
Chapter 2

Literature Review

In this chapter, we present a review of earlier techniques emphasizing link prediction with

the point of convergence mostly on social network graphs. We classify these approaches

into a number of categories. One of these categories computes a similarity score between

pairs of vertices, where higher scored pairs are considered to have links between them.

Recently, numerous methodologies of link prediction have been implemented. These

methods can be grouped into several categories, like similarity-based, probabilistic

models, learning-based models, etc.

2.1 Similarity-based methods

Similarity-based metrics are the simplest one in link prediction, in which for each pair x

and y, a similarity score S(x,y) is calculated. The score S(x,y) is based on the structural

or node’s properties of the considered pair. The non-observed links (i.e., U −ET ) are

assigned scores according to their similarities. The pair of nodes having a higher score

represents the predicted link between them. The similarity measures between every pair

can be calculated using several properties of the network, one of which is structural
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FIGURE 2.1: Taxonomy of Link Prediction Approaches [1]
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property. Scores based on this property can be grouped in several categories like local

and global, node-dependent and path-dependent, parameter-dependent and

parameter-free, and so on.
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2.1.1 Local similarity based indices

Local indices are generally calculated using information about common neighbors and

node degree. These indices consider immediate neighbors of a node. Examples of such

indices includes.

• Common neighbors (CN) . The Common neighbors [51] for a given pair of nodes

x and y in a specific network or graph, the size of the intersection of the two nodes’

neighborhoods is used to calculate the size of the shared neighborhoods.

S(x,y) = |Γ(x)∩Γ(y)|, (2.1)

where Γ(x) and Γ(y) are neighbors of the node x and y respectively. With more

common neighbors between them, the likelihood that there is a link between x and

y increases.

• Jaccard coefficient (JC). Jaccard coefficient [52] is similar to the common

neighbor. It normalizes common neighbor score. It is calculated as.

S(x,y) =
|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

, (2.2)

where Γ(x) and Γ(y) are neighbors of the node x and y respectively.

• Adamic/Adar index (AA). Adamic and Adar [53] presented a metric to calculate a

similarity score between two web pages based on shared features, which are further

used in link prediction after some modification by Liben-Nowell et al. [20].

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

1
logkz

, (2.3)

where kz is the degree of the node z. It is clear from the equation that more weights

are assigned to the common neighbors having smaller degrees. This is also

intuitive in the real-world scenario, for example, a person with more number of
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friends spend less time/resource with an individual friend as compared to the less

number of friends.

• Preferential attachment (PA). Using the concept of preferential attachment [54],

a growing scale-free network is created. The phrase “expanding” refers to the

network’s nodes’ gradual emergence over time. The degree of the node, kx,

determines the possibility of an incrementing new connection linked with node x.

The preferential attachment score between two nodes x and y is computed as.

S(x,y) = kx.ky. (2.4)

In a supervised learning framework, Hasan et al. [55] showed that aggregate

functions (e.g., sum, multiplication, etc.) over feature values of vertices could be

applied to compute link feature value.

• Resource allocation Index (RA) . The original dynamics of this similarity index is

originated from Ou et al. [56] work published in “Physical Review E” on resource

allocation [57] dynamics on complex networks. Consider two non-adjacent vertices

x and y. If node x transmits certain resources to node y through the shared nodes of

both x and y, then the similarity between the two vertices is computed in terms of

the resources delivered from x to y. Mathematically, it is expressed as.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

1
kz
. (2.5)

This similarity measure and the Adamic/Adar are very similar to each other, as

shown by the equations 2.5 and 2.3, respectively. The RA index, in contrast to the

AA index, severely penalizes to higher degree nodes.
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2.1.2 Global similarity indices

Global indices are computed using entire topological information of a network. The

computational complexities of such methods are higher and seem to be infeasible for

large networks. Global similarity-based features are usually calculated using information

from the whole graph structure. The following are examples of link prediction methods

of this category used in this paper.

• Shortest Path(SP) . There are several different algorithms that can be used to

determine the shortest path [20] between two vertex pairs in a graph depending on

circumstances [58–60]. Shortest Path is calculated as.

SP(x,y) =−|d(x,y)|, (2.6)

where the shortest path d(x,y) between the node pair (x,y) is calculated using the

Dijkstra algorithm [58].

• Cos+ (COSP). Any inner product metric, such as the cosine similarity [61], can be

used to determine how similar two nodes x and y are to one another. The cosine

similarity time metric is based on L† by calculating similarity of two vectors. It is

calculated by the following formula.

