Effective utilization of recycled concrete aggregate (RCA) in the structural applications

Thesis submitted in partial fulfillment for the award of degree

Doctor of Philosophy

by

Rahul Singh

DEPARTMENT OF CIVIL ENGINEERING Indian Institute of Technology (Banaras Hindu University) Varanasi

Roll No: 15061015

Dedicated

To Rudhransh ("Vishu")

CERTIFICATE

It is certified that the work contained in the thesis titled **Effective utilization of recycled concrete aggregate (RCA) in the structural applications** by **Rahul Singh** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy, and State of the Art (SOTA) for the award of Ph.D. Degree.

flema Prof. Rajesh Kumar

(Supervisor Department of Civil Engineering Indian Institute of Technology,(BHU) Department2200 Civil Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi, India - 221005

DECLARATION

I, Rahul Singh, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of **Prof. Ra**jesh kumar from 21-July-2015 to 30-July-2022, at the Departement of Civil Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, thesis, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 1-08-2022 Place: Vahanasi

Rahult

(Rahul Singh)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

fler

Prof. Rajesh kumar

Supervisor Supervisor Department of Civil Engineering Indian Institute of Technology,(BHU) Varanasi-221005

01,08.202 Signature of Head of Department/Coordinator of School "SEAL OF THE DEPARTMENT/SCHOOL" जानपट अभियांत्रिकी विभाग Department of Civil Engineering भारतीय प्रौद्योगिकी संस्वान (वी.एम.ब.)

Indian Institute of Technology,(BHU) वाराणसी-221005/Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Effective utilization of recycled concrete aggregate (RCA) in the structural applications Name of Student: Rahul Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosphy.

Date:0/-08-2022 Place: Varanasi

Rahulsing

(Rahul Singh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Acknowledgments

First of all, I would want to begin by praising and thanking **Lord Shiva**, who has bestowed me with innumerable blessings, knowledge, and opportunities, allowing me to complete my thesis. Though, only my name appears on the cover of this dissertation, the success of this thesis rests heavily on the support and direction of many others. I owe my heartfelt gratitude to all those people who have made this thesis possible and because of whom my post graduate experience has been one that I will cherish forever.

I would like to take this opportunity to thank and appreciate my supervisor, **Prof. Rajesh Kumar**, Civil Engineering Department, IIT(BHU), Varanasi, for his exceptional guidance, monitoring, and constant encouragement throughout the course of this dissertation. I would like to express my deepest appreciation to **Prof. Rajesh Kumar** for his inspiration and helpful recommendations in completing my research work. I wish to extend my sincere gratitude towards my RPEC members, **Prof. Veerendra Kumar** as an internal expert and **Dr. Akhilesh Kumar Singh** as an external expert, for their help, valuable suggestions, and encouragement during the entire research work. I am grateful to my friend, **Mr. Dheeresh kumar Nayak** and **Dr. Arunabh Pandey**, who provided me with technical, moral, and emotional support during my research program.

I would also like to thank, Head, Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, for providing all the facilities related to my research work. I wish to express my deep regards to, **Prof. S. Mandal**, **Dr. P R. Maiti**, **Prof. K. K. Pathak**, **Dr. P. B. Ramudu** and **Dr. B. N. Singh** for their unconditional support at every moment during the progress of my research. I also extend my heartfelt regards to all the faculty members of the Civil Engineering Department.

I am also grateful to our laboratory staff, Mr. Sharda Prasad , Mr. Vinod Kumar, Mr. Ramashankar and Mr. Yashwant Singh, for the assistance extended by them from time to time during this research work. I would also like to thank Mr. **Suraj** for his constant assistance throughout my experimental work. I am grateful to all the office staff and authorities of the Department of Civil Engineering, for their kind help during the period of my stay to complete the thesis work.

I am thankful to my fellow friends Mr. Gaurav Pandey, Mr. Dhirendra Patel, Mr Vishal Singh, Mr. Krishna Parth Pandey, Mr Ravi kumar, Mr. Surya Prasad, Mr. Saurav Sarkar, and Mr. Gaurav Verma for the thought-provoking discussions, their support, cooperation and sincere help in many ways.

In particular, a very special gratitude goes out to some special persons, with special mention to Dr. Bablesh Kumar Jha, Mr. Manish Kumar Mandal, Dr. Shiwansu Shekhar, Dr. Satyajeet Mondal, Dr. Nitesh Gupta, Mr. Bhupendra Singh Rana, Mr. Anupam Singh, Mr Amandeep Singh, Mr. Rohit Mittal, Mr. Akash Asthana and Mr. Naresh Kumar for their constant encouragement, love and moral support.

