Chapter 2

Background and Related Works

Recently, AT has emerged as a hot topic, presenting impressive results with EC. Al a
buzzword for today’s era, involves advanced ML methods emphasizing high-level data
representation learning rather than task-specific learning [24]. ML has been extensively
used due to advances in hardware and the development of computational fast and
efficient optimization algorithms [25]. In addition, ML can be used to evaluate and
mine exciting Big Data models [26]. Like several other problems in AI, ML also consist
of an optimization problem within itself that may vary in a range of complexity and
type. On the other hand, the application diversity of EC methods is enormous, and
the literature is growing quickly. It also shifts the research paradigm, culminating in

Evolutionary ML (EML), and is regarded as a new revolution in Al.

As a result, this chapter provides a systematic review of studies published in the last
ten years on EC-based frameworks for large-scale optimization and ML. There are also
a few early works that are over ten years old but have made significant contributions to
the field. These systematic reviews aided us in determining our objectives by identifying

research gaps, challenges, and open issues in EC and other applications.
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2.1 Background

Before proceeding with the related work, we examine some of the essential preliminary

terms and methods.

2.1.1 Basic Definitions

Definition 2.1 Optimization: An optimization problem that consists of only one
objective function that needs to be minimized or mazximized is known as a single objective

optimization problem. Mathematically, for a minimization problem, it is defined as :

—

minimizez f ()

subject to ¥ e X CR" (2.1)

and Z*is an optimal solution in feasible set X for problem in (2.1) if it satisfies f(Z*) <

f(Z) VeeX

Definition 2.2 Multi-objective Optimization: It is defined as an optimization
problem with several objective functions that are usually conflicting and need to be op-
timized simultaneously. It is also called vector optimization or multi-criteria optimiza-
tion, which gives a set of equally good solutions instead of a single superior solution.

Mathematically, it is formulated as follows:

Minimize F(Z)
s.t €
where F(7) = [4(®), @)+, Fo(@)]" (22)

where €0 is the search space and T is a decision vector such that F' : Q — RP with p

number of objective functions in RP objective space and 2 C R™
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Definition 2.3 Pareto Dominance: Given two vectors @ and b such that

a= (ay,ag, -+ ,a,) and b= (b1,ba, -+ ,by), d is said to dominate b e, (@ <b)if

and only if it satisfies:

— —

Vi € {1,2,..,m},[fi(@) < fi(D)] A I{i € 1,2,-- ,p}: [fi(@) < fi(b] (2.3)

Definition 2.4 Pareto Optimality: Let S be a set of solutions for a given multi-
objective optimization problem in (2.2). A solution § € S is said to be pareto optimal
iff:

hseS|s<§ (2.4)

Definition 2.5 Pareto Optimal Set and Pareto Optimal Front: A Pareto op-
timal set refers to a set consisting of all Pareto optimal solutions which represent the
best trade-offs between multiple objectives of a problem and the corresponding objective

function’s values make up the Pareto optimal front.

Definition 2.6 FEncryption and Decryption : Encryption E is a process of en-
coding that uses a finite set of instructions known as an algorithm to transform the
original image I into unreadable form C1I to others except to the receiver having secret
key K to retrieve the original image. The process of recovering the original image is
known as decryption and is denoted by D. Mathematically it is stated as follows:
CI=E(K,I) (2.5)

I = D(K,CI) (2.6)

Definition 2.7 Feature Selection: Feature selection (FS) techniques are designed
to reduce the number of irrelevant, noisy, and redundant attributes in the dataset with-
out compromising the performance of the model and an important step to overcoming

the problem of “curse of dimensionality”. FS problem (p, P) can be formulated as an
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optimization problem as identify F* for which

P(F*) = minpe, P(F,V) (2.7)

where p is the set of all possible feature subsets and F C p 1is feature subset and
P:p x 1 — (R) represents a criterion to measure the quality of F w.r.t’s utility in
classifying points set V. € 1 . Each member of V is a d dimensional vector and is

projected in dp dimensional subspace such that dp = mod F < d defined by F.

