Contents | Front matter | i | |---|--------------| | Title Page | ii | | Certificate | iii | | Declaration by the Candidate | iv | | Copyright Transfer certificate | \mathbf{v} | | Acknowledgements | vi | | Abstract | vii | | Contents | viii | | List of Figures | xii | | List of Tables | xiv | | List of Symbols | xvi | | Abbreviations | xviii | | 1. Introduction | | | 1.1 Overview 1.2 Composite and sandwich plates 1.3 Carbon nanotube 1.3.1. Carbon nanotube reinforced composite plate 1.3.2. Distribution of CNTs in CNTRC plate 1.4 CNTs reinforced composite plate resting on a Pasternak's elastic foundation 1.5 Method used to analyze the behavior of CNTs reinforced composite plate 1.5.1. Analytical method used for analysis of CNTRC plate 1.5.2. Numerical method used for analysis of CNTRC plate 1.6 Solution Schemes for governing differential equation of CNTRC plate 1.7. Organization of thesis | | | 2. Literature review | | | 2.1. Introduction 2.2. Development of CNTs 2.2.1. The mechanical behavior of carbon nanotube reinforced composites plates 2.2.2. Structural responses of CNTRC composite and sandwich plate 2.2.3. Theories used for the analysis of carbon nanotube reinforced | 30 | | | composite structure | | |---------|---|----| | | 2.2.4. Computational modelling techniques for the analysis of carbon | 35 | | | nanotube reinforced composite structure | | | | 2.2.5. Carbon nanotube reinforced composite structure resting on the | 36 | | | elastic foundation | | | 2.3. | Development of plate theory | 39 | | | 2.3.1. Elasticity Solutions (3 D) | 41 | | | 2.3.2. Modeling of plates using Plate Theories | 42 | | | 2.3.2.1. Plate theories | 43 | | | 2.3.2.2. Classical Plate theory | 44 | | | 2.3.2.3. First Order Shear Deformation theory | 46 | | | 2.3.2.4. Higher-Order Shear Deformation theories | 46 | | | 2.3.3. Extension of the plate theories for the modelling of multi-layered | 50 | | | structures | | | | 2.3.3.1 Equivalent Single Layer (ESL) Approach | 50 | | | 2.3.3.2. Layer wise (LW) approach | 50 | | | 2.3.3.3. Zigzag (ZZ) Approach | 51 | | 2.4 | Solution Schemes | 51 | | 2.5 | Critical Observation from Literature Review | 54 | | 2.6 | Motivation and Literature Gap | 54 | | 2.7 | Objectives and Scope of the Present Work | 57 | | 2.8 | Summary | 59 | | 3. Math | nematical Formulation | | | | · · · · · · · · · · · · · · · · · · · | | | 3.1 | Introduction | 61 | | 3.2 | Basic Assumptions | 63 | | 3.3 | Properties of carbon nanotube reinforced composite plate | 65 | | 3.4 | Stress-Strain Constitutive Relations | 66 | | 3.5 | Strain displacement relationships | 67 | | 3.6 | Plates on elastic foundation | 68 | | 3.7 | Displacement field | 69 | | 3.8 | Analytical Formulation | 72 | | | 3.8.1. Equations of motion | 73 | | | 3.8.2. Navier's Solution Methodology | 79 | | | 3.8.2.1. Solution of differential equation for bending analysis | 82 | | | 3.8.2.2. Solution of differential equation for free vibration | 83 | | | 3.8.2.3. Buckling analysis | 85 | | 3.9 | Finite Element (FE) Formulation | 86 | | | 3.9.1 Hamilton's principle | 91 | | | 3.9.1.1. Strain energy due to linear strains | 91 | | | 3.9.1.2. Strain energy due to non-linear strains | 92 | | | 3.9.1.3. The variation in the strain energy of the elastic foundation | 94 | | | 3.9.1.4. Kinetic energy store in carbon nanotubes reinforced | 94 | | | composite plate | | | | 3.9.1.5. Work done by the applied transverse load | 95 | | | 3.9.1.6. Strain energy store due to artificial constraints | 95 | | | 3.10
3.11
2.12 | 3.9.2 Governing equations Material properties Non-dimensional parameter | 96
98
100 | |----|----------------------|---|-----------------| | | 3.12 | Summary | 100 | | 4. | Result | and Discussion | | | | 4.1 | Introduction | 103 | | | 4.2 | Structural analysis of the carbon nanotube reinforced composite plates | 106 | | | | 4.2.1 Bending analysis of the carbon nanotube reinforced composite plates | 107 | | | | 4.2.1.1. Non-dimensional transverse deflection of the carbon nanotube reinforced composite plate | 110 | | | | 4.2.1.1.1. Non-dimensional transverse deflection of the carbon nanotube reinforced composite plate under uniformly distributed load | 111 | | | | 4.2.1.1.2. Non-dimensional transverse deflection of the carbon nanotube reinforced composite plate under sinusoidal load | 112 | | | | 4.2.1.2. Non-dimensional stress analysis of the carbon nanotube | 112 | | | | reinforced composite plate 4.2.1.2.1 Non-dimensional normal stress distribution of carbon nanotube reinforced composite plate | 114 | | | | 4.2.1.2.2. Non-dimensional in plane shear stress distribution of carbon nanotube reinforced composite plate | 121 | | | | 4.2.1.2.3. Non-dimensional transverse shear stress distribution of carbon nanotube reinforced composite | 123 | | | | plate 4.2.2. Free Vibration analysis of carbon nanotube reinforced | 126 | | | | composite plate 4.2.3. Buckling analysis of carbon nanotube reinforced composite | 132 | | | | plate 4.2.3.1. Buckling analysis of the carbon nanotube reinforced | 134 | | | | composite plate under uni-axial compressive load | 134 | | | | 4.2.3.2. Buckling analysis of the carbon nanotube reinforced composite plate under bi-axial compressive load | 138 | | | 4.3. | Structural analysis of the carbon nanotube reinforced sandwich plate | 141 | | | | 4.3.1. Bending analysis of the carbon nanotube reinforced sandwich | 144 | | | | plate 4.3.1.1. Transverse and in plane deflection of the carbon nanotube reinforced sandwich plate | 144 | | | | 4.3.1.2. Normal stress analysis of the carbon nanotube | 151 | | | | reinforced sandwich plate 4.3.1.3. Non-dimensional transverse shear stresses of the carbon | 156 | | | nanotube reinforced sandwich plate | | |------------|--|------------| | | 4.3.2. Free vibration analysis of carbon nanotube reinforced sandwich plate | 157 | | 4.4. | Structural analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation | 160 | | | 4.4.1. Bending analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation | 160 | | | 4.4.1.1. Transverse deflection of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation | 161 | | | 4.4.1.2. Non-dimensional stress analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation | 165 | | | 4.4.2. Free vibration analysis of functionally graded Carbon nanotube reinforced composite plates resting on Pasternak elastic foundation | 171 | | | 4.4.3. Buckling analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation | 173 | | | 4.4.3.1. Buckling analysis of uni-axially loaded functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation | 173 | | | 4.4.3.2. Buckling analysis of bi-axially loaded functionally graded Carbon nanotube reinforced composite plates resting on Pasternak elastic foundation | 178 | | | 4.5. Closure | 183 | | 5. Concl | usions | | | 5.1
5.2 | Concluding Remarks Contribution of the thesis | 185
188 | | 5.3 | Scope for Future Research | 189 | | Referen | References | | | Appendix | | | | About tl | About the Author | |