It gives me great pleasure to share the credit for my research work with all of my teachers who have taught me at various stages of my academic career.

Last but not least, I will be eternally grateful to my entire family for their faith, patience, encouragement, blessings, and love. I am grateful to my father, **Mr. Manoj Kumar Singh**; mother, **Mrs. Rita Singh**; and sister **Mrs. Neha Singh Chauhan**, for motivating, believing in, and strengthening me to fly high. A special thanks to my special family for always holding my hand through the ups and downs.

Date: _____01-08-2022

Rahultingh Rahul Singh

Contents

Li	st of	Tables	xi
Li	st of	Figures	xiii
Pı	reface	e	xix
1	Intr	oduction	1
	1.1	General	1
	1.2	Background	2
	1.3	C&D waste management: (Global perspective)	4
	1.4	C&D waste management: (Indian perspective)	7
	1.5	Benefits of C&D waste recycling	10
	1.6	Recycling process of C&D waste	11
	1.7	Recycled concrete aggregates	12
	1.8	Research Objectives	13
	1.9	Thesis Outline	13
2	\mathbf{Lite}	erature Review	15
	2.1	General	15
	2.2	Physical properties of RCA	16
		2.2.1 Adhered Mortar	17
	2.3	Specific gravity	18
	2.4	Water absorption	23
	2.5	Mechanical properties of aggregate	25
	2.6	Enhancement treatments of RCA	26
		2.6.1 Fresh concrete properties of RCA-concrete	27

			2.6.1.1	$Mixture \ design \ \ \ldots $	28
			2.6.1.2	Workability and fresh concrete density	30
		2.6.2	Characte	eristics of hardened RCA-concrete	37
			2.6.2.1	Compressive strength	37
			2.6.2.2	Tensile and flexural strength	39
			2.6.2.3	Modulus of elasticity	40
			2.6.2.4	Durability of RCA-concrete	41
			2.6.2.5	Water absorption and permeability	41
			2.6.2.6	Carbonation	42
	2.7	Micro	structura	l Property	43
	2.8	Codal	provision	in other countries	44
	2.9	IS cod	e		45
	2.10	Resear	ch gap .		46
	2.11	Summ	ary		47
3	Mat	erials	and Met	chods	49
	3.1	Genera	al		49
	3.2	Materi	al Selecti	on	50
		3.2.1	Cement		50
			3.2.1.1	Normal consistency	50
		3.2.2	Initial ar	nd Final setting time	51
			3.2.2.1	Soundness test	52
			3.2.2.2	Fineness of Cement	53
			3.2.2.3	Specific Gravity and Unit Weight of Cement	54
			3.2.2.4	Compressive Strength of Cement	55
			3.2.2.5	Chemical composition $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	57
			3.2.2.6	Specific surface area	57
		3.2.3	Tests on	coarse aggregates: - Natural as well as Recycled $\ . \ . \ .$.	57
			3.2.3.1	Sieve Analysis	57
			3.2.3.2	Water absorption, Specific gravity, and Apparent specific	
				gravity of Aggregate	58

			3.2.3.4	Aggregate Impact Value	60
			3.2.3.5	Crushing Value of Coarse Recycled Aggregate	61
			3.2.3.6	Abrasion value test	62
			3.2.3.7	Shape test	62
		3.2.4	Mineral	ogical Studies	62
		3.2.5	Mix des	ign approach	63
			3.2.5.1	Concrete mixing approach	64
		3.2.6	Study of	n fresh concrete properties	64
			3.2.6.1	Workability	64
			3.2.6.2	Fresh concrete density	65
		3.2.7	Study of	n hardened concrete properties	66
			3.2.7.1	Compressive Strength	66
			3.2.7.2	Splitting tensile strength	67
			3.2.7.3	Flexural strength	69
		3.2.8	Study of	n durability of concrete	71
			3.2.8.1	Water permeability	71
			3.2.8.2	Carbonation	72
	3.3	Resear	rch Metho	odology Adopted	74
	3.4	Summ	ary		75
4	\mathbf{Stu}	dy on	the prod	luction of RCA	77
	4.1	Gener	al		77
	4.2	Produ	ction of r	ecycled concrete aggregates (RCA)	77
	4.3	Prope	rties of p	roduced RCA	79
		4.3.1	Property	y analysis	80
			4.3.1.1	Coarse aggregate	80
			4.3.1.2	Fine aggregate	83
	4.4	Prope	rties enha	ancement processes	85
		4.4.1	Differen	t types of treatment methods	86
			4.4.1.1	Quenching and abrasion (QA) method	86
			4.4.1.2	Heating and abrasion (HA) method	86
			4.4.1.3	Simple dry abrasion method	86