2.1.2 Evolutionary Computation: An Overview

Evolutionary Computation (EC) is a subfield of AI. The mechanisms of biological evo-
lution and natural events performed by organisms serve as inspiration for designing
EC methods. Generally, EC [27] is defined as a computing tool that follows the Dar-

winian evolution principle to solve an optimization problem. It sought to develop novel
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Figure 2.1: An EC framework
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computing methods by monitoring how natural phenomena act to solve complex prob-
lems in different environmental circumstances. The primary goal of EC is to create
computational models and efficient algorithms based on natural intelligence discov-
ered in physical, chemical, and biological systems. Among various other optimization
techniques, EC methods are proven as a global optimization method for multiple op-
timization problems. These methods are population-based approaches; hence, they
solve any optimization problems by uniformly creating a random initial population and
utilizing variation operators (mutation, crossover) for generating the next population
or offspring. They also follow the natural selection process for further refinement of
the population for the next generation. The basic overview of the EC framework is

explained in Figure 2.1.

The EC methods originated in the 1960s when researchers proposed Genetic Al-
gorithm (GA), Genetic Programming (GP), and Evolution Strategies (ES) for finding
solutions to global optimization problems [93]. Further, Differential Evolution (DE) and
Estimation Distribution of Algorithms (EDA) were other development made in 1990,
and all these approaches are known as evolutionary algorithms. 1990 onwards, a few
other optimization methods were also designed by simulating natural intelligent phe-
nomena of ants and swarms, etc., called Swarm Intelligence [94]. All these methods are
known to the sub-classes of EC [14]. An overview of these categories of EC is shown in
Figure 2.2. Because of their derivative-free nature, EC algorithms are generally suited
to non-convex and black-box optimization problems where even the mathematical form
of the objective function is not available. Thus, they are the center of attention and
lead to several creations. A summary of these intelligent algorithms is provided in
Table 2.1. These methods are well-suited for multi-objective and many-objective opti-
mization problems also. A few multi-objective evolutionary algorithms are detailed in
Table 2.2. Recently, due to the emergence of Big Data, researchers from academia and

industry both face 4 “Vs” (Volume, Variety, Velocity, and Value)[7] as critical issues
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Table 2.1: Brief summary of intelligent optimization algorithms

Reference Algorithm Motivation Year
J.H. Holland [28] Genetic Algorithm (GA) Inspired from Darwin Evolution’s theory 1975
Kirkpatrick et.al [29] Simulated Annealing(SA) Trajectory based approach inspired from annealing process 1983
Kennedy et al. [30] Particle Swarm Optimization (PSO) Smart social behavior of bird flock 1995
Hersovici et al. [31] Shark Search Algorithm Feeding mechanism and coordinated movement of fish 1998
Nara et al. [32] Sheep Flock Heredity Model Natural evolution of sheep flocks 1999
Passino [33] Bacterial Foraging Algorithm Foraging strategy of E. Coli bacteria 2002
Li [34] Artificial Fish Swarm Algorithm (AFSA) Fish swarm’s collective intelligence 2003
Martin et al. [35] Termite Algorithm Termite colony 2006
Dorigo [36] Ant Colony Optimization (ACO) Behaviour of real ant colony 2006
Karaboga and Basturk [37] Artificial Bee Colony (ABC) Honey Bee 2007
Mucherino et al. [38] Monkey Search (MS) Monkey’s food-seeking behavior while climbing trees 2007
He et al. [39] Group Search Optimizer (GSO) Foraging behavior in animals 2009
Yang [40] Firefly Algorithm Firefly flashing behavior 2009
Yang and Deb [41] Cuckoo Search Obligate brood parasitism of cuckoo 2009
Yang [42] Bat Algorithm Bat echolocation behavior 2010
Pan [43] Fruit Fly Optimization algorithm (FFOA) Fruit fly’s fruit-seeking behavior 2012
Gandomi et al. [44] Krill Herd (KH) Krill’s herd herding behavior in nature 2012
Kaveh et.al [45] Dolphin Echolocation Dolphin echolocation ability 2013
Cuevas et al. [46] Social Spider Optimization Algorithm Social spider’s cooperative behavior 2014
Uymaz et al. [47] Artificial Algae Algorithm Microalgae living behaviors 2015
Mirjalili [48] Ant Lion Optimizer (ALO) Ant lions hunting mechanism in nature 2015
Mirjalili et al.[49] Dragonfly Algorithm Dragonfly swarming behaviors, both static and dynamic 2016
Abedinia et al. [50] Shark Smell Optimization(SSO) Shark’s ability to locate prey using its smell sense 2016
Yong et al. [51] Dolphin Swarm Optimization Algorithm (DSOA) Mechanism of dolphins to detect, chase, and prey on sardine swarms 2016
Li et al. [52] Virus Colony Search Virus infection and diffusion strategies 2016
Mirjalili and Lewis [53] Whale Optimization Algorithm (WOA) Humpback whale social behavior 2016
Mirjalili et al. [54] Multi-verse Optimizer (MVO) Based on a cosmology theory concept 2016
Askarzadeh [55] Crow Search Algorithm (CSA) Crows’ intelligent food-hiding behavior 2016
Mirjalili et al. [56] Salp Swarm Algorithm Salps’ swarming behavior when navigating and foraging in the oceans 2017
Saremi et al. [57] Grasshopper Optimization Algorithm Grasshopper swarming behavior 2017
Fausto et al. [58] Selfish Herd Optimizer (SHO) Hamilton’s selfish theory 2017
Dhiman et al. [59] Spotted Hyena Optimizer Spotted hyenas’ social behavior 2017
Qi et al. [60] Butterfly-inspired Algorithm Butterfly mate-searching mechanism 2017
Jahani et al. [61] Mouth Brooding Fish Algorithm Life cycle of mouth brooding fish 2018
Kaur and Arora [62] Chaotic Whale Optimization Hybrid approach to improve the efficiency of WOA 2018
Torabi et al.[63] Improved Raven Roosting Optimization Algorithm Ravens’ social roosting and foraging behavior 2018
Jain et al. [64] Squirrel Search Algorithm (SSA) Dynamic foraging behavior 2019
Bharti et al. [65] Genetic Directed Weighted Complex Network PSO  Dynamic network topology of swarms 2021
Dhiman et al. [66] Rat Swarm Optimization Rat chasing and attacking behavior 2021
Salehan et al. [67] Corona Virus Optimization Corona virus characteristics and behavior 2021
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Table 2.2: Important development of MOEA

