
Chapter 7

CUDA Accelerated Parallel Non-

Dominated Sorting

7.1 Introduction

Advances in software and hardware introduce new ways of solving real-life industrial

problems. Computational and hardware resources are more powerful than ever. This

has allowed engineers and researchers to explore new problem-solving domains by in-

corporating methods that were previously considered ‘too complex.’

With an increase in computational capability, researchers are able to tackle problems

with large datasets efficiently. Multi-objective Optimisation Problems (MOOPs) are a

part of this category. The solutions to these problems are represented as an array of

values, one for each objective. Each value of the array depicts how well that solution

satisfies the corresponding objective. One solution may be excellent at satisfying some

objectives but worse at satisfying others. Non-dominated Sorting (NDS) is a pivotal

step in Multi-objective Evolutionary Algorithms (MOEAs). An NDS algorithm sorts

the solutions generated by MOEAs and ranks them based on their viability. NDS tends

to be the most computationally heavy, time-consuming step of the algorithm, and as

such, many researchers have attempted to speed it up in the past, such as [291, 292].



250 7.2. Motivation and Contribution

For most industry-scale problems, the number of solutions simultaneously being

processed can be large-scale. Unfortunately, NDS algorithms tend to have quadratic

time complexity in the worst case. Thus, reducing the complexity of NDS has been a

key topic of research and a major challenge among the research community dealing with

optimization problems using MOEAs. Since we cannot decide on a single most viable

solution, NDS algorithms instead look for a particular group (or ‘front’) of solutions

called the Pareto-optimal front of the set, such that:

• We cannot definitively say that one solution of the Pareto-optimal front is better

than the another.

• There is always a solution on this front that is better than any other solution not

belonging to this front.

Previous research has aimed at making the NDS algorithms more efficient by re-

ducing the number of objective comparisons and removing redundancy, such as [291]

etc. Other notable works include Distributed NSGA-II [293] and BOS [294]. They re-

duce the overall complexity from a naive cubic relation to a quadratic relation w.r.t the

number of solutions. There has been a lack of research in exploring the scope of paral-

lelism in these algorithms. Modern GPUs can run thousands of threads concurrently.

Nowadays, they are extensively used for scientific computing.

7.2 Motivation and Contribution

Over the past few years, GPU usage for large-scale AI applications has become com-

mon. Many high-performance computing and cloud computing problems also use GPUs

for general computing applications. NVIDIA’s Compute Unified Device Architecture

(CUDA) is a parallel computing platform and programming model that enables easy

abstraction to GPU Hardware and general-purpose parallel computing on Nvidia GPUs.

CUDA C++ is an extension of C++ that allows users to write code for parallel imple-

mentation of CUDA functions called kernels. Traditionally, most Pareto-based MOEAs



7.2. Motivation and Contribution 251

dissuade parallelism; thus, the challenge of reducing the overall computation time faced

remains predominantly unmet. A few works have hypothesized parallel implementa-

tions, but most of them are theoretical. Others lack a sufficient amount of parallelism

that can offset the extra time taken by CUDA to launch and synchronize kernels.

The major contributions of this chapter are as follows-

1. We analyze Corner Sort [295], an NDS algorithm, and highlight two areas within

it with a high scope of parallelism.

2. We propose Parallel Corner Sort for efficiently parallelizing NDS.

3. Parallel Corner Sort parallelizes the Pareto-optimal solution finding as well as the

dominance calculations in order to improve computation time. We accomplish

this via CUDA.

4. A theoretical analysis of the complexity of Parallel Corner Sort is done for some

general cases. We also explore the challenges faced by it.

5. We implemented the serial and parallel approaches in CUDA C++ and compared

their performances on large population size data created artificially.

6. Experimental observations showed motivating results in terms of computation

time with an increasing number of solutions. We observed that the time taken by

Parallel Corner Sort does not vary much with the number of objectives.

7. We also observed that the effect of increasing the number of solutions does not

affect the time taken by Parallel Corner Sort to the same extent as other algo-

rithms.



252 7.3. Theoretical Background

7.3 Theoretical Background

7.3.1 Non-dominated Sorting

NDS is a type of high-dimensional sorting and is an essential part of MOEAs. Unlike

single-objective optimization, the solution to a MOOP is a set of points called the

Pareto-Optimal Front, where each solution is better than the other solutions in

some way but worse in some other way. This optimal set of solutions is obtained by

NDS, which is based on Pareto dominance.

