TABLE OF CONTENTS

Chapter no.	Description	Page no.	
	Certificates		
	Declaration by the candidate		
	Copyright transfer certificate		
	Acknowledgements	i-ii	
	Table of Contents	iii-vi	
	List of Figures	vii-xi	
	List of Tables	xii	
	List of Abbreviations	xiii	
	Preface	xiv-xv	
Chapter 1	INTRODUCTION AND LITERATURE REVIEW	01-13	
	1.1 General	1	
	1.2 Problem statement	2	
	1.3 Application of Biopolymer in Geotechnical Engineering	5	
	1.4 Literature review	6	
	1.4.1 Soil consistency	6	
	1.4.2 Soil Strengthening	7	
	1.4.2.1 Unconfined compressive strength	7	
	1.4.2.2 Shear strength	8	
	1.4.3 Soil erosion control	9	
	1.4.4 Ground injection	10	
	1.4.5 Pavement and earth stabilization	11	
	1.4.6 Ground water control	11	
	1.4.7 Soil water retention	12	
	1.5 Scope and objective	13	

Chapter	2	MATERIALS AND METHODOLOGY	14-33
		2.1 Materials	14
		2.1.1 Bauxite residue	14
		2.1.2 Coal mine overburden waste (CMO)	16
		2.1.3 Biopolymer	17
		2.1.3.1 Xanthan gum	18
		2.1.3.2 Guar gum	18
		2.2 Testing methodology	20
		2.3 Detailed description of Testing Methodologies	21
		2.3.1 Specific gravity	21
		2.3.2 Grain size distribution	23
		2.3.2.1 Sieve analysis	23
		2.3.2.2 Hydrometer analysis	24
		2.3.3 Consistency limit	24
		2.3.3.1 Liquid limit	24
		2.3.3.2 Plastic limit	25
		2.3.4 Compaction	26
		2.3.5 Permeability test	26
		2.3.6 Strength study	27
		2.3.6.1 Triaxial compressive test	27
		2.3.6.2 Unconfined compressive strength	28
		2.3.6.3 Sample preparation for the strength test	28
		2.3.7 Durability test	29
		2.3.7.1 Freezing and thawing (F-T)	29
		2.3.8 Mineralogical and morphological analysis	31
		2.3.8.1 X-Ray diffraction	31
		2.3.8.2 Scanning Electron Microscopy (SEM)	33
Chapter	3	RESULTS AND DISCUSSION	34-97
		3.1 Compaction test	34

3.1.1 Effect of Biopolymer Stabilization on the Compaction			
Parameters of bauxite residue			
3.2 Strength study	42		
3.2.1 Effect of the biopolymer stabilization on Bauxite	43		
residue			
3.2.1.1 Triaxial compressive test	43		
3.2.1.2 Effect of biopolymer, biopolymer concentration and	50		
curing time on the UCS and stress-strain behavior			
3.2.2 Effect of the biopolymer stabilization on Coal mine	56		
overburden waste			
3.2.2.1 Triaxial compressive test	56		
3.2.2.2 Effect of biopolymer on unconfined compressive	63		
strength (UCS) of CMO waste			
3.3 Permeability test analysis	65		
3.3.1 Influence of biopolymer on permeability of bauxite	66		
residue			
3.3.2 Influence of biopolymer on permeability of Coal mine	68		
overburden waste			
3.4 Total carbohydrate method (TCM)	70		
3.4.1 Standard line for Biopolymer Solution	71		
3.4.2 Colorimeter analysis on bauxite residue	73		
3.4.3 Colorimeter analysis on Coal mine overburden waste	74		
3.5 Durability Study (Freezing and thawing test)	75		
3.5.1 Sample preparation using Thermo-gelation	76		
3.5.2 Sample preparation without Thermal treatment	77		
3.5.3 Effect of Thermo-gelation on Compressive Strength	77		
before F-T process			
3.5.4 Effect of biopolymer on freezing and thawing	80		
resistance			
3.5.5 Behavior of stabilized bauxite residue samples Post F-T	87		
cycles			

		3.6 Mineralogical and Morphological Study	92
		3.6.1 Mineralogical study (X-Ray diffraction)	92
		3.6.2 Morphological study (Scanning Electron Microscopy)	97
Chapter	4	APPLICATIONS OF BIOPOLYMERS IN CIVIL	98-106
		ENGINEERING	
		4.1 Application in civil engineering	99
		4.1.1 Flexibility of Biopolymer Stabilization for Road	99
		Shoulder Construction	
		4.1.2 Increasing soil bearing capacity for shallow foundation	100
		4.1.3 Slope surface stabilization	101
		4.1.4 Earth stabilization using biopolymer	103
		4.2 Economic Feasibility of Biopolymer for Soil/Waste	104
		Treatment	
Chapter	5	CONCLUSIONS AND FUTURE SCOPE	107-109
		5.1 Conclusions	107
		5.2 Scope of future work	109
		REFERENCES	110-122
		LIST OF PURLICATIONS	123