Structural Analysis of Functionally Graded Carbon Nanotube Reinforced Composite Plates

Surya Dev Singh

Structural Analysis of Functionally Graded Carbon Nanotube Reinforced Composite Plates

A thesis submitted in partial fulfillment for the Award of Degree Doctor of Philosophy

> By Surya Dev Singh

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI - 221005

18061511

2023

"I would like to dedicate this thesis to my Parents, who instilled in me the virtue of perseverance and commitment, and relentlessly encouraged me to strive for excellence..."

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Structural Analysis of Functionally Graded Carbon Nanotube Reinforced Composite Plates

Name of the Student: Surya Dev Singh

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date: 19/06/2023

Place: Varanasi

Surva Dev Singh

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

CERTIFICATE

It is certified that the work contained in the thesis titled "Structural Analysis of Functionally Graded Carbon Nanotube Reinforced Composite Plates" by Mr. Surya Dev Singh has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Signature: Supervisor

Dr Rosalin Sahoo

Assistant Professor Department of Civil Engineering IIT (BHU), Varanasi

Supervisor Department of Civil Eugineering Indian Institute of Technology(BHU) Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Surya Dev Singh, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. Rosalin Sahoo from January 2019 to June 2023 at the Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 01/06/2023

Place Varanasi

Surry dev sing urya Dov Sin-

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Supervisor

Dr Rosalin Sahoo Assistant Professor Department of Civil Engineering IIT (BHU), Varanasi

Supervisor Department of Civil Engineering Indian Institute of Technology,(BHU) Varanasi-221005

9.06.202

Signature of Head of Department विभागाध्यस/HEAD जानपद अभिबांत्रिकी विभाग Department of Civil Engineering भारतीय प्रौद्योगिकी संरयान (जी.एब.बू.) Indian Institute of Technology, (BHU) वाराणसी-221005/Varanasi-221005

Acknowledgements

I would like to express my deepest gratitude to my Ph.D. supervisor **Dr. Rosalin Sahoo**, Assistant Professor in the Department of Civil Engineering at Indian Institute of Technology BHU (Varanasi) for her invaluable guidance, encouragement, motivation, and support throughout this research work. Despite her busy schedule, she has always managed to devote her time to discussions, regularly monitoring my thesis progress, and in preparation of the manuscripts for publications. Her enthusiasm, sublime work ethic, and optimistic attitude towards research and life have inspired me a lot during my Ph.D. tenure. I am also extremely thankful to my doctoral committee members, Dr. Pabitra Ranjan Maiti, Associate Professor in the Department of Civil Engineering, and Dr. Nilanjan Mallik, Associate Professor in the Department of Mechanical Engineering for their valuable suggestions, feedback, and critical assessment at various stages of my work. Their suggestions have helped me a lot to expand my research area and also to give a better shape to my thesis. My sincere gratitude also goes to the Head of the Department of Civil Engineering, Professor **Prof. S. Mandal** for providing all the valuable resources that were required for the successful completion of my research work. It is truly an honour for me to thank all the faculty members of the Department of Civil Engineering at the Indian Institute of Technology BHU (Varanasi) for giving me an excellent opportunity to pursue my Doctoral degree.

I am also thankful to the **Ministry of Human Resource and Development** (**MHRD**), Government of India for providing me financial support during my Ph.D. tenure at IIT BHU (Varanasi).

I feel deep appreciation and love for my parents, **Mr. Shishir Kumar Singh** and **Mrs. Ruma Devi**, for your endless support. You have always stood behind me, and this was no exception. Mummy, thank you for your motivation. Papa, thank you for all of your love and for revealing the values of life. Thank you to my sister and brother-in-law, **Mrs. Suman Singh** and **Mr. Ajay Vikaram Singh**, for always being there for me and for telling me that I am awesome even when I didn't feel that way. Thank you to **Master Aanjaneya Singh**, for your overwhelming generosity and for taking me in as one of your own.

Last but not the least; I would like to thank my seniors, friends and juniors who supported me unconditionally during my doctoral research.

