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Preface

Machine Learning (ML) and Deep Learning have undoubtedly contributed to tremen-

dous achievements in Artificial Intelligence (AI) in recent years, and more contributions

are likely to follow. On the other side, as technology advances, a vast amount of data

is generated, which raises the problem of complexity and computational challenges.

Many of these real-world applications now emerge as complex or large-scale optimiza-

tion problems. Almost every AI-based application has optimization tasks in its core

that need to be solved effectively and efficiently.

Recently, large-scale optimization problems emerged as challenging in various appli-

cation domains like logistic scheduling and data security, as well as core optimization

problems in AI, such as structure learning of deep networks, feature learning, model

parameter optimization, and many more. Numerous effective optimization techniques

are already present to deal with convex optimization problems, whereas non-convex and

large-scale optimization problems are still a challenge. Evolutionary Computation (EC),

broadly referred to as “Nature-Inspired Computations” (NIC) or “Nature-Inspired Al-

gorithms” (NIA), is widely recognized as a global optimization technique. They are

extensively used to improve the performance of ML tasks, giving rise to a new domain

known as “Evolutionary Machine Learning”.

EC are efficient in solving complex optimization tasks, but a few major challenges,

such as slow convergence, local optima stagnation, and scalability, limit their broader

applicability. Moreover, they are computationally expensive and have become a hurdle
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in analyzing real-world problems related to big data, like high-dimensional medical data

or stream data. Now large computations are not a problem due to the availability of

computational resources. However, only utilizing high computation resources will not

solve the whole purpose. We must design efficient optimization techniques that are ro-

bust and adaptive for modern applications. Both ML and ECs have their own strengths

and limitations, which has sparked a surge in ongoing research in academia as well as

industry to integrate these ideas to enhance their performance while overcoming limita-

tions. A few possibilities to deal with the challenges of ECs are: (1) designing hybrids

of existing ones by utilizing their strengths; (2) modern hybrids, which are the integra-

tion of interdisciplinary concepts like quantum computing from physics, chaos theory

from mathematics, reinforcement learning, etc.; and (3) designing a new optimizer by

taking inspiration from nature with good local search ability. Thus, in the same spirit,

this study focused on designing efficient optimization techniques while addressing a few

real-world applications to validate their effectiveness. The range of the applications

under consideration varies from complex to large-scale optimization problems and from

single-objective to multi-objective optimization for advanced industrial applications.

Based on the above discussion, the primary objective of this thesis is to design effi-

cient optimization techniques that overcome the aforementioned limitations of ECs. We

propose a hybrid approach that inherits the properties of self-adaptive Particle Swarm

Optimization based on a Directed weighted complex network of particles (DWCN-

PSO) and Genetic Algorithm (GA), named as, (GDWCN-PSO). Moreover, the pro-

posed GDWCN-PSO has been validated on both single-objective and multi-objective

optimization problems. Besides, we validate on an important real-world optimization

problem, namely optimal key generation for image encryption technique. The selection

of this application was motivated by the recent demand in the industry related to data

privacy and applications for the Internet of Things (IoT). Subsequently, data privacy

has become a major concern and is still an open issue. So, the proposal has been applied
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for optimal key generation by utilizing a specific objective function, and thereafter this

key is used to encrypt the images.

Modern hybrids are another possibility that integrates interdisciplinary concepts

to address the issues associated with ECs. Nowadays, researchers are fascinated by

and make continuous efforts to develop new optimization techniques for challenging

problems in robotics, computer vision, and ML by utilizing reinforcement learning,

surrogate models, quantum computing, and so on. However, PSO is simple, easy to

understand, popular, and suitable for several applications, but recently the Squirrel

Search Algorithm (SSA) has been proven to be effective and has characteristics that

can be investigated and modified to make modern hybrids while utilizing its strength

with other concepts. The interdisciplinary concepts Q-Learning (QL), a component of

reinforcement learning, and chaos theory, on the other hand, significantly contribute

to improving the convergence and self-adaptive properties of NIC. Another idea from

physics that revolutionizes technology is quantum computing. We first combine QL and

SSA to create a stable optimizer and test its applicability on a critical feature subset

selection problem in ML. Here, QL is used to modify local search in SSA. Further, we

incorporated chaos theory with SSA to overcome premature convergence. Three chaotic

maps have been investigated in the original SSA, which produced three chaotic versions

of the SSA. Additionally, we have used quantum computing’s qubit representation and

quantum gates to maintain effective search capabilities with population diversity, which

has led to quantum-assisted chaotic SSA. For optimal feature subset selection, their

applicability and effectiveness have been verified on large-scale genomic datasets.

We explored a few natural phenomena with inspiration from earlier studies in order

to design a novel optimizer that is simple, adaptive, and has good convergence with

diversity. Researchers in the applied research area demand a simple and effective op-

timizer that is less conceptually complex, easily adaptable, cost-effective, and suitable

for a variety of applications. But the No Free Lunch (NFL) Theorem states that no
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optimizer is a universal optimizer, thereby opening up the possibility of designing new

optimizers. Therefore, this study has made an effort to achieve the aforementioned

desirable qualities by introducing Murmuration-Flight based Dispersive Optimization

(MDO) algorithm in both single and multi-objective versions (MDO-M). For this, we

looked into the phenomenon of migrating birds, starling murmuration, and Levy flight.