COSP(x,y) =
L†

x,y√
L†

x,xL†
y,y

. (2.7)

• Matrix Forest Index (MFI).

MFI [62] employs the spanning tree principle. It contains fewer links than the

original graph.

MFI = (I +L)−1, (2.8)
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where (I+L)(x,y) is the count of spanning rooted forests (x as root) that include both

the nodes x and y. This value is also identical to the co-factor of (I +L)(x,y).

• Average Commute Time(ACT).

It is based on the random walk concept. A random walk is a Markov chain [63, 64]

which describes the movements of a walker. To calculate the average commute time

[65], the random walk method is employed.

n(x,y) = m(x,y)+m(y,x). (2.9)

This above equation can be made simpler using the pseudo-inverse of the Laplacian

matrix L+

n(x,y) = |E|(l+xx + l+yy−2l+xy), (2.10)

where l+xy denotes the (x,y) entry of the matrix L+. Pseudo-inverse of the Laplacian,

L+ can be computed as

L+ = (L− eeT

n
)−1 +

eeT

n
, (2.11)

where e denotes a column vector consisting of 1’s.

2.1.3 Quasi-local indices

Quasi-local indices have been developed as a combination of local and global

perspectives, or between performance and complexity, as shown in Table 2.1. As with

local indices, these metrics can be computed quickly. Some of these indices analyze the

network’s whole topological data and extract it. When compared to global techniques,

these indices’ time complexity is still lower. Examples of such indices include local path

index, local random walk index [66], local directed path (LDP) [67], etc.

• Local path index (LP). With the intent to furnish a good trade-off between

accuracy and computational complexity, the local path-based metric [68] is
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considered. Mathematically, it is computed as.

SLP = A2 + εA3, (2.12)

where ε represents a free parameter. Clearly, the measurement converges to

common neighbor when ε = 0. If there is no direct connection between x and y,

(A3)xy is equated to the total different paths of length 3 between x and y. The index

can also be expanded to generalized form

SLP = A2 + εA3 + ε
2A4 + ...+ ε

(n−2)An, (2.13)

where n is the maximal order. Computing this index becomes more complicated

with the increasing value of n.

• Path of length 3 (L3).

Georg Simmel, a German sociologist, first coined the concept “triadic closure” and

made popular by Mark Granovetter in his work [69] “The Strength of Weak Ties”.

The authors [70] proposed a similarity index in protein-protein interaction (PPI)

network, called path of length 3 (or L3) [71] published in the Nature

Communication. They experimentally show that the triadic closure principle

(TCP) does not work well with PPI networks. They showed the paradoxical

behavior of the TCP (i.e., the path of length 2), which does not follow the

structural and evolutionary mechanism that governs protein interaction. The TCP

predicts well to the interaction of self-interaction proteins (SIPs), which are very

small (4%) in PPI networks and fails in prediction between SIP and non SIP that

amounts to 96%. They showed that the L3 index performs well in such conditions

and give mathematical expression to compute this index [70] as

L3(x,y) = ∑
u,v

ax,u.au,v.av,y√
ku.kv

. (2.14)
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Recently, Pech et al. [71] in Physica A, proposed a work that models the link

prediction as a linear optimization problem. They introduced a theoretical

explanation of how direct count of paths of length 3 significantly improves the

prediction accuracy.

• Similarity based on local random walk and superposed random walk (LRW

and SRW) .

Liu and Lü [66] proposed new similarity measures by exploiting the random walk

concept on graphs with limited walk steps [66]. They defined node similarity based

on random walks of lower computational complexity compared to the other random

walk based methods [72]. The probability of getting from a random walker starting

at node x to node y in t steps is given by

~πx(t) = PT ~πx(t−1), (2.15)

where ~πx(0) is a column vector with xth element as 1 while others are 0’s and PT is

the transpose of the transition probability matrix P. Pxy entry of this matrix defines

the probability of a random walker at node x will move to the next node y. It is

expressed as Pxy =
axy
kx

, where axy is 1 when there is a link between x and y and 0,

otherwise. The authors computed the similarity score (LRW) between two nodes

based on the above concept as

SLRW (x,y) =
kx

2|E|
πxy(t)+

ky

2|E|
πyx(t). (2.16)

This similarity measure focus on only few steps covered by the random walker

(hence quasi-local) and not the stationary state compared to other approaches [66,

72].

