Efficient Evolutionary Computation Methods for Large-Scale Optimization and Machine Learning

Thesis submitted in partial fulfillment for the Award of Degree

Doctor of Philosophy

by

Vandana Bharti

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI - 221005

Roll No. 17071011

Year 2022

CERTIFICATE

It is certified that the work contained in the thesis titled "Efficient Evolutionary Computation Methods for Large-Scale Optimization and Machine Learning" by Vandana Bharti has been carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Co-Supervisor

Valle

Prof. Kaushal Kumar Shukla

Professor anara /Professor ana Department of Computer Science and and Engineering / Andra Institute of Technology (BHU) (anaratic analytic of Technology (BHU) Varanasi, Uttar Pradesh, INDIA 221005. Supervisor

Dr. Bhaskan Bistonsvir (analistic formulation) Dr. Bhaskan Bistonsvir (analistic formulation) Associate Professor gradient of Computer Sc & Enge Associate Professor gradient of Jechnology Department of Computer Science and Engineering, (Banacas Hindu University) Indian Institute of Fochnology 2(BHU) Varanasi, Uttar Pradesh, INDIA 221005.

DECLARATION BY THE CANDIDATE

I, Vandana Bharti, certify that the work embodied in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of Dr. Bhaskar Biswas and Prof. K.K. Shukla from July 2017 to September 2022 at Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc. reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 26.09.2022

Place: Varanasi

(Vandana Bharti)

CERTIFICATE BY THE SUPERVISOR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge. Q_{1}

Deptt. of Computer Science Hind Engineering Indian Institute of Techfology (BIRU) Varanasi (Banaras Hindu Universit) (Banaras Hindu Universit)

Signature of Head of the Department

(Prof. Sanjay Kumar Singh) आचार्य व विभागाध्यक्ष

Professor & Head सगणक विज्ञान एवं अमियांत्रिकी विभाग Department of Computer Sc. & Enge भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (बनारस हिन्दू यूनिवसिंटी) (Banaras Hindu University)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Efficient Evolutionary Computation Methods for Large-Scale Optimization and Machine Learning

Name of the Student: Vandana Bharti

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *Doctor of Philosophy*.

Jahosti

Date: 26.09.2022

Place: Varanasi

(Vandana Bharti)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

This thesis is dedicated to my beloved family.

For their endless love, support and encouragement

ACKNOWLEDGEMENT

Apart from the efforts of ours, the success of any work depends largely on the encouragement and guidelines of many others. I take this opportunity to express our gratitude to the people who have been instrumental in the successful completion of this work. First of all, I would like to thank the Almighty for his unlimited favours, endless mercies, and choicest blessings bestowed upon me that helped me to come across all the way and imparadise.

At this stage, I owe my indebtedness to my supervisor, Dr. Bhaskar Biswas and Co-Supervisor, Prof. Kaushal Kumar Shukla, Computer Science and Engineering, IIT(BHU), Varanasi. They have been the torchbearer of my Ph.D. work. I express a deep sense of reverence to them for their invaluable guidance, constant encouragement, constructive suggestions, sagacious advice and keen supervision throughout the duration of my Ph.D. To have such an ingenuous perfectionists as my guides was a privilege for me as they gave new dimensions to my knowledge. A formal statement of acknowledgement will hardly meet the sense in the matter of expression of enormous debt I owe to them.

I further express my thankfulness to RPEC members Prof. S.K. Singh, Computer Science and Engineering, and Prof. Subir Das, Mathematical Sciences, IIT (BHU), Varanasi, for their prudent suggestions and kind support whenever I approached them. A mere thanks and words of appreciation cannot compensate for their wholehearted support, and generosity offered.

I would also like to take this opportunity to express my sincere regards to DPGC members for their constant support and encouragement. Regards are also due to all faculty members and staff of the Computer Science and Engineering Department for their kind support and the necessary facilities provided. Also, the support and the resources provided by PARAM Shivay Facility under the National Supercomputing Mission, Government of India at the Indian Institute of Technology, Varanasi are gratefully acknowledged.

Further, I extend my special gratitude to my colleagues and friends, Dr. Anshul, Dr. Abhinav, Dr. Manisha Singla, Ms. Anviti Pandey, and Dr. Sandeep Udamle, who supported me throughout my thesis work and provided technical, moral, and emotional support during my research work. I want to express my deepest gratitude to them for providing moral support throughout my thesis work. I have also spent some of the craziest and most memorable moments with them.

From the core of my heart, I thank my family for all that they have done in bringing me to this platform, and no words can describe my feeling towards them. My parents have been the driving force behind me, taking all pains to illumine my path and revive my energy. Their boundless love and encouragement are and always will be a constant source of motivation for me in my life. The constant encouragement, love and affection of my family have always been a reservoir of the impetus for me.