In order to design better search capabilities from the initial point of local search, this

study also introduced a population initialization approach rather than considering a

random population. Additionally, it is verified for two distinct applications, including

optimal key generation and optimal feature subset selection (using MDO and MDO-M)

for classification problems. We investigated different types of data with different com-

plexity in terms of the number of attributes as well as classes and domains to validate

our proposal’s applicability in various application domains. According to the analysis,

the MDO reduced computation time drastically while sacrificing minor accuracy on

datasets. It appears to be a strong contender and advantageous for low-end devices for

making initial assessments for critical tasks.

Finally, this work concentrates on the Generative Adversarial Network (GAN), a

more promising and advanced architecture for computer vision. Training instability and

mode collapse are the major challenges of GAN. Another significant issue is the require-

ment for a large amount of labeled data to train such architectures for realistic image

generation, which is not possible with images of rare diseases or old dead paintings.

The requirement of paired data is somehow resolved by another potential architecture,

Cyclic-GAN, but the training instability, vanishing gradient, and mode collapse issues

become more complex and challenging. The overall problem can be formulated as an op-

timization problem belonging to large-scale optimization problems. On the other hand,

we know that ECs have great potential to solve optimization problems. Therefore, we

have introduced a new approach for model training by combining EC, multi-objective

optimization, and Cyclic-GAN along with different selection mechanisms, resulting in
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Evolutionary Multi-objective Cyclic-GAN (EMOCGAN). This work is further extended

by introducing an intelligent gradient-aware selection scheme. Basically, we have incor-

porated three objective functions for Pareto-based selection for more realistic unpaired

image translation. Thereafter, quantization has been incorporated to make it suitable

for future IoT devices.

We also proposed a Parallel Corner Sort, which uses CUDA to parallelize the Pareto-

optimal solution finding as well as the dominance calculations. We compared the per-

formance of serial and parallel approaches implemented in CUDA C++. Because no

public industrial large data (more than 1 lac solution) is available, the performance

of the Parallel Corner Sort is still being studied. However, preliminary results show a

significant improvement.

Overall, the approaches proposed in this thesis are validated on mathematical bench-

marks and real-world datasets from various application domains, demonstrating the

efficacy of EC techniques on a broader scale.



Contents

List of Figures xiii

List of Tables xx

List of Abbreviations xxi

List of Symbols xxiii

Preface xxv

1 Introduction 1

1.1 Need of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Why EC over Other Traditional Optimization Techniques? . . . 8

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Challenges with EC Methods . . . . . . . . . . . . . . . . . . . 12

1.3.2 Challenges in Real-world Large-scale Problems . . . . . . . . . . 15

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Background and Related Works 25

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 26



viii Contents

2.1.2 Evolutionary Computation: An Overview . . . . . . . . . . . . . 28

2.1.3 What’s new in EC . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.4 Deep Learning: An Overview . . . . . . . . . . . . . . . . . . . 35

2.1.5 Evolutionary Computation with Deep Learning . . . . . . . . . 37

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 EC and Data Security . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 EC for Feature Subset Selection . . . . . . . . . . . . . . . . . . 42

2.2.3 EC with GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 DWCN-PSO with Genetic Algorithm 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Motivation and Significant Contributions . . . . . . . . . . . . . . . . . 58

3.3 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . 60

3.3.2 Self-adaptive PSO based on Directed Weighted Complex Networks 61

3.3.3 PSO with GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 GDWCN-PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Multi-objective GDWCN-PSO (MGDWCN-PSO) . . . . . . . . 68

3.5 Application of GDWCN-PSO for Optimal Key-based Image Encryption 70

3.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Benchmark Functions . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.2 Performance Evaluation of Medical Image Encryption . . . . . . 85

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Modern Hybrids of Squirrel Search Algorithm 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Contents ix

4.3.1 Squirrel Search Algorithm . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Proposed QL-SSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2 Application to Optimal Feature Selection and Classification . . 100

4.4.3 Experimental Results and Discussion . . . . . . . . . . . . . . . 106

4.5 Proposed Quantum-assisted Chaotic SSA . . . . . . . . . . . . . . . . . 112

4.5.1 Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5.2 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.3 Chaotic Squirrel Search algorithm (CSSA) . . . . . . . . . . . . 116

4.5.4 Quantum-assisted Chaotic SSA (QCSSA) . . . . . . . . . . . . . 121

4.5.5 Application to Optimal Gene Selection and Classification . . . . 125

4.5.6 Experimental Results and Discussion . . . . . . . . . . . . . . . 127

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Murmuration-Flight based Dispersive Optimization Algorithm 147

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.1 Randomization in Optimization . . . . . . . . . . . . . . . . . . 154
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