Random walk based methods suffer from the situation where a random walker

moves far away with a certain probability from the target node whether the target

node is closer or not. This is an obvious problem in social networks that show a

high clustering index i.e., clustering property of the social networks. This degrades
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the similarity score between the two nodes and results in low prediction accuracy.

One way to counter this problem is that continuously release the walkers at the

starting point, which results in a higher similarity between the target node and the

nearby nodes. By superposing the contribution of each walker (walkers move

independently), SRW is expressed as

SSRW (x,y)(t) =
t

∑
l=1

SLRW (l), (2.17)

2.1.4 Clustering based Features

The clustering coefficient is a measurement of how closely nodes in a graph cluster

together. In a social network, the clustering coefficient measures the likelihood that a

user’s friends are also friends with one another [73].

• CAR-based Common Neighbor Index (CARCN) . The concept behind

CAR-based indices [38] is that a relationship between two nodes is more likely if

their shared neighbours are members of a local community.

CAR(x,y) =CN(x,y)×LCL(x,y)

=CN(x,y)× ∑
z∈Γ(x)∩Γ(y)

|γ(z)|
2

,
(2.18)

where CN(x,y) = |Γ(x) ∩ Γ(y)| represents the number of common neighbors.

LCL(x,y) denotes the number of local community links, which are defined as

connections between seed nodes x and y’s shared neighbors. The subset of

neighbors of node z that are also common neighbors of x and y is called γ(z)

• Node clustering coefficient (CCLP).

This index [36] is also based on the clustering coefficient property of the network in

which the clustering coefficients of all the common neighbors of a seed node pair are
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computed and summed to find the final similarity score of the pair. Mathematically,

this index can be expressed as follows.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

C(z), (2.19)

where

C(z) =
t(z)

kz(kz−1)
,

is clustering coefficient of the node z and t(z) is the total triangles passing through

the node z.

• Node and link clustering coefficient (NLC).

This similarity index is based on the basic topological feature of a network called

“Clustering Coefficient” [14, 15]. The clustering coefficients [39] of both nodes and

links are incorporated to compute the similarity score.

S(x,y) = ∑
z∈Γ(x)∩Γ(y)

|Γ(x)∩Γ(z)|
kz−1

×C(z)+
|Γ(y)∩Γ(z)|

kz−1
×C(z). (2.20)

• Level-2 node clustering coefficient (CCLP2). The level-2 [37] node gets more

clustering information from the seed node pair’s level-2 common neighbors and

uses it to compute the similarity score. In contrast to the level-1 common

neighbors and their corresponding clustering coefficients, it explores significantly

more information about networks. The lavel-2 node clustering coefficient is

calculated using the following equation:

CCLP2
(A,B) = ∑

CN2
A∈Γ(A)∩Γ(CN1)

CC(CN2
A)+

∑
CN2

B∈Γ(CN1)∩Γ(B)

CC(CN2
B)

(2.21)
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TABLE 2.1: Comparison of similarity-based approaches [1]

Properties Local Indices Global Indices Quasi-local Indices

Nature Simple Complex Moderate
Features employed Local neighborhood Entire network More local neighborhood
Computational complexity Low high Moderate
Parallelization Easy More complex Moderate
Implementation Feasible for large networks Feasible for small networks Feasible for large networks

In order to calculate the similarity score, similarity-based techniques mainly concentrate

on the structural characteristics of the networks. Local approaches typically take into

account local information (immediate neighbors or neighbors of neighbors), which

requires less computing time. This characteristic makes the local techniques feasible for

large real-world network datasets. Since global approaches consider the complete

network’s structural data, it takes more time to gather the data than it does for local and

quasi-local approaches. Additionally, particularly in a decentralized context, complete

topological information might not always be accessible at the time of computation. In

contrast to local and quasi-local approaches, parallel processing over global approaches

may not be viable or be exceedingly difficult. When compared to local and global

techniques, quasi-local approaches extract more structural information.

2.2 Dynamic Networks

Compared to a static network, a dynamic network allows for a more thorough depiction

of complex relationships. Dynamic network analysis is deployed in several fields. In

the literature, link prediction in dynamic networks has been explored in various methods.

Recently link prediction in dynamic networks has become an emerging topic of research

and various authors such as, Ma et al.[23], Ahmed et al.[24], Yasami et al.[25], Wu et

al.[22] have presented a solution to this problem.