Ahorti

(Vandana Bharti)

Preface

Machine Learning (ML) and Deep Learning have undoubtedly contributed to tremendous achievements in Artificial Intelligence (AI) in recent years, and more contributions are likely to follow. On the other side, as technology advances, a vast amount of data is generated, which raises the problem of complexity and computational challenges. Many of these real-world applications now emerge as complex or large-scale optimization problems. Almost every AI-based application has optimization tasks in its core that need to be solved effectively and efficiently.

Recently, large-scale optimization problems emerged as challenging in various application domains like logistic scheduling and data security, as well as core optimization problems in AI, such as structure learning of deep networks, feature learning, model parameter optimization, and many more. Numerous effective optimization techniques are already present to deal with convex optimization problems, whereas non-convex and large-scale optimization problems are still a challenge. Evolutionary Computation (EC), broadly referred to as "Nature-Inspired Computations" (NIC) or "Nature-Inspired Algorithms" (NIA), is widely recognized as a global optimization technique. They are extensively used to improve the performance of ML tasks, giving rise to a new domain known as "Evolutionary Machine Learning".

EC are efficient in solving complex optimization tasks, but a few major challenges, such as slow convergence, local optima stagnation, and scalability, limit their broader applicability. Moreover, they are computationally expensive and have become a hurdle in analyzing real-world problems related to big data, like high-dimensional medical data or stream data. Now large computations are not a problem due to the availability of computational resources. However, only utilizing high computation resources will not solve the whole purpose. We must design efficient optimization techniques that are robust and adaptive for modern applications. Both ML and ECs have their own strengths and limitations, which has sparked a surge in ongoing research in academia as well as industry to integrate these ideas to enhance their performance while overcoming limitations. A few possibilities to deal with the challenges of ECs are: (1) designing hybrids of existing ones by utilizing their strengths; (2) modern hybrids, which are the integration of interdisciplinary concepts like quantum computing from physics, chaos theory from mathematics, reinforcement learning, etc.; and (3) designing a new optimizer by taking inspiration from nature with good local search ability. Thus, in the same spirit, this study focused on designing efficient optimization techniques while addressing a few real-world applications to validate their effectiveness. The range of the applications under consideration varies from complex to large-scale optimization problems and from single-objective to multi-objective optimization for advanced industrial applications.

Based on the above discussion, the primary objective of this thesis is to design efficient optimization techniques that overcome the aforementioned limitations of ECs. We propose a hybrid approach that inherits the properties of self-adaptive Particle Swarm Optimization based on a Directed weighted complex network of particles (DWCN-PSO) and Genetic Algorithm (GA), named as, (GDWCN-PSO). Moreover, the proposed GDWCN-PSO has been validated on both single-objective and multi-objective optimization problems. Besides, we validate on an important real-world optimization problem, namely optimal key generation for image encryption technique. The selection of this application was motivated by the recent demand in the industry related to data privacy and applications for the Internet of Things (IoT). Subsequently, data privacy has become a major concern and is still an open issue. So, the proposal has been applied for optimal key generation by utilizing a specific objective function, and thereafter this key is used to encrypt the images.

Modern hybrids are another possibility that integrates interdisciplinary concepts to address the issues associated with ECs. Nowadays, researchers are fascinated by and make continuous efforts to develop new optimization techniques for challenging problems in robotics, computer vision, and ML by utilizing reinforcement learning, surrogate models, quantum computing, and so on. However, PSO is simple, easy to understand, popular, and suitable for several applications, but recently the Squirrel Search Algorithm (SSA) has been proven to be effective and has characteristics that can be investigated and modified to make modern hybrids while utilizing its strength with other concepts. The interdisciplinary concepts Q-Learning (QL), a component of reinforcement learning, and chaos theory, on the other hand, significantly contribute to improving the convergence and self-adaptive properties of NIC. Another idea from physics that revolutionizes technology is quantum computing. We first combine QL and SSA to create a stable optimizer and test its applicability on a critical feature subset selection problem in ML. Here, QL is used to modify local search in SSA. Further, we incorporated chaos theory with SSA to overcome premature convergence. Three chaotic maps have been investigated in the original SSA, which produced three chaotic versions of the SSA. Additionally, we have used quantum computing's qubit representation and quantum gates to maintain effective search capabilities with population diversity, which has led to quantum-assisted chaotic SSA. For optimal feature subset selection, their applicability and effectiveness have been verified on large-scale genomic datasets.