Abstract

Carbon nanotubes (CNTs) are cutting-edge materials that offer great mechanical features like high strength, high stiffness, and high durability. As a result of these exceptional qualities, CNTs have been widely used as a reinforcing material. The mechanical characteristics of carbon nanotube reinforced composites (CNTRC) depend on a number of factors, including volume fraction of CNTs, orientation, matrix's characteristics, loading conditions, and side-tothickness ratio. It is necessary to understand the complex behaviour of the interaction between the soil and the structure, which goes hand in hand with the structural investigation of these materials. Hence, in this work, an effective analytical and finite element (FE) model is developed in this work to investigate the structural behaviour of a CNTRC plate resting on Pasternak's elastic foundation, which includes bending, free vibration, and buckling analysis, within the context of various non-polynomial shear deformation theories based on secant function and inverse hyperbolic sine function. Further, in this work, different types of carbon nanotube reinforced distributions and stacking sequences are also considered. Here, an optimal configuration for the functionally graded CNTRC plate is sought out in order to achieve precise static, buckling, and free vibration responses. The analytical and FE techniques are used in order to carry out a detailed parametric study of functionally graded CNTRC plates with a wide range of material characteristics, stacking configurations, span thickness ratios, core to face sheet thickness ratios, and loading conditions. The FE based results in the form of deflection, stresses, natural frequency and buckling loads are obtained using in house generalized MATLAB code. In order to develop an improved comprehension of carbon nanotubes as a structural material, some new results are also been obtained.

Keywords: Non-polynomial shear deformation theory; Analytical method; Finite Element method; Composites plate; Sandwich structure; Elastic foundation

Contents

Front ma	itter	i
Title Page		ii
Certifica	te	iii
Declarat	ion by the Candidate	iv
Copyrig	nt Transfer certificate	v
Acknow	ledgements	vi
Abstract		vii
Contents	5	viii
List of F	igures	xii
List of T	ables	xiv
List of S	vmbols	xvi
Abbrevi	ations	xviii
1. Intro	luction	
1 1		1
1.1	Overview Composite and sandwich plates	1
1.2	Carbon panotube	1 /
1.5	1.3.1 Carbon nanotube rainforced composite plate	12
	1.3.2. Distribution of CNTs in CNTPC plate	12
1 /	CNTs reinforced composite plate resting on a Pasternale's election	20
1.4	foundation	20
1.5	Method used to analyze the behavior of CNTs reinforced composite plate	21
	1.5.1. Analytical method used for analysis of CNTRC plate	21
	1.5.2. Numerical method used for analysis of CNTRC plate	22
1.6	Solution Schemes for governing differential equation of CNTRC plate	23
1.7.	Organization of thesis	24
2. Litera	iture review	
21	Introduction	77
2.1. 2.2	Development of CNTs	27
۷.۷.	2.2.1 The machanical behavior of carbon nanotube rainforced	21 20
	composites plates	20

2.2.2. Structural responses of CNTRC composite and sandwich plate302.2.3. Theories used for the analysis of carbon nanotube reinforced32

composite structure 2.2.4. Computational modelling techniques for the analysis of carbon 35 nanotube reinforced composite structure 2.2.5. Carbon nanotube reinforced composite structure resting on the 36 elastic foundation 2.3. Development of plate theory 39 2.3.1. Elasticity Solutions (3 D) 41 2.3.2. Modeling of plates using Plate Theories 42 2.3.2.1. Plate theories 43 44 2.3.2.2. Classical Plate theory 2.3.2.3. First Order Shear Deformation theory 46 2.3.2.4. Higher-Order Shear Deformation theories 46 2.3.3. Extension of the plate theories for the modelling of multi-layered 50 structures 2.3.3.1 Equivalent Single Layer (ESL) Approach 50 2.3.3.2. Layer wise (LW) approach 50 2.3.3.3. Zigzag (ZZ) Approach 51 2.4 **Solution Schemes** 51 Critical Observation from Literature Review 2.5 54 Motivation and Literature Gap 54 2.6 2.7 Objectives and Scope of the Present Work 57 2.8 Summary 59

3. Mathematical Formulation

3.1	Introduction	61
3.2	Basic Assumptions	63
3.3	Properties of carbon nanotube reinforced composite plate	65
3.4	Stress-Strain Constitutive Relations	66
3.5	Strain displacement relationships	67
3.6	Plates on elastic foundation	68
3.7	Displacement field	69
3.8	Analytical Formulation	72
	3.8.1. Equations of motion	73
	3.8.2. Navier's Solution Methodology	79
	3.8.2.1. Solution of differential equation for bending analysis	82
	3.8.2.2. Solution of differential equation for free vibration	83
	3.8.2.3. Buckling analysis	85
3.9	Finite Element (FE) Formulation	86
	3.9.1 Hamilton's principle	91
	3.9.1.1. Strain energy due to linear strains	91
	3.9.1.2. Strain energy due to non-linear strains	92
	3.9.1.3. The variation in the strain energy of the elastic foundation	94
	3.9.1.4. Kinetic energy store in carbon nanotubes reinforced	94
	composite plate	05
	3.9.1.5. work done by the applied transverse load	95
	3.9.1.6. Strain energy store due to artificial constraints	95