In dynamic networks, link prediction refers to the technique of identifying new or absent

linkages in the graph at various timestamps (time = 1, time = 2, ...., time = m). Formally,

we can define link prediction in dynamic graph as “Let G = (V,E) be a dynamic network,
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where V is the set of vertices and each edge (u, v) ∈ E represents the relation or link

between u and v. Let G1,G2,G3.....Gn are the networks at different snapshots t1, t2, t3,

....., tn, we need to predict Gt+1 at t +1 time.” In a dynamic network, prospective linkages

can become genuine links as the network evolves. In these kind of networks, improving

link prediction accuracy is always an objective. Fig. 2.2 demonstrates the schema of a

dynamic graph containing different snapshots.

Several efforts have been employed by the researchers in this direction in the last decade.

Purnamrita et al. [74] introduced a nonparametric method for temporal network link

prediction where the time dimension is partitioned into subsequences of snapshots of the

graph. This approach predicts links based on topological features and local neighbors.

Dunlavy et al. [75] employ matrix and tensor techniques in a framework where matrix

part collapses sequence of snapshots of networks into a single matrix and computes link

scores using truncated svd and extended Katz methods. The tensor part computes the

scores using heuristics and temporal forecasting. The tensor part captures the temporal

patterns effectively in the network, but it costs heavily also. Moreover, Gao et al. [76]

proposed a model based on latent matrix factorization that employs content values with

the structural information to capture the temporal patterns of links in the networks. Table

2.2 shows some more works in this direction.

Machine learning methods may be used to detect a node pair’s missing or future link.

There are a variety of machine learning-based link prediction algorithms, and the basic

link prediction method is based on similarity. Link prediction was considered a

supervised learning task by Hasan et al. [77], Fire et al. [78] created a set of node

similarity attributes based on network topology, then forecast the link using a standard

machine learning classification technique, which produced better results. The machine

learning algorithm treats the prediction process as a classification problem. Other recent

research has focused on the development of network analysis and machine learning

techniques for modeling dynamic networks [79]. Zhu et al. [80] have attempted to

incorporate a temporal regularise into the matrix factorization framework in order to
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FIGURE 2.2: Structure of a dynamic network with different snapshots

generate a temporal latent space using snapshot networks. The machine learning model

considers the prediction process as a classification task [81, 82]. The classifier estimates

the class of each edge, whether it exists or not.

TABLE 2.2: Link Prediction in Dynamic Networks

Models Network Types Characteristics References

Learning-based models Coauthorship networks
High computational

cost

Vu et al.[83], Pujari et
al.[84], Zeng et al.[85],

He et al.[86], Bao et
al.[87], Madadhain et
al.[88], Bringmann et

al. [89]

Heuristics-based
models

Twitter, Collaboration
and Coauothorship

networks

Fast convergence and
high precision

Catherine et al.[90],
Sherkat et al. [91]

Probabilistic model
Nodes-attributed

graphs

Characterize the
stochastic and dynamic

relations. Need prior
link distribution so
impractical for real

networks

Hu et al.[92], Barbieri
et al.[93], Gao et

al.[76], Ji Liu et al.[94],
Hanneke et al. [95]

2.2.1 Dynamic Datasets

Seven well-known temporal networks with various graph sizes, densities, and time periods

were used to evaluate our results. The datasets are publicly available in Stanford Large

Network Dataset Collection [96]. Also, the various network data statistics are shown in

Table 1 2.3. The information about datasets and created snapshots used in experiment is

1https://networkrepository.com/
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shown in Table 2.3. It comprises information on the datasets we’ve collected as well as the

snapshots into which the datasets are being divided. We adopted an equal time intervals

strategy to create the snapshots. The approximate time between each snapshot’s starting

and completing edges remains constant. Due to the temporal nature of the datasets, each

edge has a timestamp associated with it. The initial edge’s time stamp appears in the

Timestamp Start column, while the last edge’s time stamp appears in the Timestamp end

column.

The various datasets used are.

• mit2 [97]. It contains 96 nodes and 1,086,404 edges. This is an undirected network

incorporates human contact data from 100 students at the Massachusetts Institute

of Technology (MIT), acquired as part of the Reality Commons project’s Reality

Mining experiment in 2004. The information was gathered over a nine-month

period utilizing 100 mobile phones. A individual is represented as a node, and an

edge indicates that the nodes in question were in physical contact.

• radoslaw-email3 [98]. It has 82876 edges and 167 nodes. It’s a mid-sized industrial

company’s internal email communication network for employees. Employees are

represented by nodes, while individual emails between two users are represented by

edges.