Multi-objective Evolutionary Optimizer

Reference Year MOO Description

Schaffer et al.[68] 1985 VEGA Vector evaluated genetic algorithm

Fonseca and Fleming[69] 1993  MOGA Multi objective genetic algorithm

Horn et al.[70] 1994 NPGA Niched Pareto genetic algorithm

Srinivas and Dev|71] 1994 NSGA Non dominated sorting genetic algorithm

Zitzler and Theile[72] 1999 SPEA Strength pareto evolutionary algorithm

Zitzler et al.[73] 2000 SPEA-II Strength pareto evolutionary algorithm-II

Deb et al.[74] 2000 NSGA-II Non dominated sorting GA-II

Knowels et al.[75] 2000 PAES Pareto archived evolutionary strategy

Corne, Knowels and Oates[76] 2000 PESA Pareto envelope based selection algorithm

Zitzler et al.[73] 2001 SPEA-II Strength pareto evolutionary algorithm-II

Corne et al.[77] 2001  PESA-II Pareto envelope based selection-II(region based selection)
Erikson et al.[78] 2001  NPGA-II Niched pareto GA-II

Okabe T et al.[79] 2002 VEDA Voronoi-based estimation of distribution algorithm for MOO
Xue and Sanderson[80] 2003 MODE Pareto based multi-objective differential evolution

Coello Coello[81] 2004  MOPSO Multi-objective PSO

Pelikan et al.[82] 2005 MOHBOA Multi objective hierarchical Bayesian optimization algorithm
Coello Coello et al.[83] 2005 MISA Multi-objective immune system

Zhang and Li[84] 2007  MOEA-D MOEA based on decomposition

Quingfu et al.[85] 2008 RM-MEDA  Regularity model-based multi-objective estimation of distribution algorithm
Gong et al.[86] 2008 NNIA Non dominated neighbourhood immune Algorithm

Huang et al.[87] 2009 MOSaDE Multi-objective self adaptive differential evolution

Chen et.al [88] 2015 NSLS Nondominated sorting and local search based MOEA

Li et.al [89] 2016 MOSPL MO Self paced Learning

Lin et.al [90] 2017 NSBLS Nondominated sorting and bidirectional local search

Liu et.al [91] 2019 MONSGA-II Multi-oriented optimization heuristic strategy NSGA-II
nouri et.al [92] 2021 MOFOA Multi-objective forest optimization algorithm

which also raise the complexity of optimization problems. A 5-M concept [95] is used

to categorize complex continuous optimization problems into Many-dimensions, Many-

optima, Many-changes, Many-costs, and Many-constraints. The link between complex

optimization based on 4 “Vs” and 5 “M” is illustrated in Figure 2.3 and gives insight

into future directions.