	3.10	3.9.2 Governing equations Material properties	96 98
	3.11	Non-dimensional parameter	100
	3.12	Summary	100
4.]	Result	and Discussion	
	4.1	Introduction	103
	4.2	Structural analysis of the carbon nanotube reinforced composite plates	106
		4.2.1 Bending analysis of the carbon nanotube reinforced composite plates	107
		4.2.1.1. Non-dimensional transverse deflection of the carbon nanotube reinforced composite plate	110
		4.2.1.1.1. Non-dimensional transverse deflection of the carbon nanotube reinforced composite plate under uniformly distributed load	111
		4.2.1.1.2. Non-dimensional transverse deflection of the carbon nanotube reinforced composite plate under sinusoidal load	112
		4.2.1.2. Non-dimensional stress analysis of the carbon nanotube reinforced composite plate	112
		4.2.1.2.1 Non-dimensional normal stress distribution of carbon nanotube reinforced composite plate	114
		4.2.1.2.2. Non-dimensional in plane shear stress distribution of carbon nanotube reinforced composite plate	121
		4.2.1.2.3. Non-dimensional transverse shear stress distribution of carbon nanotube reinforced composite plate	123
		4.2.2. Free Vibration analysis of carbon nanotube reinforced	126
		4.2.3. Buckling analysis of carbon nanotube reinforced composite plate	132
		4.2.3.1. Buckling analysis of the carbon nanotube reinforced composite plate under uni-axial compressive load	134
		4.2.3.2. Buckling analysis of the carbon nanotube reinforced composite plate under bi-axial compressive load	138
	4.3.	Structural analysis of the carbon nanotube reinforced sandwich plate	141
		4.3.1. Bending analysis of the carbon nanotube reinforced sandwich plate	144
		4.3.1.1. Transverse and in plane deflection of the carbon nanotube reinforced sandwich plate	144
		4.3.1.2. Normal stress analysis of the carbon nanotube reinforced sandwich plate 4.3.1.3. Non-dimensional transverse shear stresses of the carbon	151 156
			100

otub wich mlat inf J 4.

nanotube reinforced sandwich plate	
4.3.2. Free vibration analysis of carbon nanotube reinforced sandwich	157
plate	1.60
4.4. Structural analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation	160
4.4.1. Bending analysis of functionally graded carbon nanotube	160
reinforced composite plates resting on Pasternak's elastic foundation	
4.4.1.1. Transverse deflection of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's	161
elastic foundation	
4.4.1.2. Non-dimensional stress analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation	165
4.4.2 Error vibration analysis of functionally anded Carbon nonetybe	171
reinforced composite plates resting on Pasternak elastic foundation	1/1
4.4.3. Buckling analysis of functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation	173
4.4.3.1. Buckling analysis of uni-axially loaded functionally graded carbon nanotube reinforced composite plates resting on Pasternak's elastic foundation	173
4.4.3.2. Buckling analysis of bi-axially loaded functionally graded Carbon nanotube reinforced composite plates resting on Pasternak elastic foundation	178
A 5 Closure	183
	105
5. Conclusions	

5.1 Concluding Remarks		185
5.2	Contribution of the thesis	188
5.3 Scope for Future Research		189
Referen	nces	191
Appendix		219
About the Author		222