For this chapter, we will denote the size of the multi-objective Population (solution

space) with N and the number of objectives for each solution with m, unless specified

otherwise. NDS is illustrated in Figure 7.1.

A Front is defined as a set of solutions that are non-dominated w.r.t each other.

NDS algorithms divide the population into a set of indexed fronts. Each solution is

assigned to a front such that all solutions in that front are non-dominated, and at least

one solution in the previous front dominates it. Unlike regular sorting, where each

element is assigned a different position, in NDS, multiple solutions may be assigned to

a single front. The Rank of a solution is defined as the index of the Front it belongs

in. The solutions that are not dominated by any other solution in the population set

f2

f1

S

Dominating S

Dominated by S

Figure 7.1: Dominance relation between multi-objective solutions: The solutions high-
lighted in red are dominating solution S, as they are better in both objective values
f1 and f2. Similarly, solutions in blue are dominated by solution P since both their
objective values are worse than that of S, and the ones that are not highlighted are
non-dominated as they are better in one of the objectives but worse in the other.



7.3. Theoretical Background 253

(rank 1) constitute the Pareto-Optimal Front.

7.3.2 Related Work

The Corner Sort algorithm was proposed by Wang and Yao in 2013 [295]. Corner Sort

is an NDS algorithm that focuses on finding a single non-dominated solution (called the

‘corner solution’ [296]) and using it to find the group of solutions that are dominated

by it. We then ignore this group of solutions for the current rank assignment since

these solutions cannot be in the same front as the corner solution. The number of

comparisons between two solutions of many-objective optimization problems is very

large. Corner Sort has the same time complexity as other common algorithms but

works better than most previous algorithms as it saves the number of comparisons

made even for many-objective problems.

We start every iteration of Corner Sort by finding a solution among the current set

that is non-dominated with every other solution. The solution with the best value of

any objective (say, the jth objective) will automatically be non-dominated with every

other solution of the set [From the definition of Dominance]. We refer to this

solution as the ‘corner solution’ for the jth objective. We find and use the corner

solution to mark the group of solutions dominated by it. The dominated solutions

are then ignored. The remaining solutions are checked ∀j ∈ [1,m] repeatedly until

all solutions are either marked or selected as a corner solution. The Time complexity

for Corner Sort is O(mN2), where m is the no of objectives, and N is the size of the

population.

The main feature of Corner Sort is that it saves comparisons by using a Non-

dominated solution to mark & ignore the solutions that it dominates while assigning

the current rank. It can be seen that the solution having the ‘best’ objective value

(minimum in our case) will never be dominated by any other solution since there is

at least one objective value that is always less than the corresponding objective of the



254 7.3. Theoretical Background

other solutions. So instead of finding all dominance relations in the solution set, Corner

Sort finds solutions with the best objective value, marks it, and uses it to ignore the

solutions that are dominated by it, since they won’t be placed in the same rank as the

solution with the best objective.

Now the same process is repeated for the next objectives till all the solutions are

marked. Now we have some non-dominated solutions, and the rest, solutions dominated

by at least one of the obtained non-dominated ones. The non-dominated solutions are

assigned the current rank, and the dominated solutions are unmarked. Now taking the

unmarked solutions as the new solution set, we repeat the whole process for assigning

the next rank. In this way, all the solutions get sorted into ranks based on the Pareto

dominance rule.

The implementation makes use of linked lists to store the ranked and marked lists

since they allow O(1) operations for removing/inserting a node. The node structures

representing the solutions stored their indices, their ranks, marked statuses as well as

pointers to the next/previous node in the list. In this way, the node for every solution

had information about which one is the next unmarked or unranked solutions as well as

the previous one. Two main functions were used, one for finding the minimum objective