The mutation and crossover operations are based on guided randomness, and the

method, as a whole, typically does not require any gradient knowledge about the objec-

tive function being optimized. Because of their derivative-free nature, EC algorithms

are generally suited to non-convex and black-box optimization problems where even
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the mathematical form of the objective function is not available. The nature of the
variation and selection operations distinguishes one EC approach from another. ES,
GA, GP, DE, EDA, and so on are the most extensively utilized algorithmic sub-families
under EC.

2.1.3 What’s new in EC

The recent areas of research within EC are depicted in Figure 2.4. After observing re-
cent research and applications, we have divided the ongoing works into two sub-classes,
one of which involves theoretical studies such as convergence analysis, stability analysis,
and multidisciplinary studies with EC, and the other belongs to real-world applications
of EC embedded ML and deep learning models. Multidisciplinary studies integrated
concepts of distinct domains with these EC methods and resulted in new better per-
forming optimizers such as chaos theory from mathematics is integrated with several
swarm-based algorithms [96, 97, 98], superposition theorem, big bang theory and black
hole from physics give rise to new optimizer [99, 100]. Recent trends in this domain
show that research communities are attracted to multidisciplinary studies and their in-
tegration with models to improve the quality of solutions and try to reduce exhaustive
computation. Moreover, several research demonstrates that researchers are now solving
the real-world and challenging applications by treating them as an optimization prob-
lem that can be a single-objective, many-objective, dynamic objective, hierarchical in
nature, and many more [101, 102, 103].

Furthermore, the latest work demonstrates that research communities are continu-
ously striving to develop promising and effective optimizers inspired by natural phenom-
ena, animal behavior, and physical science [104, 105]. Apart from these, the new pop-
ular research area emerges as an introduction of chaos theory in EC. Chaos theory has
random, dynamic, non-repetitive, and ergodic properties. Due to its dynamic property,

it ensures the different solutions given by algorithms even on a complex multi-modal
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landscape. Since most of the EC belongs to stochastic algorithms in which randomness
is achieved by using probabilistic theory such as gaussian distribution or uniform dis-
tribution. Nowadays, to accelerate convergence and enhance the diversity of the EC,
chaos theory is used. Due to its ergodicity, it performs searches at a higher speed. This
novel approach has been widely utilized in various EC methods, and their applications
[106]. Another challenging area is convergence analysis which still needs to be explored.
Only a few works are there that tried to solve this by using the Markov chain model
[107]. Hybrid model of existing EC to enhance the performance of optimizer and ML
embedded with EC [13] are few recent developments which are used either for feature
selection or model parameter optimization and solving several real-world applications
[108, 109]. Self-adaptive EC [110], cellular automata-based EC [111, 112], surrogate as-
sisted EC [113] and new innovation in multi-objective optimization and many-objective

optimization are the new attraction for solving versatile applications [114, 115]. There
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is continuous innovation in technology resulting in more complex problems and the need
for better optimizers. It also leads to the design of new complex benchmarks, such as
high-scale benchmarks for validating optimizers [116]. In the last few months, it has
been observed that deep learning, which is highly popular in almost every domain of
application, also integrates with EC, and here it comes a new complex, interesting and
challenging area to be explored more. Besides, advanced technology such as Quantum
computing, Parallel computing, and GPU recently provided a new edge to EC and ML.
These techniques accelerate the development of methods suitable for them, and it is

still in the exploration phase and needs to do more in this direction.