We explored a few natural phenomena with inspiration from earlier studies in order to design a novel optimizer that is simple, adaptive, and has good convergence with diversity. Researchers in the applied research area demand a simple and effective optimizer that is less conceptually complex, easily adaptable, cost-effective, and suitable for a variety of applications. But the No Free Lunch (NFL) Theorem states that no optimizer is a universal optimizer, thereby opening up the possibility of designing new optimizers. Therefore, this study has made an effort to achieve the aforementioned desirable qualities by introducing Murmuration-Flight based Dispersive Optimization (MDO) algorithm in both single and multi-objective versions (MDO-M). For this, we looked into the phenomenon of migrating birds, starling murmuration, and Levy flight. In order to design better search capabilities from the initial point of local search, this study also introduced a population initialization approach rather than considering a random population. Additionally, it is verified for two distinct applications, including optimal key generation and optimal feature subset selection (using MDO and MDO-M) for classification problems. We investigated different types of data with different complexity in terms of the number of attributes as well as classes and domains to validate our proposal's applicability in various application domains. According to the analysis, the MDO reduced computation time drastically while sacrificing minor accuracy on datasets. It appears to be a strong contender and advantageous for low-end devices for making initial assessments for critical tasks.

Finally, this work concentrates on the Generative Adversarial Network (GAN), a more promising and advanced architecture for computer vision. Training instability and mode collapse are the major challenges of GAN. Another significant issue is the requirement for a large amount of labeled data to train such architectures for realistic image generation, which is not possible with images of rare diseases or old dead paintings. The requirement of paired data is somehow resolved by another potential architecture, Cyclic-GAN, but the training instability, vanishing gradient, and mode collapse issues become more complex and challenging. The overall problem can be formulated as an optimization problem belonging to large-scale optimization problems. On the other hand, we know that ECs have great potential to solve optimization problems. Therefore, we have introduced a new approach for model training by combining EC, multi-objective optimization, and Cyclic-GAN along with different selection mechanisms, resulting in Evolutionary Multi-objective Cyclic-GAN (EMOCGAN). This work is further extended by introducing an intelligent gradient-aware selection scheme. Basically, we have incorporated three objective functions for Pareto-based selection for more realistic unpaired image translation. Thereafter, quantization has been incorporated to make it suitable for future IoT devices.

We also proposed a Parallel Corner Sort, which uses CUDA to parallelize the Paretooptimal solution finding as well as the dominance calculations. We compared the performance of serial and parallel approaches implemented in CUDA C++. Because no public industrial large data (more than 1 lac solution) is available, the performance of the Parallel Corner Sort is still being studied. However, preliminary results show a significant improvement.

Overall, the approaches proposed in this thesis are validated on mathematical benchmarks and real-world datasets from various application domains, demonstrating the efficacy of EC techniques on a broader scale.

Contents

Li	st of	Figures	xiii
Li	st of	Tables	xx
Li	st of	Abbreviations	xxi
Li	st of	Symbols x	xiii
Pı	refac	x	xv
1	Intr	oduction	1
	1.1	Need of Optimization	6
		1.1.1 Why EC over Other Traditional Optimization Techniques?	8
	1.2	Motivation	9
	1.3	Challenges	12
		1.3.1 Challenges with EC Methods	12
		1.3.2 Challenges in Real-world Large-scale Problems	15
	1.4	Objectives	17
	1.5	Thesis Contributions	18
	1.6	Organization of the Thesis	22
2	Bac	ground and Related Works	25
	2.1	Background	26
		2.1.1 Basic Definitions	26

		2.1.2	Evolutionary Computation: An Overview	28
		2.1.3	What's new in EC	33
		2.1.4	Deep Learning: An Overview	35
		2.1.5	Evolutionary Computation with Deep Learning	37
	2.2	Relate	ed Works	38
		2.2.1	EC and Data Security	38
		2.2.2	EC for Feature Subset Selection	42
		2.2.3	EC with GAN	44
	2.3	Summ	ary	52
3	DW	CN-P	SO with Genetic Algorithm	55
	3.1	Introd	uction	55
	3.2	Motiv	ation and Significant Contributions	58
	3.3	Theor	etical Background	60
		3.3.1	Particle Swarm Optimization	60
		3.3.2	Self-adaptive PSO based on Directed Weighted Complex Networks	61
		3.3.3	PSO with GA	63
	3.4	Propo	sed Methodology	64
		3.4.1	GDWCN-PSO	64
		3.4.2	Multi-objective GDWCN-PSO (MGDWCN-PSO)	68
	3.5	Applie	cation of GDWCN-PSO for Optimal Key-based Image Encryption	70
	3.6	Result	s and Discussions	74
		3.6.1	Benchmark Functions	75
		3.6.2	Performance Evaluation of Medical Image Encryption	85
	3.7	Summ	ary	88
4	Mo	dern H	Iybrids of Squirrel Search Algorithm	89
	4.1	Introd	uction	90
	4.2	Motiv	ation and Contributions	93
	4.3	Backg	round	97

