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Chapter 3 

Mathematical Formulation 
 

3.1. Introduction 

 In this chapter, the mathematical formulations required for the analytical and FE 

modelling for structural analysis of the carbon nanotube reinforced composite plates and 

sandwich structures resting on an elastic foundation in the framework of the different non-

polynomial shear deformation theories based on “secant function” and “inverse hyperbolic 

sine function” are discussed in detail. The non-polynomial high order shear deformation 

theory based upon different trigonometric function is used here for the modelling of the in-

plane and transverse displacements of any point inside the plate. The trigonometric shear 

deformation theories used here contains non-polynomial shear strain functions of “secant 

function and inverse hyperbolic sine function” to introduce the non-linearity of transverse 

shear stresses through thickness at the cost of less number of field variables with respect to 

the high order shear deformation theories available in the literature which are generally of 

polynomial in nature. First order shear deformation theory does not have the required 

deformation modes to model thick carbon nanotube reinforced composite and sandwich 

plates and it is usually preferred to study the thin ones where shear deformation is not 

dominant. While the higher-order deformation modes (membrane and bending) are present 

in the polynomial based higher order shear deformation theories, yet their inclusion is only 

possible with a large number of higher-order terms which increases computational costs. In 
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non-polynomial shear deformation theories, the non-linearity of shear deformation is 

accommodated with the aid of different non-polynomial functions i.e., “secant function” 

and “inverse hyperbolic sine function” in the kinematic field. Hence, efficient results are 

obtained at the cost of lesser computational efforts. Next, the non-polynomial shear 

deformation theory is inherently satisfying the traction free conditions of transverse shear 

stresses at the top and bottom surfaces of the plate while in most of the polynomial based 

higher order shear deformation theory’s, these conditions are generally not taken into 

consideration and in some cases, these conditions are artificially enforced. 

Mechanical properties of composites depend on the volume fraction of reinforcement and 

matrix. The mechanical property of the composites varies as the orientation of the 

reinforcement changes. The mechanical property such as the elastic modulus, mass 

density, ultimate tensile strength, thermal conductivity, and electrical conductivity of the 

carbon nanotube reinforced composite plate can be found using rule of mixture. Rule of 

mixture uses weighted mean method to find out the various properties associated with 

the composite materials. The displacement field of trigonometric shear deformation theory 

is used here for model the carbon nanotube reinforced composite and sandwich plate. The 

trigonometric shear deformation theory fulfills the traction free boundary conditions and 

considers non-linear distribution of transverse shear stresses. The governing equilibrium 

equations are derived using Hamilton’s principle which generates five partial differential 

equations (PDEs) corresponding to the five primary variables in association with stress-

resultants and inertia. The obtained five PDEs are associated with the corresponding stress-

resultants which make the analysis indeterminate. This problem is solved using the plate-

constitutive equations that make the analysis determinate. The solution for the governing 

https://en.wikipedia.org/wiki/Elastic_modulus
https://en.wikipedia.org/wiki/Mass_density
https://en.wikipedia.org/wiki/Mass_density
https://en.wikipedia.org/wiki/Ultimate_tensile_strength
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Electrical_conductivity
https://en.wikipedia.org/wiki/Weighted_mean
https://en.wikipedia.org/wiki/Composite_material
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differential equation is proposes using the analytical and numerical approach. Navier’s 

solution technique is used for the analytical solutions. The Navier’s solution technique uses 

the separation of the primary variables and the primary variables expressed in terms of 

double trigonometric series in the spatial domain by which the PDEs are transformed into 

the ODEs. The finite element method (FEM) is employed to solve the governing 

differential equations for the numerical solutions. The physical domain of the plate is 

discretized using the eight-noded isoparametric serendipity element. The primary variables 

for an element are expressed in the term of the shape functions and the generalized nodal 

coordinates. 

The present chapter deals with the derivation of basic equations associated with the 

modelling of the carbon nanotube reinforced composite plate resting on an elastic 

foundation. The assumptions involve in the analysis followed by derivation of basic 

equations associated with the modelling of the carbon nanotube reinforced composite plate 

resting on an elastic foundation and the formulation of the governing equations and the 

method of solutions are discussed in detail. 

3.2. Basic Assumptions 

 The CNTRC plate with the Cartesian coordinate system is shown in the Figure 3.1. 

The following assumptions are made for deriving the required mathematical formulations. 

 The layers are so well connected such that there is no slip and separation. 

 The reference plane is at the middle of the plate.  

 The materials selected for the analysis obey Hooke’s law.  
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 The lateral deflection in comparison to the in-plane dimensions of the plate structures is 

very small.  

 The transverse normal stress in comparison to the other stresses is very small and 

therefore neglected.  

 The thickness-stretching effect is neglected; since the transverse displacement does not 

varies across the thickness of the carbon nanotube reinforced composite plate.  
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Figure 3.1: Co-ordinate system (a) CNTRC plate cross section (b) ‘x’ and ‘y’ are in plane 

and ‘z’ is along the thickness direction. 
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3.3. Properties of carbon nanotube reinforced composite plate 

The Rule of mixture (ROM) is a method of calculating the mechanical properties of 

a composite structure, such as a composite plate. This method is based on the assumption 

that the mechanical properties of the composite plate are the weighted-average of the 

mechanical properties of the individual components. The ROM is used to predict the 

strength, stiffness, and other mechanical properties of a composite material based on the 

properties of its constituent materials. The material properties of the carbon nanotube 

reinforced composite plate can be easily found out using rule of mixture which is given as 

follows:  

                                                             3.1 
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where 
11

CNTE and 
22

CNTE are the Young’s modulus of carbon nanotube reinforced composite 

plate in longitudinal and lateral direction respectively. 
12

CNTG  is the shear modulus of carbon 

nanotube reinforced composite plate.
 12

CNTv and *

CNTV  
are the Poisson’s ratio and volume 

fraction of  carbon nanotube reinforced composite respectively. 
mE , mG , mv and mV  are 

11 1 11

CNT m

CNT mE V E V E 
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the Young’s modulus, shear modulus, Poisson’s ratio and volume fraction of matrix 

respectively. 

3.4. Stress-Strain Constitutive Relations 

 Stress-strain constitutive relations are the mathematical equations that describe the 

relationship between stresses and strains in a material. These equations can be used to 

predict the behavior of a material under various loading conditions. The equations are used 

to calculate the amount of strain a material can tolerate before it yields or fails. Stress-strain 

constitutive relations are useful in a wide range of engineering applications such as 

structural analysis, fatigue analysis, and stress analysis. They are used to predict the 

strength and stiffness of materials, to analyze the behavior of structures under load, and to 

model the behavior of materials when subjected to various types of loading. The stress-

strain constitutive relationship is expressed in the following form for the orthotropic lamina 

in the carbon nanotube reinforced composite plate. 

{ } [Q ] { }n ij n n 
                   3.7 

where, { }n and { }n the stress and strain vectors at any point in the nth layer of carbon 

nanotube reinforced composite sandwich plate. [Q ]ij n  is the reduced stiffness coefficient 

matrix which establish the relation between the stress and strain vectors at any point in the 

nth layer of carbon nanotube reinforced composite sandwich plate. The components of the 

stress and strain vectors are given below: 



 

 

 
 

67 
 

11 12 16

21 22 26

16 26 66

44 45

45 55

0 0

0 0

0 0

0 0 0

0 0 0

xx

xx

yy

yy

xy

yz
yz

xz

xz

xy

n
n n

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q






 

  
    
    
    
        
    
    
    
                          3.8 

where, 11
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; 66 12Q G ; 44 23Q G and 55 13Q G  

The directions ‘1’ and ‘2’ refer for the directions along the fibers and perpendicular to the 

fibers, respectively. 

3.5. Strain displacement relationships 

 Strain-displacement relationships are mathematical equations that describe the 

relationship between strains and displacements in a material. These equations are used to 

predict the behavior of a material under various loading conditions and to calculate the 

amount of strain a material can tolerate before it yields or fails. Strain-displacement 

relationships are useful in a wide range of engineering applications such as structural 

analysis, fatigue analysis, and stress analysis. They are used to predict the strength and 

stiffness of materials, to analyze the behavior of structures under load, and to model the 

behavior of materials when subjected to various types of loading. The strain displacement 

relationship given by using the following equations: 
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3.6. Plates on elastic foundation 

 The “Winkler’s hypothesis” is based on one parameter according to which in the 

case of the elastic soil the deflection at any point on a surface is proportional to the load 

being applied onto the surface and free from the load being applied on any other points on 

the surface. This one parameter model is referred as the Winkler model (Tanahashi, 2007). 

The mechanical model of the elastic soil by the “Winkler’s hypothesis”, is assumed by 

mutually independent vertical springs. The hypothesis leads to the limitation to this model 

that is the displacement is free from the load being applied on any other points on the 

surface. In this research, an improved model which eliminates the limitation of the Winkler 

model is selected for the analysis. The two parameter model is selected for the analysis 

considers the deflection of elastic soil due to the effect of the loads applied onto the surface 

and the load being applied on any other points on the surface due to which a continuity 

between the adjacent displacements point is established by considering shear interactions. 

This two parameter model is selected for the analysis is referred as the Pasternak’s 

foundation model (Zenkour, 2010). The Pasternak’s foundation model is as follow: 

2 2

1 22 2EF w s s

W W
R W

x y
  

 
  

 
               3.11

 

where REF is the Pasternak’s elastic foundation reaction, βw is the Winkler spring constants 

and, βs1 , βs2are shear layer spring constants respectively. In the case of homogenous and 

isotropic soil both the shear layer spring constants are same i.e. βs1 = βs2= βs. In the present 

analysis the soil is consider as the homogenous and isotropic. The modified Pasternak’s 

foundation model is as follow: 
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2 2

2 2EF w s

W W
R W

x y
 

  
   

                                                          3.12

 

If the βs i.e. shear layer spring constants is neglected the Pasternak’s foundation model is 

converted to the Winkler model. The Figure 3.2 shows, the CNTRC plate resting on the 

Pasternak’s elastic foundation. 

 

 

 

 

 

 

 

Figure 3.2 the CNTRC plate resting on the Pasternak’s elastic foundation 

3.7. Displacement field 

 The non-polynomial shear deformation theory based on different non-polynomial 

functions i.e., secant function and inverse hyperbolic sine function is used to model and 

analyze the behavior of thin-walled structures. This theory is based on the assumption that 

the cross-sectional deformation of the structure is governed by a combination of normal and 

shear deformations, with the latter being represented by trigonometric functions. The 
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displacement field is a fundamental concept in the non-polynomial shear deformation 

theory, which describes how the structure deforms under external loads. In the non-

polynomial shear deformation theory, the displacement field is expressed as a combination 

of polynomial and non-polynomial trigonometric functions, with the polynomial part 

accounting for the normal deformations and the non-polynomial trigonometric part 

representing the shear deformations. This approach allows for an accurate representation of 

the complex deformation behavior of thin-walled structures, which is often difficult to 

model using traditional methods. The non-polynomial shear deformation theory has been 

widely used in the analysis and design of various engineering structures, such as aircraft 

wings, bridges, and wind turbines. The accurate prediction of the displacement field is 

critical in determining the structural response to external loads, and therefore, it is essential 

to have a robust mathematical framework to model these behaviors. The non-polynomial 

shear deformation theory has been successfully applied in many engineering applications 

with minimum limitations. For instance, the accuracy of the method is highly dependent on 

the choice of trigonometric functions that is used to represent the shear deformation. 

Additionally, the non-polynomial shear deformation theory assumes that the deformation is 

uniform across the thickness of the structure, which may not always be the case in practice.  

The displacement field is a key concept in the trigonometric shear deformation theory, 

which provides a powerful mathematical framework for analyzing the behavior of thin-

walled structures. While the non-polynomial shear deformation theory has been widely 

used in engineering applications, it is important to recognize its limitations and to carefully 

select the appropriate method for each specific application. The non-polynomial high order 

shear deformation theory based upon the different non-polynomial trigonometric function 
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is used for the modelling the in-plane and transverse displacements of any point inside the 

plate. The non-polynomial trigonometric shear deformation theories used here contains 

non-polynomial shear strain functions of “inverse hyperbolic sine” and of “secant function” 

to introduce the non-linearity of transverse shear stresses through thickness at the cost of 

less number of field variables with respect to the high order shear deformation theories 

available in the literature which are generally of polynomial nature. While the higher-order 

deformation modes (membrane and bending) are present in the polynomial based high 

order shear deformation theories, yet their inclusion is only possible with a large number of 

higher-order terms which increases computational costs. In non-polynomial trigonometric 

shear deformation theories, the non-linearity of shear deformation is accommodated with 

the aid of a single non-polynomial functions “inverse hyperbolic sine function” and a 

“secant function” in the kinematic field. Hence, efficient results are obtained at the cost of 

lesser computational efforts. The displacement field for the non-polynomial shear 

deformation theory is given below: 
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where 0u , 0v , 0w , and x , y are the displacement and shear deformations at the mid 

plane, respectively. In the case of secant function based non-polynomial shear deformation 

theory, trigonometric function (f(z)) is the non- polynomial function used to refine the 

bending profile of the system which is given below: 
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( ) ( )f z g z z   ;     sec /g z z rz h
; 

     sec / 2 1 / 2 tan / 2r r r               3.14 

where, r is the transverse shear stress constant parameter. The value of the r is determined 

by the post processing step using inverse method and the result for the post processing is 

compared with the 3D elasticity solutions. The value of the r is selected in such a way that 

it achieves the maximum efficiency in compression to the 3D elasticity solutions. In the 

case of trigonometric shear deformation theory based on the secant function the value of r = 

0.1. Further, in the case of inverse hyperbolic sine function based non-polynomial shear 

deformation theory f(z) is defined as follows: 
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In the case of non-polynomial shear deformation theory based on the inverse hyperbolic 

sine function the value of r = 3. Next, the trigonometric shear deformation theory is 

inherently satisfying the traction free conditions of transverse shear stresses at the top and 

bottom surfaces of the plate while in most of the polynomial based high order shear 

deformation theories, these conditions are generally not taken into consideration and in 

some cases, these conditions are artificially enforced. 

3.8. Analytical Formulation 

The strain displacement relations are established with the help of the following equations
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For the secant function based non-polynomial shear deformation theory, 
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whereas, for the inverse hyperbolic sine function based non-polynomial shear deformation 

theory, the f(z) is defined as given below: 
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The basic equations like the rule of mixture, displacement field, stain displacement 

relations and stress-strain constitutive relations required for the present investigation are 

presented above. 

3.8.1. Equations of motion 

 Equations of motion are mathematical equations that describe the motion of a body 

or system. They are used to calculate the motion of a body under the influence of forces and 

torques. The equations are used to analyze the behavior of a system, to predict its response 
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to an external force, and to design systems with desired characteristics. Equations of motion 

are useful in a wide range of engineering applications such as dynamics, vibration, and 

control. They are used to calculate the position, orientation, speed, and acceleration of a 

body, to analyze the behavior of a system under the influence of external forces, and to 

design systems with desired characteristics. Hamilton's principle is an important concept in 

classical mechanics which states that the motion of a system of particles or rigid bodies is 

such that the action integral of the system is minimized with respect to the motion of the 

particles and rigid bodies within the system. The principle is used to derive the equations of 

motion for a system and can be used to calculate the motion of a system with forces that are 

not known in advance. Hamilton's principle is widely used in a variety of engineering 

applications such as robotics, vibration analysis, and control. It is also used to analyze the 

behavior of dynamical systems, to predict the response of a system to external forces, and 

to design systems with desired characteristics. “The motion of a dynamical system in a 

given time interval is such as to maximize or minimize the action integral”. This statement 

is known as Hamilton's principle, and was first formulated in 1834 by the Irish 

mathematician William Hamilton. The Hamilton’s principle is used to derive the equation 

of motion of the carbon nanotubes reinforced composite plate with Pasternak elastic 

foundation. 
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where, δT, δUs, δUf ,and δV are the change in kinetic energy, change in strain energy, 

change in strain energy of elastic foundation and change in potential energy due to external 

applied load, respectively. 

The change in the kinetic energy of the system is expressed as follows: 
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The change in the strain energy of the system is expressed as follows: 
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The change in the potential energy of the system due to external applied load is expressed 

as follows: 
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The change in the strain energy of the system due to Pasternak elastic foundation is 

expressed as follows: 
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where Kw and Ks are the Winkler and shear layer spring constants, respectively 
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where, βw and βs are the Winkler and shear layer constant factor, respectively. 
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The carbon nanotubes reinforced composite plate with Pasternak elastic foundation is 

subjected to the transverse load q which is the bending load, in-plane compressive load of 

ΨxNcr, and ΨyNcr, respectively. The total potential energy of the system due to external 

applied load is expressed as follows: 
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The variation of the energy of the system from Eq. (3.21-.3.25) is substituted in Eq. (3.20) 

and then by parts integration, the coefficients of variation of the mid plane displacements 

and rotations are separated which leads to develop the governing differential equations of 

the carbon nanotubes reinforced composite plate with Pasternak elastic foundation which 

are as follows:  
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The above equation is indeterminate as there are fourteen stress-resultants in five equations. 

When solving a problem using elasticity formulations, the formulation starts with the 

equilibrium equations of elasticity in which 3 equations are associated with 6 unknown 

stresses. To make the problem determinate, the strain-displacement relations and stress-

strain constitutive equations are utilized which results in 15 unknowns and 15 equations. 

Similarly, in the present problem, additional equations are defined with the help of Eq. 

(3.8) which are known as the plate constitutive relationships and then substituted for the 

stress-resultants in above equation. The plate constitutive relations for the functionally 

graded carbon nanotube reinforced composite plate resting on a Pasternak’s elastic 

foundation are defined as follows:
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Partial differential equation terms of the primary variables are separated for different 

displacement modes derived at the mid plane are shown below:
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Where, 
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3.8.2. Navier’s Solution Methodology 

The system of PDEs in Eq. (3.32-3.36) consists of the spatial derivatives and time 

derivatives of the primary variables. To solve the equations, the boundary conditions and 

the initial conditions of the problem are required. The general boundary conditions of 

trigonometric shear deformation theory in terms of the primary variables and the stress-

resultants are derived and presented in Eq. 3.37. Based on the boundary conditions of the 

problem, the displacements and stress-resultants are required to be specified at all the 

edges. At a particular edge, both the forces and displacements cannot be specified. For 

analytical solutions of Eq. (3.32-3.36), the solutions of the governing differential equations 

are obtained using Navier’s closed form solution technique. The exact solution for the 

governing differential equation for carbon nanotube reinforced sandwich and composite 

plates are considered by assuming the simply supported boundary condition. The 

appropriate boundary condition is as follows: 

At edge x=0 and x=l: 
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At edge y=0 and y=b: 
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The decision to restrict analytical solutions to simply supported square carbon nanotube 

reinforced composite plates raises pertinent questions about the rationale behind this choice 

and the challenges that may arise when dealing with different boundary conditions. This 

discussion delves into the motivations behind this decision and explores the complex 

challenges associated with varying boundary conditions in nanocomposite plate analysis. 

The decision to focus on simply supported square carbon nanotube reinforced composite 

plates in analytical solutions is likely rooted in a combination of factors, including 

analytical tractability, model complexity, and practical relevance. Analytical solutions offer 

valuable insights into the fundamental behavior of composite materials, aiding in the 

understanding of underlying mechanics and behaviors. By choosing simply supported 

square plates, researchers can simplify the problem, making it amenable to analytical 

treatment and mathematical formulation. This approach enables the derivation of closed-

form solutions that provide essential information about stress distribution, deformation, and 

load-carrying capacity, all of which are crucial for designing and optimizing engineering 

structures. While the choice of focusing on simply supported square plates facilitates 

analytical treatment, it is essential to acknowledge the challenges that arise when dealing 

with other boundary conditions. Real-world engineering applications often involve a wide 

range of boundary conditions, each of which can significantly influence the behavior of 

composite plates. Some of the key challenges associated with different boundary conditions 

include: 
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Clamping and Fixed Boundary Conditions: When a nanocomposite plate is clamped or 

subjected to fixed boundary conditions, the stress distribution and deformation patterns can 

vary dramatically from those of simply supported plates. The presence of clamping 

constraints may induce complex stress concentrations and buckling phenomena that 

demand more sophisticated experimental validation. 

Free Edge Boundary Conditions: Plates with free edges experience stress concentrations 

and edge effects that can affect load-carrying capacity and failure modes. Analyzing the 

behavior of nanocomposite plates with free edges requires accounting for these effects, 

potentially necessitating experimental investigations. 

Mixed Boundary Conditions: In real-world engineering scenarios often involve mixed 

boundary conditions, where different edges of the plate may have distinct boundary 

conditions. Analyzing the response of nanocomposite plates under such conditions requires 

a comprehensive understanding of stress interactions and load transfer mechanisms, posing 

a significant challenge in terms of analytical formulation. 

The decision to restrict analytical solutions to simply supported square carbon nanotube 

reinforced composite plates is likely driven by a balance between analytical tractability and 

practical relevance. While this choice facilitates the derivation of closed-form solutions and 

fundamental insights into plate behavior, it is crucial to recognize the challenges associated 

with different boundary conditions. Real-world engineering applications demand a holistic 

understanding of how nanocomposite plates respond under varying boundary conditions, 

each of which introduces unique complexities. Addressing these challenges requires a 

combination of analytical techniques, numerical simulations, and experimental validation, 
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ultimately contributing to the advancement of nanocomposite materials and their diverse 

applications in engineering and technology.

 
3.8.2.1 Solution of differential equation for bending analysis

 
To reproduce the governing differential equation for the bending analysis of the carbon 

nanotube reinforced composite plates resting on Pasternak’s elastic foundation subjected to 

different loading conditions from Eq. (3.32-3.36), the inertia components are neglected. 

The primary variables are expressed in terms of double trigonometric series by satisfying 

the boundary conditions in Eq. (3.37). The mathematical functions for the primary variables 

are assumed as follows: 

0 0

1 1

cos( )sin( )mn

m n

u u ax by
 

 


       3.38a

0 0

1 1

sin( )cos( )mn

m n

v v ax by
 

 


       3.38b

0 0

1 1

sin( )sin( )mn

m n

w w ax by
 

 


       3.38c

1 1

cos( )sin( )x xmn

m n

ax by 
 

 


       3.38d

1 1

sin( )cos( )y ymn

m n

ax by 
 

 


       3.38e  

where, 0mnu , 0mnv , 0mnw , xmn and ymn are the arbitrary parameters.

 

The load is expressed as: 
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where, a = mπ/l, b= nπ/b. 

Sinusoidal load can be expressed as follows: 

0 ,  (     1)mnQ q m n  
                  

 

Whereas uniformly distributed load (UDL) is expressed as follows: 
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16
,  (     1,3,5.....)mn

q
Q m n

mn
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By substituting the assumed solutions Eq. (3.38) in the governing differential equations Eq. 

(3.26-3.30), set of equations are obtained which are written in the generalized displacement 

as follows. 

    i ik q 
         3.40

 

where, k is considered as the globe stiffness matrix in which operators of partial derivative 

with respect to x and y is involved.  i  vector containing the field variables,  iq  the 

external mechanical, respectively 
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3.8.2.2 Solution of differential equation for free vibration 

For the free vibration response of a CNTRC plate, the following displacement variables are 

taken into consideration since they have met the boundary conditions stated in Eq. (3.37). 

The potential energy on the system caused by external loads and external loads' potential 

loads are ignored in the free vibration analysis. 
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where,   is the free vibration frequency and i = √−1. 

By substituting the assumed displacement variables in Eq. (3.42) in the governing 

differential equations Eq. (3.26-3.30), set of homogenous equations are obtained which 

were written in the form of eigen-value problem: 

    2 0iK M  
        3.43

 

Where, [K] is stiffness matrix and [M]is the mass matrix. 
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Here, the element of the stiffness matrix is referring as [K] and mass matrix is referring as 

[M]. 
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3.8.2.3. Buckling analysis 

For the buckling analysis of the carbon nanotube reinforced composite plates resting on 

Pasternak’s elastic foundation the kinetic energy of the system is neglected from the 

governing differential equations Eq. (3.26-3.30). 
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1 1
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       3.45a 
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       3.45c

1 1
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       3.45d 

 

1 1

sin( )cos( )y ymn

m n

ax by 
 

 


       3.45d          

 

where, 0mnu , 0mnv , 0mnw , xmn and ymn are the arbitrary parameters.
 

 

By substituting the assumed displacement variables given in Eq. (3.45) to the governing 

differential equations of Eq. (3.26-3.30), set of homogenous equations are obtained which 

were written in the form of eigen-value problem: 

    [ ] [ ] 0iK G  
        3.46

 

Where, [K] is stiffness matrix and [G]is the geometric stiffness matrix. 

 

3.47 

 

The above equations are established for the bending, free vibration and buckling analysis 

for the carbon nanotube reinforced composite plates resting on Pasternak’s elastic 
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foundation. These equations can be reduced to the bending, free vibration and buckling 

analysis for the carbon nanotube reinforced composite plates by neglecting the βw and βs 

which are the Winkler and shear layer spring constants factors. 

3.9. Finite Element (FE) Formulation 

The finite element method is the numerical solution based approach. The displacement of 

the primary variables at the mid plane of the carbon nanotubes reinforced composite plate is 

expressed using Eq. (3.13) which is associated with the C1 continuity which make the FE 

solution more complex. In order to make the problem mathematically economical the C1 

continuity is modified to the C0 continuity by imposing the new degrees of freedom to the 

system as   0 0x

w

x


 
  

 
 and 0 0y

w

y


 
  

 
 

To reduce the continuity conditions of the transverse displacement in the present FE 

formulation, modified displacement field introduced after enforcing the constraint which is 

expressed in the following form: 

0

0

0

( , , , ) ( , , ) ( , , )
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       
       

  
       
              

 

In the present formulation, the constraint conditions are enforced with the help of penalty 

functions. The discretized strain-displacement relations are first expressed in the following 

form.
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           3.48                                                                                                                                                               

Now the Eq. 3.48 can be further discretized and expressed in a matrix-vector form in which 

the components of the matrix are the mathematical functions of the thickness-coordinate 

and the components of the vector are the mid-plane derivatives of the primary variables. 

     
5 1 (13 1)(5 13)

H
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        3.49 

The equation can be express in its full-scale form as follows: 

The [H] matrix given in Eq. (3.49) can be expressed as follows: 

'

'

1 0 0 0 0 ( ) 0 0 0 0 0 0

0 1 0 0 0 0 ( ) 0 0 0 0 0

[H] 0 0 1 0 0 0 0 ( ) 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 ( ) 0

0 0 0 0 0 0 0 0 0 0 1 0 ( )

z g z

z g z

z g z

g z

g z

 
 
 
 
 
 
     3.50

 

 

 

 



 

 

 
 

88 
 

 

 

 

 

 

 

 

 

                        

 

 

 

 

 

           3.51 

 

The mid-plane derivative variables in   can be further expressed in terms of the 

derivatives of the shape-functions and the generalized nodal coordinates by the following 

discretized relation. 
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3.52 

 

 

 

 

 

 

 

 

The relation between stresses and strain at any point within the domain of the carbon 

nanotubes reinforced composite plate can be established using the constitutive equations as 

follows: 
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where, 
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The discretized stress-strain relationships for the carbon nanotube reinforced composite 

plates is given by 

(5 1) (5 5) (5 13) (13 56) (56 1){ }  [ ] [ ] [ ] { }e

x x x x xQ H B d   

Which discretized the carbon nanotubes reinforced composite plate in the “n” number of 

parts using an eight nodded isoperimetric serendipity biquadratic quadrilateral element. The 

shape function associated with the eight nodded isoperimetric serendipity biquadratic 

quadrilateral element is as follows: 
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                3.61 

  2

8 8

1
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2
N    

                3.62 

In the case of the trigonometric shear deformation theory based on secant function and 

inverse hyperbolic sine function, the total degrees of freedom increase from five to seven 

corresponding to each node after the addition of two new degrees of freedom. Thus further, 

the degree of freedom of the eight nodded isoperimetric serendipity biquadratic 

quadrilateral element goes to 56. Shape function and generalised nodal coordinates are used 

to transform the main variables associated with the problem. 

8
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k k

k

N


   Where, k is the node number             3.63 

3.9.1 Hamilton's principle 

The discretized governing equations of motion are derived in this section using Hamilton’s 

principle.  

          

                            3.64 

The energy stores in the carbon nanotubes reinforced composite plate due to different 

parameters are derived and discusses in detail. To derive the equations of motion with 

Hamilton's principle, the variation in the strain energy, work potential and kinetic energy 

are required to be discretized. 

3.9.1.1. Strain energy due to linear strains 

The discretized equation for the variation in the strain energy store in the system due to 

linear strains is expressed as follows: 
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Substituting the discretized strain-displacement relations and the stress-strain constitutive 

relations we get, 
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where, [K] is the global elastic stiffness matrix. The strain energy stored in the system due 

to linear strains is the algebraic sum of the energy stored in each node due to every degree 

of freedom. 

3.9.1.2. Strain energy due to non-linear strains 

The discretized equation for the variation in the strain energy stored in the system due to 

non-linear strains is due to the geometry, in plane normal force, and in plane shear force. 
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Substituting the discretized strain-displacement relations and the stress-strain constitutive 

relations we get, 
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where, [Knl] is the global geometric stiffness matrix.  
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The inplane normal forces (Sxx and Syy) and inplane shear forces (Sxy) are represented in the 

term of single inplane normal force with different constant values. 
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3.9.1.3. The variation in the strain energy of the elastic foundation 
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EF EF EFU dx dy   
             3.72

 

Where, 

(e){W } [B ]{q }EF EF
                 3.73

 

Where, the element of [BEF] is as follow 

0 0 0 0 0

[B ] 0 0 0 0 0

0 0 0 0 0

i

i
EF

i

N

N
x

N
y

 
 
 

  
 

 
                 3.74

 

The variation in the strain energy of the elastic foundation can be finally obtained as 

   
(e) (e)

(e) (e) (e) (e) (e)

0 0

({ W } {K }{W })

I b
T

EF T

EF EF EFU q dx dy q   
 

  
 
 
 

                      3.75 

And in the global form, 

   
(e)(e) (e) (F) (e)

T
EFU q K q   

                         3.76
 

3.9.1.4. Kinetic energy stored in carbon nanotubes reinforced composite plate 

The kinetic energy stored for the kth layer in the carbon nanotube reinforced composite 

plate.  
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1

1
{ } [ ]{ }

2

n
T

k k k

k

T q M q


 
                        3.77a 

And in the global form, the total kinetic stored is  

1
{ } [ ]{ }

2

TT q M q
                          3.77b 

where, [M] is the global mass matrix. The kinetic energy stored in the system due to inertia 

is the algebraic sum of the function of inertia at each node. 

3.9.1.5. Work done by the applied transverse load 

1

n

k

k

W W



                  3.78 

where,

 

( , )kW p x y wdxdy                                    3.79 

where,
 

( , ) { } { }k kp x y wdxdy f q                 3.80
 

1

{ } { } { }{ }
n

k k

k

f q F q



                3.81

 

 0{ } 0 0 0 0 0 0F p
               3.82

 

where, p0 is the transverse load applied on the system. 

3.9.1.6. Strain energy stored due to artificial constraints 

Finally, all the discretized equations required for deriving the governing equations of 

motion using Hamilton’s principle are derived. We are now only left with the satisfaction 

of the constraint equations using the penalty approach. In the penalty approach, a penalty 
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function is created with the constraint equations and added to the total potential energy of 

an element. The strain energy stored due to the artificial constraints which are imposed on 

the system in order to make the problem mathematically economical and the C1 continuity 

is changed to the C0 continuity by imposing the new degrees of freedom to the system.  The   

penalty parameter “γ” is considered as 106. The strain energy stored due to artificial 

constraints is as follow: 

0 0 0 0

12

TTn

C x x y y

k k k k k

w w w w
U dxdydz

x x y y


   



          
            

           


         3.69 

And in the global form, 

{ } [ ]{ }
2

T

C CU q K q



                 3.70 

where, [KC] is the global stiffness matrix due to  artificial constraints 

3.9.2 Governing equations 

The governing equation for the bending, free vibration, and buckling analysis of carbon 

nanotubes reinforced composite plate resting on elastic foundation is develop using the 

Hamilton’s principle. The equation consists of different terms which are required to 

develop the governing equation for the structural analysis of the plate. 

(e)

0 0 0 0

{ } { } { } { } 2

0      
{ } { }

TTEF

nl

x x y y

k k k k k k k k

k k

U w w w wU U
dxdydz

q q q q x x y y

W T

q q


    

               
                                 

 
  
 


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        3.83 

By incorporating the corresponding values, we get  

[[ ] [ ]]{ } [ ] [ ]{ } { }c GK K q K M q F                   3.84 

For the static analysis of carbon nanotubes reinforced composite plate resting on elastic 

foundation the Eq. (3.84) is transformed to Eq. (3.85) by neglecting the global geometrical 

stiffness matrix, global mass matrix and the inertia. The force vectors are also not time-

dependent. The governing equations describing the bending responses of carbon nanotubes 

reinforced composite plate resting on elastic foundation is as follows: 

[[ ] [ ]]{ } { }cK K q F                 3.85 

For the free vibration analysis of carbon nanotubes reinforced composite plate the Eq. 

(3.34) is transformed to Eq. (3.86) by neglecting the global stiffness matrix and force 

vector. The equation for the free vibration analysis of carbon nanotubes reinforced 

composite plate is as follow: 

[ ]{ } [ ]{ } 0K q M q                 3.86 

For the buckling analysis of carbon nanotubes reinforced composite plate the Eq. (3.84) is 

transformed to Eq. (3.87) by neglecting the global mass stiffness matrix. The equation for 

the buckling analysis of carbon nanotubes reinforced composite plate is as follow: 

    [ ] [ ] 0iK G  
             3.87

 

Eq. (3.85-3.87) cannot be solved now as the stiffness matrix is invertible due to the non-

availability of the constraint conditions. The constraint conditions or the boundary 

conditions are required to be imposed on the system to remove the rigid-body motion 

which makes the matrices invertible. The boundary conditions of the problem are presented 

as follows for Simply-Supported boundary condition 
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For boundaries parallel to y axis, x = 0, l 

v = w = βy = θy = 0  

For boundaries parallel to x axis, y = 0, b 

u = w = βx = θx = 0 

After imposing the boundary conditions in Eq. 3.85, it is solved for the unknown field 

variables. The stresses and strains are then calculated with the results of the field variables 

at any desired location in the plate. The stresses are first evaluated at the gauss points and 

then extrapolated to the nodes with extrapolation functions (Cook et al., 2007). The nodes 

are shared by the adjacent elements in a FE mesh and the stresses at the common node from 

the adjacent element are not the same. Therefore, a nodal averaging technique is applied to 

get an average value of the stresses from the adjacent elements at the common nodes. 

Similarly, after imposing the boundary conditions, Eq. 3.86 is solved as an individual 

eigen-value problem in which the eigen-values denote the natural frequencies and the eigen 

vectors denote the mode shape of the vibration. Similarly, after imposing the boundary 

conditions, Eq. 3.87 is solved as an eigen-value problem in which the eigen-values denote 

the critical buckling load and the eigen vectors denote the mode shape of the buckling. 

3.10 Material properties 

The material properties used in the CNTRC plate and sandwich plates are listed in the 

tabular form. Different distributions of CNTs are considered for the analyses which are 

mentioned in Table 3.1 and Table 3.2. The material properties are discussed in the Table 

3.3. The efficiency parameter ηi (where i=1, 2 and 3) for PMMA and PmVA (M1) for 

different volume fraction of CNTs which are given in Table 3.4 and Table 3.5 respectively. 
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The stacking sequences considered for the carbon nanotube reinforced sandwich plate is 

given in Table 3.6. 

Table 3.1: Distribution relationship for volume fraction of CNTRC plates. 

Distribution type Distribution relationship 

UD CNTRC plate *

CNT CNTV V  

FG-V CNTRC plate 
*2

1CNT CNT

z
V V

h

 
  
 

 

FG-O CNTRC plate 
*2

2 1CNT CNT

z
V V

h

 
  

 

 

FG-X CNTRC plate 
*

2
2CNT CNT

z
V V

h

 
  

 

 

 

Table 3.2: Distribution relationship for volume fraction of CNTs in carbon nanotube 

reinforced sandwich plate. 

Distribution type Distribution relationship 

UD CNTRC plate 
*

CNT CNTV V  

FG-T CNTRC plate 
*1

1 0

2CNT CNT

z z
V V

z z

 
  

 

 

FG-B CNTRC plate 
*2

3 2

2CNT CNT

z z
V V

z z

 
  

 

 

FG-V-C CNTRC plate 
*2 1CNT CNT

z
V V

h

 
  

 

 

FG-V CNTRC plate 
*2

1
2

k k

t b
CNT CNTk

z z
V z V

h

  
    

  

 

FG-/\ CNTRC plate 
*2

1
2

k k

t b
CNT CNTk

z z
V z V

h

  
    

  

 

FG-X CNTRC plate 
*4

2

k k

t b
CNT CNTk

z z
V z V

h

 
  
 

 

FG-O CNTRC plate 
*2

2 1
2

k k

t b
CNT CNTk

z z
V z V

h

 
   

 

 

 

Table 3.3: Material properties used for CNTRC plates. 

Material E1 (GPa) E2= E3(GPa) G12=G12=G12(GPa) υ12= υ23= υ13 ρ(Kg/m3) 

CNTs 5646.6 7080 1944.5 0.175 1400 

PmPV(M2) 2.1 2.1 0.7835 0.34 1150 

PMMA(M1) 2.5 2.5 0.7835 0.34 1150 

T 105.7 105.7 40.97 0.29 4429 



 

 

 
 

100 
 

Table 3.4: CNT efficiency parameter which is affiliated to 
*

CNTV  for PMMA (M1)/CNT. 

*

CNTV
 

η1 η2 η3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.381 

0.28 0.141 1.585 1.109 

Table 3.5: CNT efficiency parameter which is affiliated to 
*

CNTV
 
for PmPV (M2)/CNT. 

*

CNTV
 

η1 η2 η3 

0.11 0.149 0.934 0.934 

0.14 0.150 0.941 0.941 

0.17 0.149 1.381 1.381 

Table 3.6: Selected stacking sequences 

Laminate Normalized thickness Lamina materials Orientation 

L1 0.25/0.5/0.25 FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L2 0.1667/0.6667/0.1667 FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L3 0.125/0.75/0.125 FG(M1/CNT)/T/ FG(M1/CNT) (0/Core/0) 

L4 0.25/0.5/0.25 UD(M2/CNT)/M2/ UD(M2/CNT) (0/Core/0) 

L5 0.25/0.5/0.25 FG(M2/CNT)/M2/ FG(M2/CNT) (0/Core/0) 

L6 0.25/0.5/0. 25 M2/UD(M2/CNT)/M2 (0/Core/0) 

L7 0.25/0.5/0. 25 M2/FG(M2/CNT)/M2 (0/Core/0) 

 

3.11. Non-dimensional parameter  

The various non-dimensional parameters used for presenting the results are given below: 
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3.12. Summary  

The goal of this chapter is to present the steps required for developing an analytical 

model and a FE model for the structural responses of functionally graded carbon nanotube 

reinforced composite and sandwich plate resting on a Pasternak elastic foundation in the 

framework of non-polynomial shear deformation theories based on secant function and 
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inverse hyperbolic sine function. The elastic soil is modelled using the Pasternak’s 

foundation model. In trigonometric shear deformation theory, the 3D displacements are 

expressed in terms of 2D deformation modes defined at the midplane and non-polynomial 

mathematical functions that are defined globally for the overall thickness of the plates like 

the ESL models. The non-polynomial higher order shear deformation theory based upon 

different non-polynomial trigonometric function is used for modelling the in-plane and 

transverse displacements of any point inside the plate. The non-polynomial trigonometric 

shear deformation theories used here contains non-polynomial shear strain functions such 

as “inverse hyperbolic sine function” and “secant function” to introduce the non-linearity of 

transverse shear stresses through thickness at the cost of less number of field variables with 

respect to the higher order shear deformation theories available in the literature which are 

generally of polynomial nature. First order shear deformation theory does not have the 

required deformation modes to model thick carbon nanotube reinforced sandwich plates 

and is usually preferred to study the thin ones where shear deformation is not dominant. 

While the higher-order deformation modes (membrane and bending) are present in the 

polynomial based higher order shear deformation theories, yet their inclusion is only 

possible with a large number of higher-order terms which increases computational costs. In 

non-polynomial shear deformation theories, the non-linearity of shear deformation is 

accommodated with the aid of a single non-polynomial function “secant function” and 

“inverse hyperbolic sine function” in the kinematic field. Hence, efficient results are 

obtained at the cost of lesser computational efforts. Next, the trigonometric shear 

deformation theory inherently satisfied the traction free conditions of transverse shear 

stresses at the top and bottom surfaces of the plate while in most of the polynomial based 



 

 

 
 

102 
 

higher order shear deformation theory, this condition are generally not taken into 

consideration and in some cases, these conditions are artificially enforced. The assumptions 

made in the formulations along with the basic equations like the kinematic field, strain-

displacement relations, reaction-deflection relationship of the foundation model and the 

stress-strain constitutive model for functionally graded carbon nanotube reinforced 

composite and sandwich plate resting on a Pasternak elastic foundation which form the 

basis of the present formulation are presented. Hamilton’s principle is employed to form 

the governing equations and the solutions of the equations are carried out using Navier-

based analytical method and FEM. Three classes of problems are mainly discussed like the 

bending, free vibration and buckling analysis for functionally graded carbon nanotube 

reinforced composite and sandwich plate resting on a Pasternak elastic foundation. A 

detailed discussion on the development of the governing equations for the above-mentioned 

problems and the solution strategies in the form of closed-form analytical and FE solutions 

is presented. 
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