List of Figures

Figure Number	Caption	Page Number
Figure 1.1.	(a) FG-O CNTRC plate. (b) FG-V CNTRC plate. (c) FG-X CNTRC plate	19
Figure 3.1.	Coordinate system (a) CNTRC plate cross section (b) ' x ' and ' y ' are in plane and ' z ' is along the thickness direction	64
Figure 3.2	The CNTRC plate resting on the Pasternak's elastic foundation	69
Figure 4.1.	Convergence of the FE solutions for (a) non-dimensional transverse deflection, (b) non-dimensional normal stresses, (c) non-dimensional in plane shear stress, (d) non-dimensional transverse shear stresses ($S=10$)	110
Figure 4.2.	Variation of non-dimensional axial stresses (σ_{xx}) with normalized thickness	120
Figure 4.3.	Variation of non-dimensional axial stresses (σ_{xx}) with different span thickness ratio	120
Figure 4.4.	Variation of non-dimensional transverse shear stresses (τ_{xz}) with normalized thickness	126
Figure 4.5.	Convergence of the FE solutions for non-dimensional natural frequency	129
Figure 4.6.	Free vibration mode shape of CNTRC plate. (a) 1^{st} Mode ($m = 1, n = 1$); (b) 2^{nd} Mode ($m = 1, n = 2$); (c) 3^{rd} Mode ($m = 1, n = 3$); (d) 4^{th} Mode ($m = 1, n = 4$); (e) 5^{th} Mode ($m = 2, n = 1$); (f) 6^{th} Mode ($m = 2, n = 2$)	131
Figure 4.7.	Convergence of the FE solutions for non-dimensional critical buckling load (S=10)	134
Figure 4.8.	The effect of variation of side to thickness ratio on non- dimensional critical buckling load under uni-axial loading ($\Psi_x =$ -1, $\Psi_y = 0$) condition	138
Figure 4.9.	First six buckling mode shapes carbon nanotube reinforced composite plate	141
Figure 4.10.	Coordinate system of a rectangular plate (a) x and y are in plane and z is along the thickness direction: (b) CNTRC plate cross section: (c) FG-CNTR sandwich plate of three layer in which h_t is the face sheet thickness h_c is the core thickness	143
Figure 4.11.	(a) Three layered sandwich plate with layer-1 and layer-3 is FG-CNTR plate and layer-2 is homogenous layer. (b) Layer-1 and layer-3 is homogenous layer and layer-2 is FG-CNTR plate	144
Figure 4.12.	Effect of span thickness ratio on non-dimensional transverse deflections for different volume fraction of CNTs	151
Figure 4.13.	Variation of non-dimensional axial stresses (σ_{xx}) with normalized thickness for different volume fraction of CNTs	153
Figure 4.14.	Variation of non-dimensional axial stresses (σ_{xx}) with normalized thickness for different core to face sheet thickness	155
Figure 4.15.	Variation of non-dimensional axial stresses with normalized	156

	thickness for different tropology sequences	
Figure 4.16.	The free vibration mode shape of FG-CNTR sandwich plate.	
	(a) 1^{st} Mode $(m = 1, n = 1)$; (b) 2^{nd} Mode $(m = 1, n = 2)$; (c) 3^{rd}	159
	Mode $(m = 2, n = 1)$; (d) 4 th Mode $(m = 2, n = 2)$; (e) 5 th Mode	107
	(m = 1, n = 3); (f) 6 th Mode $(m = 2, n = 3)$	
Figure 4.17.	Effect of side to thickness ratio on non-dimensional transverse	163
	deflection	105
Figure 4.18.	The effect of different spring constant factors on non-	163
	dimensional transverse deflection	
Figure 4.19.	The variation of non-dimensional axial stress (σ_{xx}) across the	
	thickness of CNTRC plate resting on the Pasternak elastic	169
	foundation for different distribution of CNTs	
Figure 4.20.	The variation of non-dimensional axial stress (σ_{xx}) across the	
	thickness of CNTRC plate resting on the Pasternak elastic	170
	foundation for FG-X CNTs distribution with different spring	170
	constant factors	
Figure 4.21.	The effect of variation of non-dimensional transverse shear	
	stress (τ_{yz}) across the thickness of CNTRC plate resting on the	171
	Pasternak elastic foundation for different distribution of CNTs	
Figure 4.22.	First six mode shapes of simply supported CNTRC plate	175
	resting on the Pasternak elastic foundation for free vibration	173
Figure 4.23.	Effect of different spring constant factors on non-dimensional	
-	critical buckling load under uni-axial loading (Ψ_x = -1, Ψ_y = 0)	179
	condition for different volume fraction of CNTs	
Figure 4.24.	First six mode shapes of simply supported CNTRC plate	100
-	resting on the Pasternak elastic foundation for buckling loads	182