		4.3.1	Squirrel Search Algorithm	97
		4.3.2	Feature Selection	98
	4.4	Propo	sed QL-SSA	99
		4.4.1	Q-Learning	99
		4.4.2	Application to Optimal Feature Selection and Classification	100
		4.4.3	Experimental Results and Discussion	106
	4.5	Propo	sed Quantum-assisted Chaotic SSA	112
		4.5.1	Chaos Theory	112
		4.5.2	Quantum Computation	114
		4.5.3	Chaotic Squirrel Search algorithm (CSSA) $\ldots \ldots \ldots$	116
		4.5.4	Quantum-assisted Chaotic SSA (QCSSA)	121
		4.5.5	Application to Optimal Gene Selection and Classification	125
		4.5.6	Experimental Results and Discussion	127
	4.6	Summ	ary	145
5	Mu	rmurat	tion-Flight based Dispersive Optimization Algorithm	147
5	Mu 5.1	rmurat Introd	tion-Flight based Dispersive Optimization Algorithm	147 147
5	Mu 5.1 5.2	rmurat Introd Motiva	tion-Flight based Dispersive Optimization Algorithm	147147150
5	Mur 5.1 5.2 5.3	rmurat Introd Motiva Theore	tion-Flight based Dispersive Optimization Algorithm uction	147147150154
5	Mux 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1	tion-Flight based Dispersive Optimization Algorithm uction	 147 147 150 154 154
5	Mu 5.1 5.2 5.3	rmurat Introd Motiva Theor 5.3.1 5.3.2	tion-Flight based Dispersive Optimization Algorithm uction	 147 147 150 154 154 154
5	Mu 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo	tion-Flight based Dispersive Optimization Algorithm uction	 147 147 150 154 154 154 154 156
5	Mur 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo 5.4.1	tion-Flight based Dispersive Optimization Algorithm uction	 147 147 150 154 154 154 156 156
5	Mu 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo 5.4.1 5.4.2	tion-Flight based Dispersive Optimization Algorithm uction	 147 147 150 154 154 156 156 157
5	Mu 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo 5.4.1 5.4.2 5.4.3	tion-Flight based Dispersive Optimization Algorithm auction	 147 147 150 154 154 156 156 157 158
5	Mu 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo 5.4.1 5.4.2 5.4.3 5.4.3	tion-Flight based Dispersive Optimization Algorithm uction	 147 147 150 154 154 154 156 156 157 158 158
5	Mu 5.1 5.2 5.3	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5	tion-Flight based Dispersive Optimization Algorithm action and Contribution ation and Contribution etical Background Randomization in Optimization Lévy Flight Sed Algorithm: Single-objective MDO Population Initialization Position Updating via Murmuration Captains Selection and Dispersion Death and Nomadic Movement of Birds	147 147 150 154 154 154 156 156 157 158 158 159
5	Mu 5.1 5.2 5.3 5.4	rmurat Introd Motiva Theore 5.3.1 5.3.2 Propo 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4 5.4.5 Propo	tion-Flight based Dispersive Optimization Algorithm auction	147 147 150 154 154 154 156 156 157 158 158 159 161