2.1.4 Deep Learning: An Overview

Deep learning is a prominent technique in ML and Al, and it has evolved into a core
learning method of the revolutionary industry, Industry 4.0. Deep learning is emanated
from the neural network and due to its exceptional learning capabilities from data make
it worthy and popular among industries and research communities. However, neural
networks were widely acceptable models in ML and Al in late 1980s. Following that,
various innovative models like multi-layer perceptron trained through backpropagation,
radial basis function (RBF) networks, etc., were developed. However, after a certain
time, researchers were losing their interest in the neural network. Again, in 2006 Hinton
et al. [117] proposed a new generation neural network which is basically a rebirth of
neural networks in the form of deep learning, and now it is accepted as a more suc-
cessful technique in every field. The rise of deep learning has a long history which was
further divided into i) First generation had a time period (1958- 1969) that started with
a single-layer perceptron neural network developed by Rosenblatt [118]. But once the
observation made by Minsky [119] in 1969 was presented that single-layer perceptron
was incapable of solving problems that are linearly inseparable, resulting in the research

on the neural network being halted for around 20 years. ii) Second generation lay in
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1986-1998 where Hinton et al. [120] proposed multi-layer perceptron with backpropa-
gation, sigmoid function for nonlinear embedding, which is capable of solving nonlinear
classification problems. Further, Hornik [121] came up with a universal approximation
theorem, and after that, LeCun et al. [122] proposed a Convolutional Neural Networks
(CNN), but it takes three days for training, and in 1991 gradient vanishing problem
was reported. Besides, unclear theoretical and mathematical foundations and trial-error
approaches weaken the usability of this model while other statistical learning methods

with strong mathematical foundations gain popularity. Finally, the third generation
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neural network models (2006 to present) change the perception of researchers when a
graphical model of the brain is explored and presented in the form of a deep learning
model [123]. After that, several inventions like Auto Encoders (AE), deep belief net-
work, AlexNet, VGGNet, and many more are presented. Even to overcome the problem
of vanishing gradient, solutions like pre-training and then tuning were given. Authors
in [124] also proposed a ReLLU activation function, which is capable of suppressing the
gradient vanishing problem. Due to technological innovations like GPU, deep learning
has become more popular in different domains. Deep learning refers to a collection of
methods and models that includes, but is not limited to, LSTM, CNN, GAN, AE, and
many others. The broad classification of an artificial neural network is presented in

Figure 2.5.

2.1.5 Evolutionary Computation with Deep Learning

The performance of deep learning models is influenced by other factors like topol-
ogy structure, hyper-parameters, learning rules, data quality, and optimum weights.
Optimizing the deep learning architecture with enhanced performance for specific ap-
plications like image classification is a tedious task. However, to make it an efficient
model, a vast knowledge of deep learning and image processing is needed, which is usu-
ally not possible for researchers of other interdisciplinary areas. Therefore, several trial
and error experiments are conducted for parameter tuning as well as to get the best
architecture for specific applications, and similar architecture can not be suitable for
different applications. Hence an intelligent mechanism is needed to automate the whole
process for better adaptability. That intelligent mechanism must be flexible, efficient,
derivative-free, and easy to understand such that it can be extended to the different
architectures of deep learning models. Thus, the most suitable mechanisms for such
tasks are EC techniques. It is currently the most active research domain, attracting

significant interest from both academia and industry. An overview of the application
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of EC in deep learning is presented in Figure 2.6. The AI concepts of neuro-evolution,
introduced by “Stanley and Miikkulainen” [125] utilizing deep learning, have recently
attracted considerable attention. It refers to the use of simulated evolution to build
artificial neural networks, including their learning mechanism, optimal weights, and
network structure. Hence, the optimization of deep learning models using EC tech-
niques is a topic of interest and debate in computer science and other fields. In deep
learning, we focused primarily on Evolutionary GAN, and the related work of GAN

with EC is presented in the next section.

2.2 Related Works

2.2.1 EC and Data Security

The evolution of Industry 4.0 gives a competitive edge to industrial applications, and