Algorithm 7.1: Finding Corner solution

Data: Population Set P , number of solutions N , Current objective j,

Result: Index of solution having minimum value for jth objective, idx

1 min← INF

2 for i = 1 : N do

3 if P i is unmarked, and min < P i
j then

4 min← P i
j

5 idx← i

6 end

7 end

8 return idx



7.4. Methodology 255

Algorithm 7.2: Finding solutions dominated by the corner solution

Data: Population Set P , number of objectives m, index of corner solution idx

Result: Population P with solutions dominated by corner solutions marked

1 foreach i, such that P i is unmarked do

2 flag ← 0

3 for j = 1 : m do

4 if P i
j < P idx

j then

5 flag ← 1

6 break

7 end

8 end

9 if flag == 0 then

10 mark i

11 end

12 end

value. Algorithm 7.1 compares the current objective values among the unmarked nodes,

and returns the index of the solution with the minimum value for that objective, i.e.,

the corner solution. The other function uses this corner solution to find the solutions

dominated by it and mark them (Algorithm 7.2). Figure 7.2 shows the working of the

Corner Sort algorithm.

7.4 Methodology

7.4.1 Identifying Areas with Scope of Parallelism

The first step in achieving the required parallelism was to identify which sections of

the algorithm involved a high number of independent computations that could execute

concurrently on multiple threads. These sections are typically identified if they have

the following characteristics:



256 7.4. Methodology

Figure 7.2: Graphical representation of Corner Sort algorithm



7.4. Methodology 257

1. A large number of similar calculations occur sequentially. This eases the synchro-

nization of the GPU threads (SIMT execution model for parallel computing).

2. The result of the calculation as a whole is unaffected by the ordering of the

individual calculations, i.e., the result of one calculation is independent of the

others.

3. The individual calculations themselves consist of only a small number of simple

arithmetic operations.

On thorough analysis of the algorithm, we found two areas with the highest scope

of parallelism.

7.4.2 Parallel Implementation

7.4.2.1 Finding corner solution

The first area with a high scope of parallelization is the step in which the corner solution

is found (Algorithm 7.1).

For the jth objective, the solution with a minimum value of fj is found. Hence, out

of N numbers and some i ∈ N , f i
j is found, where

f i
j = MIN(f 1

j , f
2
j , · · · , fN

j )

The time complexity of this step is O(N) with N − 1 comparisons.

It has been observed from Algorithm 7.1 that this step can be repeated many times.

Comparison between two static values is a simple machine instruction independent of

other factors. Thus, this step satisfies the criteria for parallelism. The minimization

step is approached in a divide-and-conquer manner. The overall computation happens

in two parts. In the first part, we divide the N values into smaller groups of, say,

x values each. There will be a total of ⌈N/x⌉ such groups. Hence, we make ⌈N/x⌉

threads; each thread will find the minimum for their corresponding group of x values.



258 7.4. Methodology

Algorithm 7.3: Parallel Function for finding corner solution

Data: Population Set P , number of solutions N , Current objective obj, current

group no j

Result: Array with local minimas of ⌈N/ logN⌉ parts of N objth values, Temp[]

1 min[j]← INF

2 for i = j logN : min(N, (j + 1) logN) do

3 if P i is unmarked, and min < P i
j then

4 min[j]← P i
j

5 Temp[j]← i

6 end

7 end

8 return Temp[]

The first thread finds the minimum among the values with an index from 1 to x.

The second thread finds the minimum from x + 1 to 2x, and so on. The last thread

will find the minimum of values with an index up to N . The time complexity for each

thread will be O(x). Next, we use the local minima values returned by ⌈N/x⌉ threads

and find the global minima. The complexity of this step will be O(⌈N/x⌉). This way,

we will get the same answer as the serial method, with effective time complexity O(x)

+ O(⌈N/x⌉). We have taken x to be equal to logN for our implementation (Algorithm

7.3). Figure 7.3 shows the working of the parallel minimization.

7.4.2.2 Finding dominated solutions

The second area with a high scope of parallelism is where we iteratively find the solutions

dominated by the corner solution found in the last step (Algorithm 7.2). In this step, we

mark the solutions that are dominated by the corner solution. Finding the dominance

relation between any two given solutions with m objectives takes O(m) time. These

objective comparisons are, again, independent of each other due to their static nature.

The order in which these comparisons are made also does not matter. Thus, these



7.4. Methodology 259

Figure 7.3: 1st Parallelization: Instead of finding the minimum objective value among
all solutions simultaneously, we break it into many segments, each of whose respective
minima is calculated parallelly which are used to compute the final minima.