		5.5.2	Position Updating via Murmuration	162
		5.5.3	Captains Selection and Dispersion	162
		5.5.4	Death and Nomadic Movement of Birds	163
		5.5.5	Termination	165
	5.6	Applie	cation of MDO to Optimal Key Generation in Image Encryption .	166
		5.6.1	Encryption-decryption Scheme	170
	5.7	Applie	cation of MDO to Optimal Features Subset Selection	173
	5.8	Result	ts and Discussion	176
		5.8.1	Applications to Benchmark Test Problems	176
		5.8.2	Performance Analysis of Proposed Encryption Scheme for Images	
			in Spatial Domain	184
		5.8.3	Performance Analysis of Proposed MDO for Feature Selection .	189
		5.8.4	Experimental Verification of the Effectiveness of MDO-M	198
	5.9	Summ	nary	208
6	Mu	lti-obj	ective Cyclic Generative Adversarial Network for Unpaired	
•		_	<i>v</i> 1	
U	Ima	ige Tra	anslation	211
U	Ima 6.1	a ge Tra Introd	anslation	211 212
U	Ima 6.1 6.2	n ge Tra Introd Motiv	anslation	211 212 215
	Ima 6.1 6.2 6.3	n ge Tra Introd Motiv Theor	anslation luction ation and Contribution etical Background	211 212 215 217
	Ima 6.1 6.2 6.3 6.4	n ge Tra Introd Motiv Theor Propo	anslation Indext (a) luction Indext (a) ation and Contribution Indext (a) etical Background Indext (a) sed Methodology Indext (a)	211 212 215 217 218
	Ima 6.1 6.2 6.3 6.4	nge Tra Introd Motive Theor Propo 6.4.1	anslation Indext (a) luction Indext (a) ation and Contribution Indext (a) etical Background Indext (a) sed Methodology Indext (a) Cyclic Generative Adversarial Network Indext (a)	211 212 215 217 218 218
	Ima 6.1 6.2 6.3 6.4	nge Tra Introd Motive Theor Propo 6.4.1 6.4.2	anslation luction ation and Contribution etical Background sed Methodology Cyclic Generative Adversarial Network EMOCGAN	211 212 215 217 218 218 218 220
	Ima 6.1 6.2 6.3 6.4	Introd Motive Theor Propo 6.4.1 6.4.2 6.4.3	anslation luction ation and Contribution etical Background esed Methodology Cyclic Generative Adversarial Network EMOCGAN EMCGAN	211 212 215 217 218 218 220 220
	Ima 6.1 6.2 6.3 6.4	ege Tra Introd Motive Theor Propo 6.4.1 6.4.2 6.4.3 6.4.4	anslation I luction	211 212 215 217 218 218 220 220 229
	Ima 6.1 6.2 6.3 6.4	ege Tra Introd Motive Theor Propo 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5	anslation luction ation and Contribution etical Background etical Background sed Methodology Cyclic Generative Adversarial Network EMOCGAN Quantized EMCGAN Analysis of Quantization	211 212 215 217 218 218 220 220 220 229 234
	Ima 6.1 6.2 6.3 6.4	ege Tra Introd Motive Theor Propo 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5 Exper	anslation luction ation and Contribution etical Background etical Background sed Methodology Cyclic Generative Adversarial Network EMOCGAN Quantized EMCGAN Analysis of Quantization imental Results	211 212 215 217 218 218 220 220 220 229 234 235
	Ima 6.1 6.2 6.3 6.4	Propo 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 Exper 6.5.1	anslation Instruction autoin and Contribution Instruction ation and Contribution Instruction etical Background Instruction etical Background Instruction seed Methodology Instruction Cyclic Generative Adversarial Network Instruction EMOCGAN Instruction Quantized EMCGAN Instruction Analysis of Quantization Instruction Dataset Description Instruction	211 212 215 217 218 220 220 220 229 234 235 235

		6.5.3	Effect of Pretrained Discriminator	237
		6.5.4	Hyperparameter Tuning	238
		6.5.5	Comparison of Proposals using Benchmarks	240
		6.5.6	Comparison with State-of-the-Art Method	242
		6.5.7	Application to Medical Image Translation	243
	6.6	Summ	nary	247
7	CU	DA A	ccelerated Parallel Non- Dominated Sorting	249
	7.1	Introd	luction	249
	7.2	Motiv	ation and Contribution	250
	7.3	Theor	etical Background	252
		7.3.1	Non-dominated Sorting	252
		7.3.2	Related Work	253
	7.4	Metho	odology	255
		7.4.1	Identifying Areas with Scope of Parallelism	255
		7.4.2	Parallel Implementation	257
	7.5	Theor	etical Analysis	260
	7.6	Exper	imental Results	265
		7.6.1	Experimental Setup and Performance Metrics	265
		7.6.2	Results and Discussion	266
		7.6.3	Experimental Analysis	268
	7.7	Summ	nary	270
8	Cor	nclusio	n and Future Directions	271
	8.1	Concl	usion	271
	8.2	Future	e Directions	275
Bi	ibliog	graphy		279
\mathbf{Li}	st of	Publi	cations	308

List of Tables

2.1	Brief summary of intelligent optimization algorithms	30
2.2	Important development of MOEA	31
2.3	Related works for wrapper-based method for feature selection	45
3.1	Unimodal-benchmark test functions.	75
3.2	Multi-modal-benchmark test functions	76
3.3	Fixed dimension multi-modal-benchmark test functions	76
3.4	Mean values of PSO, DWCN-PSO, and GDWCN-PSO	77
3.5	Multi-objective benchmark test functions.	82
3.6	Performance metrics for multi-objective problems	84
3.7	Result showing performance of the proposed algorithm with other algorithm	ns. 87
4.1	Basic description of datasets	107
4.2	Parameters used for SSA and QL	108
4.3	Results using KNN classifier	109
4.4	Results using SVM classifier	110
4.5	Comparative analysis of QL-SSA over SSA with SVM classifier	111
4.6	Dataset specifications	129
4.7	Parameters used with various algorithms	130
4.8	Statistical results analysis on unimodal benchmarks \hdots	131
4.9	Statistical results analysis on multi-modal benchmarks $\ldots \ldots \ldots$	134
4.10	Fitness value (average over 10 runs) (lower the value better) - SVM $$. $$.	137
4.11	Test accuracy (average over 10 runs) - SVM \ldots	137
4.12	Selected no. of features (average over 10 runs) (lower the value better) -	
	SVM	139
4.13	WTL ACC-Feature	143
4.14	WTL Fitnees-Feature	144
5.1	Specifications of parameters used	177