		4.4.2	Quantification of adhered mortar	37
		4.4.3	Comparison of treatment methods	38
	4.5	Sampl	ing of RCA for production of concrete) 0
	4.6	Physic	cal inspection) 1
	4.7	Summ	ary	92
5	\mathbf{Stu}	dy on	the treatment methods and effect of parent concrete strength 9)7
	5.1	Gener	al	97
	5.2	Concr	ete Mix	98
	5.3	Comp	arison between the different types of Aggregates	99
		5.3.1	Properties of aggregate	99
		5.3.2	XRD analysis)1
	5.4	Fresh	concrete properties)3
		5.4.1	Workability)3
		5.4.2	Fresh density)6
	5.5	Harde	ned Concrete Properties)6
		5.5.1	Compressive Strength)6
		5.5.2	Splitting Tensile Strength)8
		5.5.3	Flexural Strength	1
		5.5.4	Water permeability	12
		5.5.5	Carbonation	14
		5.5.6	Fracture Surface	16
		5.5.7	Petrography	17
		5.5.8	Scanning electron microscopy (SEM)	17
	5.6	Summ	ary	25
6	Stu	dy on	the percentage replacement of RCA in concrete 12	27
	6.1	Gener	al	27
	6.2	Test F	Procedure and Conditions	28
	6.3	Comp	arison between different types of aggregates	30
		6.3.1	Aggregate properties	30
		6.3.2	XRD analysis	33
	6.4	Fresh	concrete properties	33

		6.4.1	Workability	. 133
		6.4.2	Fresh density	. 138
	6.5	Harder	ned concrete properties	. 142
		6.5.1	Compressive strength	. 142
		6.5.2	Flexural strength	. 146
		6.5.3	Split tensile strength	. 149
	6.6	Durab	ility properties	. 153
		6.6.1	Water permeability	. 153
		6.6.2	Carbonation	. 156
	6.7	Relatio	onship between properties of concrete and aggregates	. 163
		6.7.1	Water permeability vs density and water absorption of aggregates .	. 170
			6.7.1.1 Carbonation depth vs density and water absorption of ag-	
			gregates	. 170
	6.8	Micros	structural analysis	. 171
		6.8.1	Scanning Electron Microscopic (SEM) analysis	. 171
	6.9	Summ	ary	. 177
7	CO	NCLU	SIONS AND FUTURE SCOPE	179
	7.1	Summ	ary and Conclusion	. 179
	7.2	Limita	tions and Scope for Future Work	. 181
		7.2.1	Limitations	. 181
		7.2.2	Scope for Future Work	. 182
\mathbf{Li}	st of	Public	cations	203

List of Tables

Table 1.1:	Constituents of C&D waste generated per year in India $[1]$	8
Table 1.2:	Estimates of quantity of C&D was te from various agencies $[2]$ $\ .$.	9
Table 2.1:	Density of RCA from different studies	19
Table 2.2:	Water Absorption of RCA from different studies	25
Table 2.3:	Mixing approach adopted in previous studies for enhancing the qual-	
	ity of concrete mix of RCA	31
Table 2.4:	Fresh concrete properties of RCA-concrete from different studies .	36
Table 3.1:	Chemical composition and physical properties of cement $\ldots \ldots$	57
Table 4.1:	Old concrete samples	78
Table 4.2:	Aggregate samples produced after crushing of old concrete \ldots .	79
Table 4.3:	Physical and mechanical properties of 10 mm aggregates	84
Table 4.4:	Physical and mechanical properties of 20 mm aggregates	84
Table 4.5:	Properties of increasing percentage of F-RCA in place of F-NA. $$.	85
Table 4.6:	Estimation of adhered mortar content by soundness test	87
Table 4.7:	Comparison of different treatment methods adhered mortar reduc-	
	ing capacity	88
Table 4.8:	RCA sampling for phase I	90
Table 4.9:	RCA sampling for phase II	91
Table 5.1:	Mix design of RCA-concrete and reference NA-concrete	98
Table 5.2:	Properties of RCA samples before and after treatment	100
Table 5.3:	RCA retention on different sieve, before and after treatment (% $$	
	retained) \ldots	101