260 7.5. Theoretical Analysis

Figure 7.4: 2nd Parallelization: Solutions are checked for dominance relation parallelly
on different threads rather than iteratively since they are independent of each other.

comparisons can be performed simultaneously.

We have m objective comparisons between the corner solution and the current solu-

tion whose dominance relation we have to check. Since the value ofm is not as nearly as

high as that of N (it is around 5-50 for most practical applications), we can distribute

one objective comparison per thread. We create a boolean flag and set its value to True.

All threads have access to this flag. The jth thread will set the flag to False if the value

of the current solution is less than the value of the corner solution for the jth objective.

In the end, if the flag is set to True, the current solution is marked (Algorithm 7.4).

Figure 7.4 shows the working of the parallel objective comparisons.

7.5 Theoretical Analysis

For the general analysis of the Parallel Corner Sort, we will ignore the time taken for

memory allocation/deallocation of host/device variables, and the memory transfer from



7.5. Theoretical Analysis 261

Algorithm 7.4: Parallel function for Finding solutions dominated by the corner

solution
Data: Population Set P , index of corner solution idx, current objective j

Result: Population P with solutions dominated by corner solutions marked

1 foreach i ∈ 1 : N , such that P i is unmarked do

2 flag ← 0

3 if P i
j < P idx

j then

4 flag ← 1

5 break

6 end

7 if flag == 0 then

8 mark i

9 end

10 end

host to device and vice-versa, as well as any input/output or pre-processing done before

starting the sorting process; as was done for calculating the computation time.

The steps responsible for the complexity of the parallel algorithm are:

1. Unmarking the unranked solutions

2. Updating the rank/objective/list head variables after every rank is sorted

3. Finding N/ logN best solutions parallelly

4. Finding the best out of N/ logN solutions serially

5. Ranking and marking the best solution

6. Comparing best solutions with unmarked ones parallelly

7. Marking the dominated solutions

Steps 2 and 5 take constant time, so they can be ignored in our calculations.



262 7.5. Theoretical Analysis

The two main loops in the code include one running until all solutions are ranked

(steps 1-7) and one that runs until all solutions are marked (steps 3-7). The first loop

goes to the next iteration when calculations for the current rank/front are over. Hence

it runs as many times as the number of ranks in the dataset. The second loop runs

until all solutions are marked, which happens when the calculation of the current rank

finishes. Since in one iteration of this loop, only a single solution is ranked (the corner

solution), hence this loop runs as many times as there are solutions in the current rank.

Using this information and the known time complexities of some steps, we can write

an expression (without coefficients) that loosely represents the function for the time

complexity of Parallel Corner Sort. The total time taken can thus be expressed in the

form of the following equation:

T (N,m) =
R∑

r=1

nur +
i∈r∑
P [i]

(
logN +

N

logN
+ num

) + k (7.1)

Here, T (N,m) is the computation time for N solutions with m objectives, R is the

total number of ranks, nur and num are the number of unranked and unmarked solutions

at any given time, and P [i] are the solutions belonging in rank r, k is some constant

value. The constant coefficients are ignored for simplicity.

We see that the terms logN and N/ logN are constant values for a given value

of N . So they come out of the second summation. Also, the number of unranked

solutions, nur, is equal to the difference between the total number of solutions and the

total number of ranked solutions. Hence T (N,m) now becomes:

R∑
r=1

(
N −

r∑
α=1

nα

)
+

(
logN +

N

logN

) R∑
r=1

nr +
R∑

r=1

i∈r∑
P [i]

num + k (7.2)

where nr is the number of solutions in a given rank r (nr =
∑i∈r

P [i] 1). The second



7.5. Theoretical Analysis 263

summation is simply the number of solutions in rank r, summed over all ranks, which

equals to all the solutions, N . Hence the equation becomes:

NR−
R∑

r=1

r∑
α=1

nα +

(
logN +

N

logN

)
×N +

R∑
r=1

i∈r∑
P [i]

(num) + k (7.3)

Number of unmarked solutions can be written as the total number of solutions

minus the ranked solutions minus the solutions dominated till now. Hence the equation

becomes,

NR −
R∑

r=1

r∑
α=1

nα + N logN +
N2

logN
+

R∑
r=1

i∈r∑
P [i]

(
N −

r∑
α=1

nα −
i−1⋃
j=0

domr
j

)
+ k (7.4)

where domr
j is the set of solutions dominated by solution j in rank r. Now we have

two terms, nα and domr
j , whose summations can only be evaluated if we know the

exact distribution of the solution set. Hence the exact expression of time complexity

depends on the nature of the dataset and not only the values of N and m; hence it will

be different for different cases. However, by making use of some assumptions, we can

simplify the above equation.