Performance of the proposed MDO algorithm on benchmark functions .	178
Comparison of the proposed algorithm with other well-established algorithm	ms181
Results of Wilcoxon's Rank Sum test (at 5% significance level) with MDO	
against other optimization algorithms on fifteen benchmark functions $% \mathcal{A}^{(n)}$.	183
Parameters used for key generation using MDO	185
Statistics of evaluation metrics for encryption scheme $\ldots \ldots \ldots \ldots$	185
Dataset description	190
Win-Tie-Lose (Accuracy-Time)	197
Spacing performance metric	202
Maximum Pareto Front Error performance metric	202
Inverted Generational Distance performance metric	203
Hypervolume performance metric	203
Results for feature selection using MDO-M with different classifiers $\ . \ .$	208
Datasets description	235
Quantitative analysis of model with different hyperparameter \ldots .	238
Proposed model hyperparameters	239
Model evaluation	240
Model evaluation for medical image translation $\ldots \ldots \ldots \ldots \ldots$	247
	Performance of the proposed MDO algorithm on benchmark functions . Comparison of the proposed algorithm with other well-established algorithm Results of Wilcoxon's Rank Sum test (at 5% significance level) with MDO against other optimization algorithms on fifteen benchmark functions . Parameters used for key generation using MDO

List of Figures

1.1	Groups of AI approaches [1]	2
1.2	Overview of evolutionary problem-solving approach $\ldots \ldots \ldots \ldots$	5
1.3	Directions for reducing high-cost optimization expenses in EC $\ . \ . \ .$	13
2.1	An EC framework	28
2.2	Brief overview of EC	32
2.3	The link between complex continuous optimization problems and 5-M and 4-V challenges	32
2.4	Graphical representation of the areas within EC and some of their recent	
	applications	34
2.5	Broad categorization of neural network	36
2.6	Applications of EC in deep learning.	38
2.7	Overview of feature selection approaches	42
3.1	Flow diagram representing adaption and learning of particles	67
3.2	Flowchart of multi-objective GDWCN-PSO.	69
3.3	Proposed framework for medical data security	71
3.4	Flowchart of medical image encryption	73
3.5	Results for $f_1(x)$	78
3.6	Results for $f_5(x)$	79
3.7	Results for $f_9(x)$	80
3.8	Results for $f_{10}(x)$	81
3.9	Pareto fronts for multi-objective benchmarks.	83
3.10	Result analysis after encryption and decryption using optimal key-based	
	DES cryptography.	86
4.1	An overview of the steps involved in the QL-SSA method	100
4.2	Flowchart for QL-SSA-FS	103

4.3	Pictorial representation of (a) classical bit vs. qubit (b) bloch sphere of	
	a qubit state	115
4.4	Overall framework for QCSSA feature selection and classification	126
4.5	Surface plot, contour plot (QCSSA 3) and its corresponding comparative	
	convergence plot on unimodal benchmark functions	132
4.6	Surface plot, contour plot (QCSSA 3) and corresponding comparative	
	convergence plot on multi-modal benchmarks functions	135
4.7	Best fitness(log scale) v/s generations plots for experiments on all genomic	
	datasets for QCSSA, CSSA, SSA, and other algorithms (a) GDS1615	
	(b) GDS531 (c) GDS968 (d) GDS1962 (e) GDS2545 (f) GDS2546 (g)	
	GDS2547 (h) GDS3268 (i) GDS3929	138
4.8	Average execution time in seconds for experiments on all genomic datasets	
	for QCSSA, CSSA, SSA, and other algorithms (a) GDS1615; (b) GDS968	
	(c) GDS1962 (d) GDS2545 (e) GDS2546 (f) GDS2547	139
4.9	Number of selected features(log scale) v/s generations plots for experiments	
	on all genomic datasets for QCSSA, CSSA, SSA, and other algorithms	
	(a) GDS1615 (b) GDS531 (c) GDS968 (d) GDS1962 (e) GDS2545 (f)	
	GDS2546 (g) GDS2547 (h) GDS3268 (i) GDS3929	140
4.10	Twin axis bar plots for comparative study of the number of selected	
	features and test accuracy for experiments on all genomic datasets for	
	QCSSA, CSSA, SSA and other algorithms (a) GDS1615 (b) GDS531	
	(c) GDS968 (d) GDS1962 (e) GDS2545 (f) GDS2546 (g) GDS2547 (h) $$	
	GDS3268 (i) GDS3929	141
4.11	Critical difference diagram for (a) average selected features and (b) average	
	fitness function. The goodness of the model is ranked from best to worst	
	(left to right), and the bold lines indicate methods that do not produce	
	statistically significant differences	142
4.12	Heatmap comparing fitness values across all methods for all datasets	144
5.1	Representation of (a) V-shaped flight of migrating birds (b) Starling	
	murmuration.	152
5.2	A sample Lévy flight	155
5.3	Flowchart of proposed MDO algorithm.	161
5.4	Proposed multi-objective optimization algorithm.	163
5.5	Flowchart for key optimization in image encryption	167
5.6	CBC mode in AES	171
5.7	Feature selection using the proposed algorithm.	175