List of Tables

Table Number	Caption	Page Number
Table 3.1	Distribution relationship for volume fraction of CNTRC plates	99
Table 3.2:	Distribution relationship for volume fraction of CNTs in carbon nanotube reinforced sandwich plate	99
Table 3.3:	Material properties used for CNTRC plates	99
Table 3.4:	CNT efficiency parameter which is affiliated to V_{CNT}^* for PMMA (M1)/CNT	100
Table 3.5:	CNT efficiency parameter which is affiliated to V_{CNT}^* for PmPV (M2)/CNT	100
Table 3.6:	Selected stacking sequences	100
Table 4.1:	Dimensionless transverse deflection of carbon nanotube reinforced composite plate subjected to uniformly distributed load	115
Table 4.2:	Dimensionless transverse deflection of carbon nanotube reinforced composite plate subjected to sinusoidal loading condition	117
Table 4.3:	Non-dimensional normal stresses (σ_{xx}) of carbon nanotube reinforced composite plate	118
Table 4.4:	In plane shear stresses (τ_{xy}) of carbon nanotube reinforced composite plate	122
Table 4.5:	Transverse shear stresses (τ_{xz}) of carbon nanotube reinforced composite plate	124
Table 4.6:	Non dimensional natural frequency of simply supported CNTRC plate	130
Table 4.7:	Non dimensional critical buckling load under uniaxial compressive load for simply supported square CNTRC plates	136
Table 4.8:	Non dimensional critical buckling load under bi-axial compressive load for simply supported square CNTRC plates	139
Table 4.9 (a):	Non-dimensional in-plane deflection of simply supported square FG-CNTR sandwich plate for L1 stacking sequences	149
Table 4.9 (b):	Non- dimensional transverse deflection of simply supported square FG-CNTR sandwich plate for L1 stacking sequences	149
Table 4.10:	Deflection of simply supported square sandwich plate for for L2 stacking sequence	150
Table 4.11:	Non dimensional transverse deflection \overline{w}_1 (<i>a</i> /2, <i>b</i> /2, <i>h</i> /2) for simply supported FG-CNTR sandwich plate subjected to the UDL for L4 and L5 stacking assures.	150
Table 4.12:	Non dimensional normal stress (σ_{xx}) of simply supported square EG-CNTR sandwich plate for L1 stacking sequences	154
Table 4.13:	Non dimensional transverse shear stress (τ_{xz}) of simply supported square FG-CNTR sandwich plate for L1 and L2 stacking sequences	154
Table 4.14:	Non dimensional fundamental frequency for simply supported	158

	FG-CNTR sandwich plate subjected to the UDL for L3 stacking	
	sequence	
Table 4.15:	Dimensionless deflection of CNTRC plate with and without	164
	elastic foundation	
Table 4.16	Non-dimensional stress for carbon nanotube reinforced composite	166
(a):	plate resting on elastic foundation using non-polynomial shear	
. ,	deformation theory based on the inverse hyperbolic sine function	
Table 4.16	Non-dimensional stress for carbon nanotube reinforced composite	167
(b):	plate resting on Pasternak's elastic foundation using non-	
	polynomial shear deformation theory based on the secant function	
Table 4.17:	Dimensionless natural frequency of CNTRC plate with and	177
	without elastic foundation	
Table 4.18	Dimensionless critical buckling load under uniaxial compressive	180
:	load ($\Psi_r = -1$, $\Psi_r = 0$) of CNTRC plate with and without elastic	
·	foundation	
Table 4.19:	Dimensionless critical buckling load under bi axial compressive	181
	load ($\Psi_x = -1$, $\Psi_y = -1$) of CNTRC plate with and without elastic	
	foundation	
-		

List of Symbols

х, у, г	Cartesian coordinate system
U, V, W	3D displacements in the global x , y and z - direction
и, v, w	Mid-plane displacement components in the x , y and z - direction
β_1, β_2	Rotation of the transverse normal to the mid-plane abouty and x-direction
<i>{σ}</i>	Stress vector in the global coordinate system
{3}	Strain vector in the global coordinate system
[Q]	Transformed reduced stiffness matrix
{ <i>σ</i> }	Stress vector in the material coordinate axis
{8}	Strain vector in the material coordinate axis
E_{11}, E_{22}	Young's Modulus in the longitudinal and transverse direction to the CNTs
	direction
G_{12}	In-plane shear modulus
G_{13}, G_{23}	Transverse shear modulus
β_w	Winkler stiffness of the foundation
β_s	Shear stiffness of the foundation
U	Strain energy of the carbon nanotube reinforced composite plate
U_F	Strain energy of the elastic foundation
W	Work potential of the applied loads
Κ	Kinetic energy of the carbon nanotube reinforced composite plate
E^m	Young's modulus of matrix
G^{m}	shear modulus of matrix
v^m	Poisson's ratio of matrix
V^m	volume fraction of matrix
v_{12}^{CNT}	Poisson's ratio of carbon nanotubes
V_{CNT}^*	volume fraction of carbon nanotubes added
E_{11}^{CNT}	Young's modulus of carbon nanotube in longitudinal direction
E_{22}^{CNT}	Young's modulus of carbon nanotube in lateral direction
G_{12}^{CNT}	shear modulus of carbon nanotube
$\mathbf{\rho}^m$	Density of matrix
ρ^{CNT}	Density of carbon nanotube
ρ	Density of carbon nanotube reinforced composite plate
V_{CNT}	volume fraction of carbon nanotubes
η	Efficiency paremeter
Ω	Ohm a constant
N ₁₁ , N ₁₂ , N ₂₂	In-plane stress resultants
M_{11}, M_{12}, M_{22}	Moment stress resultants
Q_1, Q_2	Transverse shear stress resultants
h	Overall thickness of the carbon nanotube reinforced composite plate
q	Mechanical pressure
$\overline{I}_0, \overline{I}_1, \overline{I}_2, \overline{I}_3, \overline{I}_4, \overline{I}_5,$	Inertia components
$\overline{I}_6, \overline{I}_7$	