We can consider an ideal case where the ranks are uniformly distributed, i.e., each

rank has the same number of solutions; hence nr is constant. Hence for R ranks,

we will have, nr = N
R
. Also, we assume that all solutions in each rank dominate all

solutions in lower ranks, so the number of unmarked solutions will be the number of

unranked solutions for the first element in the rank and the number of solutions in rank

r remaining for the rest. Hence we get,

NR −
R∑

r=1

r∑
α=1

N

R
+ N logN +

N2

logN
+

R∑
r=1

N − r∑
α=1

N

R
+

N/R∑
j=1

(
N

R
− j
) + k



264 7.5. Theoretical Analysis

= NR −
R∑

r=1

rN

R
+ N logN +

N2

logN
+

R∑
r=1

(
N − rN

R
+
N2

R2
− N

R

(
N
R
+ 1

2

))
+ k

= NR − N(R + 1)

2
+ N logN +

N2

logN
+

R∑
r=1

(
N − rN

R
+
N2

2R2
− N

2R

)
+ k

= NR − N(R + 1)

2
+ N logN +

N2

logN
+ NR − N +

N2

2R
− N(R + 1)

2
+ k

= N(R− 3

2
) +N logN +

N2

logN
+
N2

2R
+ k (7.5)

The above equation has a minima at R =
√
N . And at extreme values on R, it is

strictly increasing. Hence the worst case arises for R = N or R = 1 and the best for

R =
√
N .

Best and worst case scenarios, respectively:

T (N,m) =
3

2
N
√
N +N logN +

N2

logN
− 3N

2
+ k = O

(
N2

logN

)
(7.6)

T (N,m) = N2 +N logN +
N2

logN
−N + k = O(N2) (7.7)

It is important to note that we did this analysis for the ideal case where the pop-

ulation is equally divided among the ranks, and all solutions of a rank dominate all

solutions of succeeding ranks. In reality, however, such an assumption would not hold.

Also, in a practical scenario, the number of ranks would be dependent on both N and

m. It is simple to imagine the dependency on N . For a randomly generated population,



7.6. Experimental Results 265

more solutions would require more ranks to contain them. For the dependency on m,

one can think that the more number of objectives there are, the more likely it becomes

for a dominance comparison to fail; hence fewer solutions will be dominated each time,

and each rank will contain more solutions, reducing the number of ranks. Substituting

R by R(N,m) in equation 7.4 along with adding constant coefficients to all variables

would give a more appropriate expression for computation time and complexity. Hence,

experimental results vary with the ones discussed, as we will see in Section 7.6.

7.6 Experimental Results

7.6.1 Experimental Setup and Performance Metrics

The compute setup was 1x GPU computing node. We utilized 1x Nvidia Tesla v100

GPU and Intel Xeon Skylake processor. Maximum CPU memory was set to 192 GBs,

and maximum GPU memory was set to 16 GB HBM2. Linux CentOS 7.6 distro was

utilized as the OS. All code was compiled using Nvidia’s CUDA v11.0 NVCC Compiler

and GCC v7.5.0.

The performance of the CUDA C++ implementation of Parallel Corner Sort was

measured against the C++ implementation of the serial algorithm for the large popu-

lation size dataset created artificially, which is described in the following sections along

with their respective experiments. There were two metrics used -

1. First is Computation Time, which is different from execution time, as we ignore

the GPU allocation and memory transfer overheads, and some other things like

I/O, some variable declaration, etc., to focus on the main part of the code. It is a

slightly better metric than the execution time of a code for a better understanding

of the behavior of the algorithm.

2. We also compare the two implementations directly by measuring a speedup factor,



266 7.6. Experimental Results

Speedup, which measures how many times faster the parallel version of Corner Sort

is in comparison to the serial one. It is given by:

Speedup =
T c
seq

T c
par

Where T c
seq and T

c
par are the computation times for Serial Corner Sort and Parallel

Corner Sort, respectively. Consequently, a speedup of less than 1 suggests that

the serial approach is faster than the parallel approach and vice-versa.