• Eu-core4. The number of nodes and edges are 986 and 332334. An edge represents

an email sent from one institution member to another at a certain moment in this

dataset, which contains over 300,000 emails sent among teachers at a European

university. The dataset stands out for its dense graph structure and well-defined

community structure.

• fb-forum 5. It has 899 nodes and 33686 edges. The Facebook-like Forum Network

arose from the same online community as the online social network. However, the
2http://konect.cc/networks/mit/
3http://networkrepository.com/ia-radoslaw-email.php
4http://snap.stanford.edu/data/email-Eu-core.html
5http://networkrepository.com/fb-forum.php
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focus in this network is on user participation in the forum rather than on private

messages sent among users.

• CollegeMsg6. It contains 1899 nodes and 59835 edges. Over the course of a

half-year, the CollegeMsg dataset documents student interactions in a social

network at the University of California, Irvine. An edge here indicates a private

message sent at a given moment from one student to another.

• Lkml-reply.7 There are 26885 vertices and 1,028,233 connections in this graph.

This is the Linux kernel mailing list’s communication network. Every directed edge

is a response from one member to the other, whereas nodes are people (recognized

by respective email addresses).

• Mathoverflow.8 There are 24818 vertices and 506550 connections in this graph.

On the stack exchange platform Math Overflow, this is a temporal network of

exchanges. The Stack Exchange Data Dump was used to create these graphics.

The ’OwnerUserId’ label in the data dump corresponds to the node ID numbers.

2.2.2 Link Prediction Framework in dynamic networks

The overall process of link prediction model is depicted in Figure 2.3. It’s broken down

into the steps below.

• The edge list of the overall graph is used as input in the first stage. It is made up of

the network’s complete edge list.

• We partition the whole edge list into snapshots like G0, G1, . . . , Gn based on equal

time intervals because this is a dynamic graph. We partition the dataset’s whole

time range into equal-sized chunks such that the time range difference between

6https://snap.stanford.edu/data/CollegeMsg.html
7 https://networkrepository.com/lkml-reply.php
8 https://snap.stanford.edu/data/sx-mathoverflow.html
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TABLE 2.3: Dataset Information along with corresponding snapshot information and
time intervals (AVG DEG - Average Degree, AVG SP - Average Shortest Path Length,
CLUSTER - Average Clustering Coefficient, HETERO - Heterogeneity, ASSOC -

Associativity)

DATASET NODES EDGES Start Time End Time AVG DEG DENSITY AVG SP CLUSTER HETERO ASSOC

MIT 96 1086404 1095183096 1115253696 52.9 0.5568 1.43 0.75 1.13 -0.06
MIT-SNAP1 96 1792 1095183096 1099197216 37.33 0.393 1.61 0.65 1.23 -0.03
MIT-SNAP2 96 1778 1099197216 1103211336 37.04 0.3899 1.56 0.65 1.25 -0.01
MIT-SNAP3 96 817 1103211336 1107225456 17.02 0.1792 1.92 0.49 1.77 -0.08
MIT-SNAP4 96 622 1107225456 1111239576 12.96 0.1364 1.96 0.5 2.05 -0.29
MIT-SNAP5 96 362 1111239576 1115253696 7.54 0.0794 1.93 0.37 2.95 -0.44

Radoslaw-Email 167 82876 1262454010 1285884492 38.92 0.2345 1.96 0.59 1.66 -0.3
Radoslaw-Email-SNAP1 167 2018 1262454010 1267140106 24.17 0.1456 1.94 0.53 1.98 -0.28
Radoslaw-Email-SNAP2 167 1851 1267140106 1271826202 22.17 0.1335 2 0.47 1.99 -0.25
Radoslaw-Email-SNAP3 167 1294 1271826202 1276512298 15.5 0.0934 2.24 0.31 1.86 0
Radoslaw-Email-SNAP4 167 1238 1276512298 1281198394 14.83 0.0893 2.15 0.32 1.88 -0.05
Radoslaw-Email-SNAP5 167 1428 1281198394 1285884490 17.1 0.103 2.1 0.37 1.91 -0.11

EU-Core 986 332334 0 69459254 32.58 0.0331 2.58 0.41 2.29 -0.03
EU-Core-SNAP1 986 8012 0 13891850 16.25 0.0165 2.84 0.3 2.59 0.02
EU-Core-SNAP2 986 8259 13891850 27783700 16.75 0.017 2.79 0.31 2.73 -0.02
EU-Core-SNAP3 986 9247 27783700 41675550 18.76 0.019 2.79 0.32 2.48 0
EU-Core-SNAP4 986 5526 41675550 55567400 11.21 0.0114 3.03 0.28 2.73 -0.01
EU-Core-SNAP5 986 1093 55567400 69459250 2.22 0.0023 4.24 0.11 5.07 -0.2

