum datasets. On the mathoverflow dataset, PWAF-RFC, PWAF-XGB, and LGQ produce similar results. On the lkml-reply
dataset, LGQ and PWAF-XGB both perform well. In terms of AVG PRECISION, PWAF-RFC outperforms all other algorithms on the mit, radoslaw-email, Eu-core, fb-forum, and CollegeMsg datasets, as well as mathoverflow datasets, and PROXM outperforms all other techniques on the lkml-reply dataset. On the mit, radoslaw-email, Eu-core, fb-forum, and CollegeMsg datasets, PWAF-RFC outperforms every other approach in terms of BAL ACC SCORE. PROXM is a good performer on the mathoverflow and lkml-reply datasets. On the mit, radoslaw-email, Eu-core, and CollegeMsg datasets, PWAF-RFC outperforms all other approaches in terms of AUC, whereas PWAF-LDA outperforms all other methods on the fb-forum dataset. On mathoverflow and lkml-reply datasets, PROXM provides a superior result. Based on these results, we can infer that of all the machine learning classifiers we've tested, PWAF-RFC is the best performing variation.

4.4 Conclusion

We attempt to solve the link prediction problem in dynamic networks using an enlarged feature set which represents different levels of node information in this research. The Path Weight-Based Aggregation Feature (PWAF) is a new feature that we propose. In addition to the recommended Path Weight-Based Aggregation Feature (PWAF), several topological properties of the networks (Local, Global, and Quasi-local), as well as Clustering Coefficient based features are taken into consideration for feature generation. The Level-2 node clustering coefficient (CCLP2) is one of the features used to improve prediction. For link prediction, many machine learning models are used to make predictions using this rich feature set, including Neural Network (NN), Logistic Regression (LR), XGBoost (XGB), Random Forest Classifier (RFC), and Linear Discriminant Analysis (LDA). The experiments are carried out on seven different well-known dynamic networks data sets in terms of five performance evaluation metrics, including AUPR, F1-score, AVG PRECISION, BAL ACC SCORE, and AUC, and the results show that our proposed method and its variants outperform state-of-the-art
methods. Among all algorithms and state-of-the-art approaches, PWAF-RFC is the top performer. In addition, PWAF-XGB also provides superior performance among individual features as well as state-of-the-art methods.

[^0]: ${ }^{1}$ Published in Computer communication PWAF : Path Weight Aggregation Feature for Link Prediction in Dynamic Networks

[^1]:

