TABLE OF CONTENTS

CERT	IFICA	TE	i-ii
DEDIC	CATIO)N	iv
ACKN	OWLI	EDGEMENT	V-V
ABSTI			vii-x
		CONTENTS	V 11-2
		GURES	XV
LIST (_ 	xxii
NOME	ENCLA	ATURE	XXV-XXX
СНАРТ	ER-I	INTRODUCTION	-
1.1	GENE	RAL BACKGROUND	
	1.1.1	Global Overview on Fossil Fuel	2
	1.1.2	India's Stance on Fossil Fuels	4
	1.1.3	Coal and Its Ash Generation in India	
	1.1.4	Coal Ash Handling System	10
1.2		VERVIEW AND PROBLEM IDENTIFICATION	14
1.3		ΓΙFICATION PHENOMENON	18
1.4		CTIVES	18
1.5 1.6		E OF THE STUDY NIZATION OF THE THESIS	19 21
CHAPT	ER-II	REVIEW OF LITERATURE	25
2.1	INTRO	DDUCTION	2:
2.2		ASH RECOGNITION AS GREEN/NON-HAZARDOUS OR	26
2.2		RDOUS MATERIAL	
2.3		AMENTAL AND GEOTECHNICAL ACTERIZATION STUDIES OF COAL ASH	28
2.4		ECHNICAL CHARACTERIZATION STUDIES OF SOIL	,
		ILIZED WITH COAL ASH	32
2.5	FLY A	SH DOSAGE IN THE VARIOUS AREA OF ENGINEERING	3'
2.6		RATORY STUDIES ON STRATIFIED SOIL-ASH	I 40
2.7	DEPOS		
2.7	COAL	MIC CHARACTERIZATION STUDIES OF SOIL AND	45
2.8		MIC CHARACTERIZATION STUDIES OF STRATIFIED)
	SOIL-A	ASH DEPOSITS	5
2.9		MENT APPLICATION ASPECT	54
2.10	SUMM	IARY	50
СНАРТ	ER- III	MATERIALS, EXPERIMENTAL PROGRAM	, 61

3.1		DUCTIO		N. P.	61
3.2	3.2.1	E OF MAT Fly Ash	ΓERIALS US	SED	63 63
	3.2.1	Local S			65
3.3	EXPER	IMENTA	L PROGRA	AM	65
	3.3.1	Chemic	al Character	rization	65
		3.3.1.1	_	Electron Microscope (SEM) Test	65
		3.3.1.2	-	ffraction (XRD) Test	66 67
		3.3.1.3 3.3.1.4	-	orescence (XRF) Spectroscopy of Hydrogen (pH)	67
	3.3.2	Geotechnical Characterization			68
		3.3.2.1	Specific G	ravity	68
		3.3.2.2	Grain Size	e Distribution	68
		3.3.2.3	Atterberg	Limit	69
		3.3.2.4	Standard I	Proctor Test	70
		3.3.2.5	Falling He	ad Permeability Test	70
		3.3.2.6	Triaxial S	hear Test	71
			3.3.2.6.1	Unconsolidated Undrained (UU) Triaxial Test	71
			3.3.2.6.2	Consolidated Undrained (CU) Triaxial Test	72
			3.3.2.6.3	Consolidated Drained (CD) Triaxial Test	72
		3.3.2.7	California	Bearing Ratio (CBR) Test	72
	3.3.3	Dynamic Characterization			73
		3.3.3.1	Cyclic Tri	axial Test	73
			3.3.3.1.1	Description of the Equipment	73
		3.3.3.2	Sample Pr	reparation for Cyclic Triaxial Test	75
		3.3.3.3	Testing Pr	ocedure of Cyclic Triaxial Test	79
	3.3.4	Small-Strain Shear Modulus Characterization			82
		3.3.4.1	Bender El	ement Test	82
	3.3.5	Testing	Program		86
СНАРТ	ΓER- IV		CHEMICA DISCUSSI	AL ANALYSIS RESULTS AND ON	89
4.1	INTRO	DUCTIO	N		89
4.2	SCANN	IING ELI	ECTRON M	IICROSCOPE (SEM) ANALYSIS	90
4.3	ENERG	Y DISPE	ERSIVE X-F	RAY (EDX) ANALYSIS	94
4.4	X-RAY DIFFRACTION (XRD) ANALYSIS				98
4.5	X-RAY	FLUORI	ESCENCE ((XRF) ANALYSIS	100

4.6 4.7	POTENTIAL OF HYDROGEN (pH) SUMMARY						
CHAP	ΓER- V	GEOTECHNICAL CHARACTERIZATION TEST RESULTS AND DISCUSSION	107				
5.1	INTROI	DUCTION	107				
5.2	SPECIF	TIC GRAVITY	108				
5.3	GRAIN SIZE DISTRIBUTION						
5.4	CONSIS	NSISTENCY LIMITS					
5.5	COMPA	COMPACTION BEHAVIOUR					
5.6	PERME	MEABILITY BEHAVIOUR					
5.7	CALIFO	ORNIA BEARING RATIO (CBR)	119 120				
5.8	SUMMARY						
СНАРТ	ΓER- VI	SHEAR STRENGTH PARAMETERS OF HOMOGENEOUS AND STRATIFIED SOIL-ASH DEPOSIT	125				
6.1	INTROI	DUCTION	125				
6.2	SIGNIF						
6.3	TRIAXI	SIGNIFICANCE OF SHEAR STRENGTH TRIAXIAL TEST TECHNIQUES					
6.4	EXPER	IMENTAL PLAN					
6.5	RESUL	TS AND DISCUSSION	130				
	6.5.1	Evaluation of Cohesion and Angle of Internal Friction	130				
	6.5.2	Failure Mechanism Assessment	134				
	6.5.3	Assessment of Initial Tangent Modulus and Secant Modulus	139				
	6.5.4	Interpretation of Ultimate Bearing Capacity of Strip Footing	140				
6.6	SUMMARY						
CHAP	ΓER- VII	DYNAMIC SHEAR MODULUS AND LIQUEFACTION ASSESSMENT OF HOMOGENEOUS AND STRATIFIED SOIL-ASH DEPOSIT	145				
7.1	INTROI	DUCTION	145				
7.2	SIGNIF	IIFICANCE OF SHEAR MODULUS					
7.3	METHO	THODOLOGY AND EXPERIMENTAL PROGRAM					
7.4	RESULTS AND DISCUSSION						
	7.4.1	Evaluation of Dynamic Shear Modulus of Homogeneous Soil and Fly Ash Specimens	150				
	7.4.2	Evaluation of Dynamic Shear Modulus of Stratified Soil-Ash Deposit	155				
	7.4.3	Evaluation of Liquefaction Potential by Energy Approach	158				

	7.4.4	Assessment of Strain Energy Correlation with Independent Parameters	162			
	7.4.5	Comparison of Present Study Results with Past Literature	164			
7.5	SUMMARY					
СНАР	TER- VII	DAMPING CHARACTERISTICS OF HOMOGENEOUS AND STRATIFIED SOIL-ASH DEPOSIT	171			
8.1	INTRO	DUCTION	171			
8.2	SIGNIF	SIGNIFICANCE OF DAMPING PROPERTIES				
8.3	METHODOLOGY AND EXPERIMENTAL PROGRAM					
8.4	RESULTS AND DISCUSSION					
	8.4.1	Damping Response of Homogeneous Soil and Fly Ash Specimens	179			
	8.4.2	Damping Response of Stratified Soil-Ash Deposit	184			
	8.4.3	Identification of an Appropriate Method for the Evaluation of Damping Ratio of Homogeneous and Stratified Soil-Ash Deposit	187			
	8.4.4	Assessment of the Influence of Cycle Position on Damping Ratio	192			
	8.4.5	Comparison of Present Study Results with Past Literature	197			
8.5	SUMM	ARY	203			
СНАР	TER- IX	MAXIMUM SHEAR MODULUS OF HOMOGENEOUS AND STRATIFIED SOIL-ASH DEPOSIT AND CORRELATION STUDIES	205			
9.1	INTRO	DUCTION	205			
9.2	METHODOLOGY					
9.3	RESUL	TS AND DISCUSSION	207			
	9.3.1	Identification of an Appropriate Method for the Estimation of Shear Wave Velocity	208			
	9.3.2	Assessment of Maximum Shear Modulus of Homogeneous and Stratified Soil-Ash Deposit	211			
	9.3.3	Assessment of Normalized Shear Modulus and Model Fitting	215			
	9.3.4	Assessment of Damping Ratio and Model Fitting	218			
	9.3.5	Development of Excess Pore Pressure Ratio Response Model using Strain Energy Approach	222			
9.4	SUMM	ARY	227			
СНАР	TER- X	PERFORMANCE OF HOMOGENEOUS AND STRATIFIED SOIL-ASH DEPOSIT AS A PAVEMENT MATERIAL	229			
10.1	INTRO	DUCTION	229			
10.2	MECHANISTIC-EMPIRICAL DESIGN METHODOLOGY					

	10.2.1 10.2.2	Criteria for Rutting of Subgrade Criteria for Fatigue Cracking of Bituminous Layer	231 232
10.3	DESIGN OF FLEXIBLE PAVEMENT		
	10.3.1	Design of Unreinforced Flexible Pavement	233 233
	10.3.2	Design of Geosynthetic-Reinforced Flexible Pavement	234
10.4 RESU		TS AND DISCUSSION	235
	10.4.1	CBR Response of Unreinforced and Reinforced Soil Combinations	236
	10.4.2	Thickness Evaluation of Pavement Resting on Present Materials as Subgrade	242
10.5	SUMM	ARY	246
СНАР	ΓER- XI	CONCLUSIONS AND FUTURE SCOPE	247
11.1	SUMMARY AND CONCLUSIONS		
	11.1.1	Chemical Analysis Test Results	248
	11.1.2	Geotechnical Characterization Test Results	248
	11.1.3	Shear Strength Characteristics	249
	11.1.4	Dynamic Shear Modulus and Liquefaction Assessment	250
	11.1.5	Damping Characteristics	251
	11.1.6	Maximum Shear Modulus and Correlation Studies	252
	11.1.7	Performance of Stratified Soil-Ash Deposit as a Pavement Material	252
11.2	LIMITA	ATIONS AND SCOPE FOR FUTURE WORK	253
	11.2.1	Limitations	253
	11.2.2	Scope for Future Work	254
REFEI	RENCES		255
LIST C	F PUBL	ICATIONS	313