FB-Forum 899 33686 1084585996 1098798101 15.65 0.0174 2.83 0.06 2.16 -0.11
FB-Forum-SNAP1 899 5950 1084585996 1087428417 13.24 0.0147 2.85 0.06 2.28 -0.1
FB-Forum-SNAP2 899 1663 1087428417 1090270838 3.7 0.0041 3.67 0.01 3.1 -0.05
FB-Forum-SNAP3 899 1255 1090270838 1093113259 2.79 0.0031 3.6 0.01 4.82 -0.15
FB-Forum-SNAP4 899 858 1093113259 1095955680 1.91 0.0021 4.04 0.01 5.37 -0.08
FB-Forum-SNAP5 899 728 1095955680 1098798101 1.62 0.0018 4.48 0 5.41 -0.14

CollegeMsg 1899 59835 1082040961 1098777142 14.57 0.0077 3.05 0.11 3.82 -0.19
CollegeMsg-SNAP1 1899 8289 1082040961 1085388197 8.73 0.0046 3.05 0.08 5.15 -0.21
CollegeMsg-SNAP2 1899 4802 1085388197 1088735433 5.06 0.0027 3.45 0.04 4.53 -0.15
CollegeMsg-SNAP3 1899 1116 1088735433 1092082669 1.18 0.0006 3.7 0.02 15.14 -0.2
CollegeMsg-SNAP4 1899 790 1092082669 1095429905 0.83 0.0004 4 0.01 15.86 -0.21
CollegeMsg-SNAP5 1899 497 1095429905 1098777141 0.52 0.0003 4.38 0 16.43 -0.26

Mathoverflow 24759 390441 1254192988 1457262355 15.19 0.0006 3.23 0.31 19.33 -0.22
Mathoverflow-SNAP1 24818 102359 1254192988 1294806861 4.1 0.0002 3.01 0.07 38.86 -0.2
Mathoverflow-SNAP2 24818 83030 1294806861 1335420734 3.71 0.0001 3.25 0.07 32.02 -0.17
Mathoverflow-SNAP3 24818 76310 1335420734 1376034607 3.39 0.0001 3.39 0.07 30.01 -0.18
Mathoverflow-SNAP4 24818 65789 1376034607 1416648480 2.87 0.0001 3.58 0.05 27.81 -0.18
Mathoverflow-SNAP5 24818 62953 1416648480 1457262353 2.74 0.0001 3.63 0.05 29.26 -0.17

Lkml-Reply 26885 1028233 1136080607 1388528616 11.9 0.0004 5.37 0.31 28.32 -0.18
Lkml-Reply-SNAP1 27927 194692 1136080607 1186570208 3.26 0.0001 6.25 0.1 53.26 -0.17
Lkml-Reply-SNAP2 27927 213186 1186570208 1237059809 2.95 0.0001 5.26 0.09 56.44 -0.18
Lkml-Reply-SNAP3 27927 198691 1237059809 1287549410 2.64 0.0001 5.38 0.08 52.9 -0.17
Lkml-Reply-SNAP4 27927 194763 1287549410 1338039011 2.62 0.0001 5.32 0.08 48.53 -0.15
Lkml-Reply-SNAP5 27927 226900 1338039011 1388528612 2.64 0.0001 4.72 0.08 47.46 -0.15

each snapshot is roughly equal. As indicated in Table 2.3, each snapshot has only

edges that belong to this time range.

• For our analysis we have taken five snapshots. To create our training and testing

edge lists, we combine the most recent snapshot with the randomized non edges.

The training and testing edge sets are created by randomly dividing the combined

set of true and non edges into training and testing edge sets, with a ratio of training

edges to all edges of 0.7.
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• In the next step we create edge features based on G0, G1, . . . , Gn−1 for all edges of

training and testing edge sets. The feature set is based on topological features and

clustering features.

• Based on the presence of an edge in either the training or testing subset, we divide

the data into training and testing sets. We took five snapshots in all, four of which

were used to generate features and the fifth was utilized to identify the class label.