7.6.2 Results and Discussion

For performing the comparison between serial and parallel Cornersort on large popula-

tion sizes, the data had to be artificially generated. Population size as large as 200000

solutions was used for the experiments. Random numbers between 0 and 1 are gen-

erated which are reshaped according to the required N and m values of the required

dataset. The pseudo code for random data generation is given in Algorithm 7.5.

Algorithm 7.5: Generating Randomized dataset

Data: Number of solutions N , Number of objectives m

Result: Dataset f with N solutions having m objectives each

1 k ← []

2 U(0, 1)← random number between 0 and 1

3 for i = 1 : N ∗m do

4 k ← k
⋃
U(0, 1)

5 end

6 k ← k(N,m)

7 for x ∈ k do

8 f .write(x)

9 end

10 return f



7.6. Experimental Results 267

The analysis is performed by varying the number for solutions, N from 150000

to 200000 in steps of 10000 and keeping the value of number of objectives constant,

m ∈ {2, 5, 10, 20, 25}.

Another analysis is performed by varying the number of objectives,m to 2, 5, 10, 20, 25

and the number of solutions constant, N ∈ {150000, 160000, 170000, 180000, 190000, 200000}.

(a) 2 objectives (b) 5 objectives

(c) 10 objectives (d) 20 objectives

(e) 25 objectives

Figure 7.5: Comparison of Sequential and Parallel versions of Cornersort for randomly
generated data, with fixed number of objectives



268 7.6. Experimental Results

7.6.3 Experimental Analysis

The results obtained for the experiment on the randomized dataset can be summarized

as follows.

The time required by the parallel implementation is higher than the serial imple-

mentation for less number of objectives(less than 20). We see in Fig. 7.5 that form = 20

(a) 150000 solutions (b) 160000 solutions

(c) 170000 solutions (d) 180000 solutions

(e) 190000 solutions (f) 200000 solutions

Figure 7.6: Comparison of Sequential and Parallel versions of Cornersort for randomly
generated data, with fixed number of solutions



7.6. Experimental Results 269

Figure 7.7: Speedup analysis of Corner Sort on randomly generated data

and m = 25, the serial line overtakes the parallel line after a certain number of solu-

tions N . Hence for a high number of solutions and a high number of objectives, Parallel

Corner Sort is faster than Serial Corner Sort. The point at which Parallel Corner Sort

becomes faster than Serial Corner Sort also reduces from m = 20 to m = 25 objectives.

This suggests that Parallel Corner Sort becomes increasingly efficient for higher number

of objectives m.

Time taken also increases with the number of objectives m. We can see that the

parallel and serial lines are far apart for N = 150000, and the parallel line intersects

the serial one for all other cases between 15 and 20 objectives. For N = 160000 and

N = 170000, the point of overtaking is near 20 objectives. Whereas for later cases of

N = 180000, 190000 and 200000, it is near 20 objectives. This suggests that the Parallel

Corner Sort becomes faster for larger cases than Serial Corner Sort and that Parallel

Corner Sort becomes increasingly efficient as we increase the number of solutions N .

(Fig. 7.6)

The speedup increases with N . In Fig. 7.7 the speedup is highest for m = 20, 25.



270 7.7. Summary

It can be seen that after 160000-170000 solutions, the speedup is larger than 1 for

m = 20, 25 which coincides with previous results of Parallel Corner Sort being faster

than Serial Corner Sort for large datasets.

7.7 Summary

In this chapter, a parallel implementation of Corner Sort has been proposed. With

the help of CUDA, large sequential processes were distributed on multiple threads to

achieve a lesser time complexity. For small population sizes, the parallel algorithm

was slower than the serial one but eventually (for N > 160000), it became faster

with an increase in population size, suggesting that they may be useful for large-scale

applications involving big data sets. The speedup increases with an increase in the

number of solutions. The rate of increase of computation time is also lower for Parallel

Corner Sort than for the serial algorithm, suggesting that they remain suitable for use

over a wide range of population sizes, making them apt for practical uses. We also

observed that the experimental analysis of time complexity under the produced results

is lower than for Serial Corner Sort. However, as of now, it is a good implementation

for a large range of solutions and can be used for a wide range of practical applications.