5.8	Surface plot and contour plot for Easom function and Matyas function.	179
5.9	Surface plot and contour plot for Shubert function and Rosenbrock function	.180
5.10	Comparison of proposed MDO with other EC methods	182
5.11	Airplane (a) Plain image (b) Encrypted image (c) Histogram (plain,	
	encrypted and decrypted image) (d) Correlation between adjacent pixels	
	(plain image) (e) Correlation between adjacent pixels (encrypted image)	186
5.12	Boy (a) Plain image (b) Encrypted image (c) Histogram (plain, encrypted	
	and decrypted image) (d) Correlation between adjacent pixels (plain	
	image) (e) Correlation between adjacent pixels (encrypted image)	186
5.13	CT-Covid (a) Plain image (b) Encrypted image (c) Histogram (plain,	
	encrypted and decrypted image) (d) Correlation between adjacent pixels	
	(plain image) (e) Correlation between adjacent pixels (encrypted image)	187
5.14	MRI-Brain (a) Plain image (b) Encrypted image (c) Histogram (plain,	
	encrypted and decrypted image) (d) Correlation between adjacent pixels	
	(plain image) (e) Correlation between adjacent pixels (encrypted image)	187
5.15	Xray-Chest (a) Plain image (b) Encrypted image (c) Histogram (plain,	
	encrypted and decrypted image) (d) Correlation between adjacent pixels	
	(plain image) (e)Correlation between adjacent pixels (encrypted image)	188
5.16	Line plots for comparative study of average test accuracy, computation	
	time, and number of selected features on 18 datasets for MDO and other	
	optimizers with KNN classifier	192
5.17	Line plots for comparative study of average test accuracy, computation	
	time, and number of selected features on 18 datasets for MDO and other	
	optimizers with SVM (RBF) classifier	193
5.18	Line plots for comparative study of average test accuracy, computation	
	time, and number of selected features on 18 datasets for MDO and other	
	optimizers with MLP classifier	194
5.19	Line plots for comparative study of average test accuracy, computation	
	time, and number of selected features on 18 datasets for MDO and other \ensuremath{D}	
	optimizers with Extra Tree classifier	195
5.20	Line plots for comparative study of average test accuracy, computation	
	time, and number of selected features on 18 datasets for MDO and other $\ensuremath{}$	
	optimizers with Decision Tree classifier	196
5.21	Critical difference diagram for average computation time. The goodness	
	of the model is ranked from best to worst (left to right), and the bold lines	
	indicate methods that do not produce statistically significant differences.	197

5.22	Comparison of True Pareto Front and the Pareto Front obtained by proposed MDO-M for (a) ZDT1 (Left) and (b) ZDT3 (Right)	200
5.23	Pareto Fronts obtained by proposed MDO-M for ZDT2, ZDT6, FONSECA, SCHAFFER N1, SCHAFFER N2 and POLONI	201
5.24	Box plots for maximum Pareto front error values obtained by proposed MDO-M, NSGA-II, and OMOPSO on ZDT1, ZDT2, ZDT3, and ZDT6.	205
5.25	Box plots for spacing (S) values obtained by proposed MDO-M, NSGA-II, and OMOPSO on ZDT1, ZDT2, ZDT3, and ZDT6.	205
5.26	Box plots for IGD values obtained by proposed MDO-M, NSGA-II, and OMOPSO on ZDT1, ZDT2, ZDT3, and ZDT6.	206
5.27	Box plots for hypervolume (HV) values obtained by proposed MDO-M, NSGA-II, and OMOPSO on ZDT1, ZDT2, ZDT3, and ZDT6	206
6.1	Unpaired v/s Paired image-to-image translation	214
6.2	Representation of GAN	219
6.3	Overall framework	221
6.4	Workflow of the proposed QEMCGAN	231
6.5	Mutation step of the evolutionary algorithm	232
6.6	Generator's weight value distribution	234
6.7	Sample images generated from the framework with pretrained discriminator	237
6.8	Worst FID score plots for three real benchmark image datasets using proposed variants	239
6.9	Comparison of QEMCGAN with the state-of-the-art. 1^{st} column shows the original image, 2^{nd} column shows result from Cyclic model, 3^{rd} column shows the results for EMOCGAN, 4^{th} column shows proposed EMCGAN and 5^{th} column is for proposed QEMCGAN Model	241
6.10	Sample results from proposed models. $(1^{st} \text{ column shows the original})$ image and 2^{nd} column shows the results for EMCGAN model and 3^{rd} column shows the result for proposed OEMCGAN model)	244
6.11	Sample results from our proposed model $(1^{st}$ column shows the original image, 2^{nd} column shows the results for EMCGAN model, 3^{rd} column shows the results for QEMCGAN model and 4^{th} column shows the ground truth)	246