• Machine learning models such as Neural Network (NN), Logistic Regression (LR),

XGBoost (XGB), Random Forest Classifier (RFC), linear Discriminant Analysis

(LDA) and Gaussian Naive Bayes (GNB) are used to process the training data. The

probabilities of existing edges on test data are then predicted using these models.

• Finally, we establish performance benchmark metrics based on these predictions,

which are compared to findings from state-of-the-art approaches.

The link prediction problem is considered as a binary classification problem. The class

label is determined by the existence or absence of links. When a link exists between two

nodes, the label is set to 1; otherwise, it is set to 0. If the edge was present in the previous

snapshot, the label is set to 1; otherwise, it is set to 0. Finally, all edges’ feature labels are

returned. The overall link prediction methods in dynamic network

FIGURE 2.3: Flow of link prediction framework in dynamic networks
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2.3 Machine learning classifiers in link prediction

Link prediction problem is considered as a supervised learning problem [77, 90]. The

employment of a machine learning classifier in a link prediction problem has a number of

benefits.

• Automation of Everything (More reliable)

• Wide Range of Applications

• Scope of Improvement

• Efficient Handling of Data

• Best for Education and Online Shopping

A link prediction problem that uses a machine learning classifier has a number of

shortcomings as well.

• Algorithm Selection

• Data Acquisition (Machine Learning requires massive datasets to train on, and these

should be inclusive/unbiased, and of good quality.)

• Time and Resources

• High error-susceptibility.

The purpose of this research is not only to present and analyze several link methods that

have been proposed in the literature but also to look into some novel approaches to

enhance the accuracy.

The link prediction problem is considered as a binary classification problem [1, 21, 99].

There are a number of machine learning-based link prediction algorithms in addition to
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the conventional similarity-based techniques [77, 78, 100]. The machine learning

prediction-based paradigm addresses the process of prediction as a classification issue.

Other recent research has focused on the development of network analysis and machine

learning techniques for modeling dynamic networks [79, 80, 101].

Due to the fact that a dynamic network evolves with time, time-series modeling and

prediction is an appropriate technique for researching link prediction in dynamic

networks. The purpose of time series forecasting is to forecast possible values of a

variable based on historical data of the same variable. Numerous situations have made

effective use of time series forecasting. In addition, the literature gives a thorough

summary of complex network methodologies for nonlinear time series analysis

[102, 103].

2.3.1 Machine learning classifier

Using a similarity or probabilistic function, similarity and probabilistic approaches

produce a score for each non-observed connection. The link prediction problem, on the

other hand, can be approached as a learning-based model that utilizes topological graph

features and attribute data. In a binary classification problem where several classifiers

like different machine learning models are used, which can be used to predict the label of

unknown data points (corresponding to missing links in the network). The selection of a

suitable feature set is one of the primary issues of this model [1, 35, 50]. The many

machine learning algorithms that were employed are highlighted in this section.

• Neural Network (NN) . Neural networks [104, 105] are a sort of machine learning

technology that describes intricate patterns in datasets by employing multiple

hidden layers and non-linear activation functions. A single layer neural network

has a straightforward training method. The error or loss function can be calculated

using the weight. As a result, gradient is simple to compute. Because of the levels
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of hidden layers in a multi-layer network, calculating the loss function is difficult.

Back-propagation can be used to calculate it. The direct application of dynamic

programming is the back-propagation approach.

• Logistic Regression (LR) .

Logistic regression [106, 107] is a probability classifier that maps feature variables

to class probabilities by employing modeling assumptions. For link prediction,

Logistic Regression is deployed as a classifier. It is calculated by conditional

probability P(Y = 1|X1, ...,Xn) through

P(Y = 1|X1, ...,Xn) =
exp(β0 +β1X1 + ...+βnXn)

1+ exp(β0 +β1X1 + ...+βnXn)
(2.22)

where Y = 1 means positive class, X1...Xn are feature variables, and β1...βn are

regression coefficients, which are estimated by maximum-likelihood from the

considered data set.

• XGBoost (XGB). Based on the enhancement and expansion of the GBDT,

XGBoost [108, 109] is a scalable end-to-end tree boosting system. Regularization

models (L1 and L2) are included in XGBoost to control over-fitting by smoothing

the final learned weights and therefore improve performance. In addition,

XGBoost features a better tree learning algorithm for sparse data, and a good

weighted quantize sketch procedure for approximation tree learning can handle

instance weights. As a result of this advantage, XGBoost uses parallel and

distributed computing to speed up learning.