 \overline{I}_0 ,

[A], [B], [C], [D], [G], [H], [I], [L],[M], [P]	Rigidity sub matrices relating the stress-resultants and derivatives of the primary variables
$\{\Delta\}$	Displacement vector
$\{\overline{F}_M\}$	Mechanical force vector
ω	Natural frequency of the plate
$[N_{\overline{\tau}}]$	Shape function matrix
[<i>m</i>]	Mass matrix
ζ, η	Natural coordinate system used in finite element
[H]	Matrix relating the strains and derivatives of the primaryvariables
[B]	Matrix relating the derivatives of the primary variables and the nodal coordinates
Pe	Penalty function
[K]	Elemental stiffness matrix of the carbon nanotube reinforced composite plate
$[K_{pe}]$	Elemental penalty stiffness matrix
$[K^{(F)}]$	Elemental stiffness matrix of the foundation
$\{F_M\}$	Elemental force vector
[M]	Elemental mass matrix
L	Lagrangian
$\{\overline{F}_M\}$	Global mechanical force vector
$[\overline{M}]$	Global mass matrix
$[\overline{K}]$	Global stiffness matrix of the carbon nanotube reinforced composite plate
$[\overline{K}^{(F)}]$	Global stiffness matrix of the foundation
$[\overline{\mathrm{K}}^{(\mathrm{pe})}]$	Global stiffness matrix containing the penalty terms

Abbreviations

3 D	Three Dimensional
2 D	Two Dimensional
CNTs	Carbon nanotubes
SWCNTs	Single walled carbon nanotubes
MWCNTs	Multi-walled Carbon nanotubes
CNTR	Carbon nanotube reinforced
CNTRC	Carbon nanotube reinforced composite
CLPT	Classical Laminated Plate Theory
CPT	Classical Plate Theory
FSDT	First Order Shear Deformation Theory
HSDT	Higher-Order Shear Deformation Theory
TSDT	Trigonometric Shear Deformation Theory
FRP	Fiber Reinforced Polymers
FGM	Functionally Graded Material
ESL	Equivalent Single Layer
LW	Layerwise
CVD	Chemical vapor deposition
HiPCO	High-pressure carbon monoxide
PECVD	Plasma enhanced chemical vapour deposition method
MPECVD	Microwave plasma chemical vapour deposition method
RF-CVD	Radiofrequency chemical vapour deposition method
HFCVD	Hot-filament chemical vapour deposition method
FCCVD	Floatingcatalyst chemical vapour deposition method
PmVA	{(mphenylenevinylene)-co-[(2, 5-dioctaxy-p-phenylene) viny-lene]}

- PHSDT Polynomial Higher-Order Shear Deformation Theory
- NPHSDT Non-Polynomial Higher-Order Shear Deformation Theory
- ODE Ordinary Differential Equation
- PDE Partial Differential Equation
- ROM Rule of Mixture
- FEM Finite Element Method
- XFEM Extended Finite Element Method
- FDM Finite Difference Method
- DSC Discrete Singular Convolution
- DQM Differential Quadrature Method
- EE Equilibrium Equations
- EKM Extended Kantorovich method
- SCF Shear-Correction Factor
- RHZZT Refined Higher-Order Zigzag Theory
- RFSDT Refined First Order Shear Deformation Theory
- BEM Boundary Element Method
- UDL Uniformly Distributed Load
- SSL Sinusoidal Load
- ND Non-Dimensional Parameter