almost every industry has benefited, including healthcare, agriculture, digital imaging,
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and so on. This breakthrough facilitates data transfer over a public network while
also introducing new challenges and opportunities in a variety of fields. Among these
challenges, data security and integrity have recently risen to the top of almost every
industry’s priority list, including finance, medicine, and the smart digital world. Fur-
thermore, with the widespread development and advancement of IoTs [126], sensors
and fast connectivity across the telecommunications system provide us with comfort
and convenience, especially in the medical sector, for patient reports and sensitive data
transmission. Thus, in order to facilitate high-quality healthcare services at a low cost,
[oT-assisted mobile cloud-based e-health services are making great strides by leveraging
new technologies such as big-data, medi-cloud, blockchain, and IoT in healthcare [127].
To accomplish these goals, IoTs play a dominant role in the development of smart
HealthTech [128]; however, such systems suffer from the additional risk of data theft
and security breach. The cyber attacks are mainly targeting the essential national in-
frastructure like banks, hospitals, and the electric power grid, which use and rely on
SCADA and industrial control systems to handle their operations [5]. On June 14,
2017, a ransomware attack gained access to the sensitive data of 266,123 patients at
the Pacific Alliance Medical Center in Los Angeles, and other similar incidents have
been reported [129, 130]. Therefore, the frequent cases of data manipulation attacks
such as health information manipulation, tampering, and information theft make data

privacy and security one of the most difficult aspects of smart healthcare.

Hence, researchers addressed this problem and provided various techniques, such as
watermarking, encryption, compression, and steganography [131, 132, 133]. In addi-
tion, few research works have also been identified for healthcare data security within the
IoT network. One of these works [134] has introduced a security microvisor middleware
(SuV) for the representative IoT device, which enables customized security operations
and memory isolation using software virtualization and low overhead assembly code

verification in terms of memory and battery life. Similarly, Manogaran et al. in [135]
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proposed a secure industrial [oT-based Meta cloud redirection(MC-R) framework to col-
lect the data from different sensors. These medical sensors are embedded in the human
body for the collection of clinical measurements such as heart rate, body temperature,
respiratory rate, blood pressure, and blood sugar of patients. If these measures exceed
their normal value, a warning message comprising these clinical measures shall be sent
to doctors through the wireless sensor network. They used a key management security

mechanism to ensure the transmission of large data.

Moreover, very recently in [136], authors have presented a novel blockchain, i.e.,
PUFchain, which integrates hardware security with primitive physical unclonable func-
tions, hashing module, and blockchain for robust as well as enhanced data security,
and device security. They also introduced a new consensus algorithm with PUFchain
that can easily be integrated into a resource-constrained IoT setting in order to address
[oT energy needs, scalability, and latency. In another work, a reversible interpolation-
dependent watermarking technique based on GA and PSO is developed and applied to
medical as well as standard data [137]. Similarly, grasshopper optimization with GA
is used to create an optimal key that has been applied to both data sanitization, and
restoration processes [138]. After analyzing its convergence and comparing it with other

methods for medical data, the authors found this to be more effective than others.

Encryption is another possible solution, and because these techniques are based on
standard cryptography, they are widely used to ensure the secure storage of sensitive
data, such as medical records and reports. Traditional encryption techniques include
“Data Encryption Standard (DES)” [139], “triple DES (3DES)” [140], “Advanced En-
cryption Standard (AES)” [141], etc. However, these techniques are best suited for
text data, whereas medical images are mostly used for analysis. Several initiatives have
been launched in this direction. The authors [127] proposed a grasshopper-PSO hybrid
algorithm that was used to improve the security of the encryption and decryption pro-

cess for medical data by selecting the optimal key. In another work [142], proposed a
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novel Elliptic Galois Cryptography (EGC) based on cryptography and steganography
for secure data transmission over an IoT network. The properties of the elliptic curve
theory were used to generate the key, and an EGC protocol with adaptive firefly op-
timization was proposed for hidden and secure data in IoTs. The mean square error,

carrier capacity, and peak signal-to-noise ratio were all used.

Recent work presented in [143] also presented a resource optimization model for
clinical data transmission with low processing time and energy consumption, as well
as a biometric-based security model that extracts heartbeats from ECG signals. In
this method, a unique biometric key was generated using block encoding to generate
binary bits, and binary features were extracted from the encoded bits of the heartbeat.
These sequences were concatenated and evaluated as a biometrically generated key,
which was initially 128-bit and sufficient to encrypt the original medical information
using logical operations, enabling efficient and secure transmission between patients

and remote doctors.