• Random Forest Classifier (RFC) . Random forest [110, 111] is an “ensemble

learning” technique that uses averaging to aggregate the predictions of multiple

randomized decision trees. Random forest reduces variance when compared to a

single decision tree.

• Linear Discriminant Analysis (LDA). It is a widely used dimensionality reduction

technique [112, 113]. As the name implies, dimensionality reduction procedures
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reduce the number of dimensions (i.e. variables) in a dataset while preserving as

much data as possible.

2.3.2 Ensemble learning

Ensemble learning is based on the deliberate generation and optimal combination of many

learning models for addressing the issues like classification. Ensemble learning is widely

employed in a variety of disciplines, including sentiment analysis [114], customer credit

risk [115], aviation incident risk [116] and many more. Usually, it is used in supervised

machine learning tasks. Multiple classifier systems are another term for ensemble learning

systems. If there are large variations or diversity among the models, ensemble methods get

superior results [57, 117]. Ensemble learning can be divided into three types- Stacking,

boosting, and bagging.

• Stacking. By altering the model types fit on the training data and utilizing a model

to combine predictions, stacking [118] is an ensemble method for finding a diverse

group of members. Stacking has its own terminology, with level-0 models referring

to ensemble members and level-1 models referring to the model that is used to

integrate the forecasts. Although more levels of models can be utilized, the most

frequent strategy is a two-level hierarchy of models. Instead of a single level-1

model, we might have three or five level-1 models and a single level-2 model that

integrates level-1 model predictions to generate a forecast.

• Boosting. Boosting [119] is a type of ensemble learning in which the weighting of

the samples varies over time, allowing the system to optimize its choice by taking

into account the results of the samples in proportion to their (positive) impact on

overall system accuracy. The samples are initially uniformly weighted during

boosting. The samples that are adequately assigned are weighted lower after each

iteration of the algorithm than the ones that are inappropriately assigned.
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• Bagging. The ensemble learning method of tagging, also known as bootstrap

aggregation, is often used to reduce variance within a noisy dataset. Bagging [120]

is the process of selecting a random sample of data from a training set with

replacement, that is, the individual data points might be chosen many times. These

weak models are then trained individually after multiple data samples are

collected, and depending on the type of task, regression or classification, the

average or majority of those predictions yield a more accurate estimate.

2.3.3 Performance evaluation metrics

We used a number of measures in this thesis, primarily threshold-curve-focused methods

that are effective with unbalanced datasets. We have evaluated our approach on four

evaluation matrices - Area under the precision–recall curve (AUPR) [121, 122], F1 score

[123], Balance-accuracy [124], Area under the ROC curve (AUROC) [125, 126], Average

precision [127], Precision [128] and Recall [127]. In this work, link prediction problem

is considered as a binary classification task.

• Area under the precision–recall curve (AUPR). AUPR is the average of precision

across all recall values. When applied to binary classification, it is more useful and

informative. The precision-recall curve, which is a plot between the precision values

on the y-axis and the recall values on the x-axis, is used to calculate it.

• F1 score. The F1-score is a measure of a test’s accuracy in binary classification

statistical analysis. It can be calculated using the following formula:

F1 score = 2∗ Precision∗Recall
Precision+Recall

. (2.23)

• Balance-accuracy. To deal with imbalanced data sets, the balanced accuracy in

binary and multi-class classification problems is used. It’s the average of the recall
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scores for each class. When adjusted=False, the best value is 1 and the worst value

is 0.

• Area under the ROC curve (AUROC).

It is used to determine the accuracy of predictive algorithms. The AUC determines

the likelihood that a non-observed but existing link will have a higher score than

other truly nonexistent relationships. Mathematically, AUROC is expressed as.

AUC =
n1 +0.5n2

n
, (2.24)

where n=independent comparison , n1 times = the true link has higher score than

the false link and n2 times = equal score. For any network, the set of existing edges,

E, is randomly divided into two sets, the set of training edges, ET and the set of test

edges EP. where ET ∩EP = φ and ET ∪EP = E.

• Average precision.

The average precision value 9 is calculated by averaging the precision across all

recall values between 0 and 1. It is calculated as:

Average precision =
∫ 1

r=0
p(r)dr,

where p is the precision at different threshold value of recall r.

• Precision. It’s calculated by dividing the number of correctly anticipated positive

cases by the total number of positive examples predicted. The precision is

calculated as.

Precision =
true positives

(true positives+ f alse positives)
. (2.25)

9https://sanchom.wordpress.com/tag/average-precision/
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