7.1	Dominance relation between multi-objective solutions: The solutions	
	highlighted in red are dominating solution S , as they are better in both	
	objective values f_1 and f_2 . Similarly, solutions in blue are dominated	
	by solution P since both their objective values are worse than that of	
	S, and the ones that are not highlighted are non-dominated as they are	
	better in one of the objectives but worse in the other	252
7.2	Graphical representation of Corner Sort algorithm	256
7.3	1st Parallelization: Instead of finding the minimum objective value among	
	all solutions simultaneously, we break it into many segments, each of	
	whose respective minima is calculated parallelly which are used to compute	
	the final minima.	259
7.4	2nd Parallelization: Solutions are checked for dominance relation parallelly	
	on different threads rather than iteratively since they are independent of	
	each other	260
7.5	Comparison of Sequential and Parallel versions of Cornersort for randomly	
	generated data, with fixed number of objectives $\ldots \ldots \ldots \ldots \ldots$	267
7.6	Comparison of Sequential and Parallel versions of Cornersort for randomly	
	generated data, with fixed number of solutions	268
7.7	Speedup analysis of Corner Sort on randomly generated data	269
8.1	Prospective future research directions	276

List of Symbols

\mathbf{Symbol}	Description
$\overrightarrow{x_i}$	Position vector
x_i^t	Solution of optimizer at time stamp t
$x_i^{(t+1)}$	Generated new solution at time stamp $t + 1$
U(,)	Uniform distribution
N(,)	Normal distribution
v_i	Swarm velocity
$D(x_i, x_j)$	Euclidean distance between node i and j
R	Threshold radius
p	Probabilistic factor
G	Graph
E	Set of edges
W	Weight of edges
Ω	Search space
\mathbb{R}^p	Objective space
ρ	Set of all possible features
F	Feature subset
μ	Minimum step
n	Population
\hat{Q}	Set of action

Symbol	Description
R(.)	Reward function
L(.)	Lévy function
eta	Discount parameter
α	Learning rate
X_n	Chaotic variable
L_e	Lyapunov exponent
N_p	Number of flying squirrels
d_g	Gliding distance
G_e	Gliding constant
Q(t)	Quantum population
P(t)	Chromosomes
P_{best}	Particle's best position
A	Adjacency matrix
G_{best}	Global best position of the particle
$U(\phi)$	Rotational quantum gate
ϕ_i	Angle of rotation
Ht	Hickory tree
At	Acorn tree
Nt	Normal tree
s^c	Seasonal constant

Abbreviations

Abbreviation	Description
AI	Artificial Intelligence
AES	Advanced Encryption Standard
CSSA	Chaotic Squirrel Search Algorithm
DES	Data Encryption Standard
DWCN	Directed Weighted Complex Network
EC	Evolutionary Computation
EMOCGAN	Evolutionary Multi-objective Cyclic Generative Adversarial Network
FID	Frechet Inception Distance
GA	Genetic Algorithm
GAN	Generative Adversarial Network
GWO	Grey Wolf Optimizer
IoT	Internet of Things
IS	Inception Score
MA	Mantegna's Algorithm
MDO	Murmuration-flight based Dispersive Optimization
ML	Machine Learning
NIA	Nature Inspired Algorithm
NIC	Nature Inspired Computation
PSO	Particle Swarm Optimization

Abbreviation	Description
QCSSA	Quantum-assisted Chaotic Squirrel Search Algorithm
QL	Q- Learning
RL	Reinforcement Learning
SSA	Squirrel Search Algorithm
SSIM	Structural Similarity Index Measure
SVM	Support Vector Machine
UQI	Universal Quality Index
WOA	Whale Optimization Algorithm
WTL	Win-Tie-Lose