Authors [144, 145] have proposed techniques for preserving a single medical image
based on serial mode. Further, another work [146] used high-speed scrambling and
pixel adaptive diffusion to encrypt the medical image. To improve the diffusion effect,
a bi-directional adaptive technique [144] changed all pixel values in a single round of
diffusion. In [145], medical images were secured using hierarchical diffusion in a non-
sequential manner after evaluating the bit distribution of medical images. They have
shown experimentally that only two rounds of encryption were capable of delivering
satisfactory encryption. Low dimensional chaotic maps are easy to implement, but
they have limitations like narrow intervals and few parameters, which are addressed in
another work [147], for medical data encryption with the help of 2D chaotic maps. A
recent study [148], presented a faster and more practical cryptosystem for image en-
cryption using parallel computing and chaotic encryption, where they used permutation

and substitution architecture of chaotic encryption.
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2.2.2 EC for Feature Subset Selection

ML techniques are widely used for discovering meaningful patterns and classifying real-
world data. These datasets may be large and complex, so feature selection is the primary
strategy for reducing the dimension of the data, with the general goal of reducing the
amount of redundant and disruptive features in a dataset for fast and efficient data anal-
ysis without sacrificing significant predictive model performance. Due to exponentially
high search space, feature selection is a complex optimization problem. It is practically
impossible to evaluate all of the feature subsets manually. Various search techniques,
such as random, greedy, complete, and heuristic, have been utilized for feature subset
selection [149, 150]. Based on the evaluation criteria, feature selection is generally clas-
sified into three categories: (1) filter-based approaches, (2) wrapper-based approaches,
and (3) embedded approaches [151]. However, there are no detailed guidelines on the
benefits and drawbacks of alternative approaches. An overview of feature selection us-

ing EC is shown in Figure 2.7.
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Large search space and possible feature interaction make classical greedy and other
Non-EC approaches, like filter-based methods, susceptible to local optima. These meth-
ods are computationally faster than EC approaches, but in the case of large-scale data
computing, the probabilistic value of quality and providing rank to each feature is in-
feasible. They are good selectors for small-scale datasets; however, these days, due to
industrialization and advanced technology, voluminous datasets are generated and give

rise to the large-scale optimization problem.

On the other hand, EC is widely used for this due to its inherent capability of con-
ducting global search and proven effectiveness for feature selection problems. They are
usually known as the wrapper-based approach, where these methods utilize a learning
model as an evaluator within a loop. They evaluate the entire feature subset while
accounting for possible feature interaction and perform better than other approaches.
The main issue, however, is their frequent premature convergence, resulting in an in-
adequate contribution to data mining. Even the majority of existing optimizers are
not adaptive. In [152], the process of feature selection in various domains using EC is
briefly studied, along with the challenges involved. Generally, most wrapper methods
suffer from local optima stagnation and high computational cost. To overcome these

issues, an efficient global search technique must be designed.

Furthermore, scalability is another challenge due to the emergence of big data [7].
In early 1989, a dataset with more than 20 features and the selection of features from
this data was referred to as large-scale feature selection [153]. However, the number of
features in several areas, such as gene analysis, has grown from thousands to millions
in recent years, increasing the computation cost and necessitating an advanced search
mechanism, both of which have their own limitations. As a result, simply having a lot
of computing power isn’t solve the problem. Designing novel methods and searching
mechanisms for handling this type of complex optimization problem is an emerging area

of research. Although several contributions and applications have been developed from
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diverse domains for feature selection using EC approaches. EC methods solved feature

selection problems either as a single objective problem or a multi-objective problem.

GA and PSO are widely used in the application domain for high-dimensional feature
selection tasks. Using NSL-KDD [154], the GA is combined with bagging and a par-
tial decision tree to select optimal features and classification for an intrusion detection
system. Similarly, GA with Bayesian Network achieved 98.26% accuracy with reduced
16 features [155]. Another work [156] also used GA for feature selection and parameter

optimization of SVM in the intrusion detection system.

Recently [157] also shows the credibility of GA in epilepsy seizure detection using
SVM and ANN. In another study [158], authors introduced a new initialization and up-
date mechanism in PSO for feature selection with SVM. Further variable length PSO
[159] is also proposed for high-dimensional feature selections. In another recent work
[160], a synergistic method for estimating state-of-health (battery life) achieves 95%

accuracy using the GA and support vector regression.

Overall, EC has a wide range of applications for feature selection tasks. Table
2.3 provides a brief description of contributions made by researchers in wrapper-based

feature selection from the last few years.

2.2.3 EC with GAN

GAN is a deep learning model that has proven to be a powerful image generation tool
in recent years. It is made up of two parts: the generator (G) and the discriminator
(D). The G learns how to generate data that looks similar to genuine training data in
order to fool the D, whereas the D learns how to distinguish between data from a real

training set and data generated by the G.
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Following training, the G has a high likelihood of producing data that is useful in
a number of real-world applications. It started a new revolution in deep learning and
computer vision. This revolution has resulted in some notable advances in research.
Hence this section investigates an EC footprint for GAN’s generator training improve-
ment. Generally, the training of the G' can be expressed in the form of an optimization
problem. Although the fitness function for the G' cannot be directly created, its local
state may be assessed as a function of D performance. So, the overall training pro-
cess is basically a min-max optimization problem. Recently, the potential of intelligent

computation techniques has also been experimented on this framework.

E-GAN [180] was the first proposal in this direction where they design training of
GAN with different evolutionary operators, and a number of generators (population) are
trained. They tried to give a solution for stable training that could alleviate the problem
of mode collapse. Further, authors in [181] have introduced a novel model incorporating
neuroevolution and co-evolution in the GAN training method. They employed the loss
function (fitness function) for the discriminator and the Frchet Inception Distance (FID)
for the generator. Further, they experimented on the MNIST dataset and showed that
for the generator, the FID score is a good evaluation metric. However, it is crucial
to measure competing metrics for discriminators. It is further extended by the author
in [182], presenting an enhanced model CO-EGAN based on neuroevolution and co-
evolution techniques by incorporating the adversarial feature of GAN components in

the training process to construct coevolutionary methods.

Further, EvoGAN [183] is used for facial image generation, CG-GAN (Compos-
ite generating GAN)[184] for facial composite generation, and finally, multi-objective
EGAN [185] have been proposed. MO-EGAN further improved in [186] by improving
the training of a single objective generator by using a multi-criteria training process.
Recently, the authors in [187] presented GANs-PSO that tackle typical GAN problems
such as mode collapse. In this work, GANs-PSO used the PSO algorithm with GAN to
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overcome the mode collapse problem during training for self-collision avoidance of arm
robots. While PSO is also applied in [188], where authors designed a GAN by utilizing
the concept of neuroevolution for biomedical image chest X-ray of COVID-19 gener-
ation. The whole training process, along with the architecture search, was achieved
using PSO. FID score is used as a fitness value, and a progressive growth approach
is utilized to design GAN. The suggested approach achieves a superior FID score for
image generation as compared to the baseline approach. Another work [189] utilized
fractional Harris Hawk optimization to optimize GAN training for Osteosarcoma de-
tection at an early stage to enhance the survival rate. PSO is also utilized in [190] to
optimize the GAN for face generation, and based on quality and diversity evaluation

metrics, the position of particles is updated.

2.3 Summary

Nature is incredibly interesting and yet to be interpreted fully. Undiscovered paradigms
underneath natural science will certainly proceed to foster new developments in EC,
with improved performance and computing effectiveness. This chapter offers a theo-
retical foundation of underlying models, recent trends, and related work. EC involves
setting parameters on its own, and the best systematic way of achieving optimal pa-
rameter values for EC remains an open research issue. Additionally, slow convergence,
local optima stagnation, poor diversity, non-adaptiveness, and scalability are major is-
sues with EC, limiting their applicability to large-scale optimization problems and other
modern applications. Because of these concerns, the potential of EC is underutilized,
necessitating efficient search mechanisms and approaches to address their bottlenecks.
Furthermore, future applications will require the use of advanced computing techniques
and resources with these methods to reduce the cost of the evaluation.

The addition of EC in deep learning (advanced ML model), therefore, constitutes

extra parameter values. However, the parameter values of the deep learning models can
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be decreased as some of the parameters can be automatically determined by the EC
algorithms. This would have a multiplier effect on deep learning in a situation where the
EC parameter values are not significant to deliver high performance. This could explain
why the model obtained by a search became stuck in local minima. Furthermore, the
main concerns of generative models are mode collapse, vanishing gradient, and training
instability. The same concerns exist with Cyclic-GAN, and addressing these concerns

is still in the course of the investigation.