Table 5.4:	Percentage variation in compressive strength of RCA-C compared
	to NA-C at different curing stage
Table 5.5:	Compressive strength prediction model in the form of logarithmic
	equation w.r.t curing days
Table 5.6:	Variation of RCA-concrete samples against NA-concrete 110
Table 5.7:	Prediction model in the form of logarithmic equation with respect
	to the curing days
Table 6.1:	CxRC: Only C-RCA was varied from 0 to 100% in place of C-NA 128
Table 6.2:	FxRC: Only F-RCA was varied from 0 to 100% in place of F-NA $~$. 128 $~$
Table 6.3:	CxFxRC: Both C-RCA and F-RCA were varied from 0 to 100% in
	place of C-NA and F-NA respectively
Table 6.4:	C100FxRC: F-RCA was varied from 0 to 100% in place of F-NA,
	with 100% C-RCA
Table 6.5:	Mix design of concrete samples
Table 6.6:	Mechanical and physical properties of aggregates
Table 6.7:	Qualitative classification of R^2

List of Figures

Figure 1.1:	Construction and demolition waste (C&D waste) $\ldots \ldots \ldots$	3
Figure 1.2:	Concrete waste	3
Figure 1.3:	C&D waste generation around the word in 2018 [3] \ldots .	5
Figure 1.4:	C&D waste generation (tonne per capita) around the word in	
	2018 [3]	5
Figure 1.5:	Estimates of C&D Wastes in Some Asian countries (Asian In-	
	stitute of Technology, 'Report on reduce, reuse and recycle $(3\mathrm{R})$	
	practices in C&D was te management in Asia' [4] \ldots	7
Figure 2.1:	Two satges mixing approach	29
Figure 3.1:	Vicat's Apparatus	51
Figure 3.2:	Le-Chatelior's Apparatus	53
Figure 3.3:	Le-Chatelior's Flask	54
Figure 3.4:	Cylinder for unit weight calculation	55
Figure 3.5:	Casting of 100 mm cubes	56
Figure 3.6:	Impact testing machine	61
Figure 3.7:	Concrete drum mixer	65
Figure 3.8:	Mixing techniques : (a) Two-stage mixing approach (TSMA) (Vi-	
	vian W.Y. Tam, Tam, and Le 2007; Otsuki et al. 2003); (b)	
	Re-modified two-stage mixing approach (R-TSMA) $\ . \ . \ . \ .$	66
Figure 3.9:	Slump measurement	67
Figure 3.10	Compressive strength testing arrangement	68
Figure 3.11	1: Cube casting for Compressive strength testing	68
Figure 3.12	2: Cylinder casting for splitting tensile strength test	69

Figure 3.13:	Splitting tensile strength testing arrangement	70
Figure 3.14:	Flexural strength testing arrangement	71
Figure 3.15:	Water permeability testing arrangement	72
Figure 3.16:	Accelerated carbonation curing	73
Figure 3.17:	Carbonation chamber	74
Figure 4.1:	Jaw crusher used for crushing the concrete waste. (a) Front view	
	(b) Side view (c) Top view (d) Jaw opening	80
Figure 4.2:	Crushing process of old concrete into RCA of different sizes	81
Figure 4.3:	C-RCA as well as F-RCA after gradation	82
Figure 4.4:	Adhered mortar content estimation; (a) Chemicals used; $(MgSO_4)$,	
	$(NaSO_4)$ (b) C-RCA (both 10 and 20 mm) and F-RCA in $(MgSO_4)$	
	solution, (c) Aggregates in $(NaSO_4)$ solution; After 1 cycle of im-	
	mersion in $(MgSO_4)$ (d) C-RCA (20 mm), (e) C-RCA (10 mm),	
	(f) F-RCA; After 1 cycle of immersion in $(NaSO_4)$ (g) C-RCA	
	(20 mm), (h) C-RCA $(10 mm)$ (i) F-RCA; F-RCA after 5 cycles	
	of (j) $(MgSO_4)$, (k) $(NaSO_4)$; Untreated C-RCA after 5 cycles	
	of (l) $(NaSO_4)$, (m) $(MgSO_4)$; and treated RCA after 5 cycles of	
	(n) $(MgSO_4)$ (o) $(NaSO_4)$	89
Figure 4.5:	Untreated C-RCA	93
Figure 4.6:	Treated C-RCA	93
Figure 4.7:	Close range photograph of untreated C-RCA	94
Figure 4.8:	Close range photograph of treated C-RCA	94
Figure 4.9:	Complete removal of adhered mortar from C-RCA	95
Figure 4.10:	Variance in shape and size of C-RCA	95
Figure 4.11:	Crusher coarse natural aggregates	96
Figure 5.1:	Gradation curves of different types of aggregates	101
Figure 5.2:	XRD of DA treated RCA	102
Figure 5.3:	XRD of H&A treated RCA	103
Figure 5.4:	XRD of QA treatment RCA	103
Figure 5.5:	XRD of Untreated RCA	104

Figure 5.6:	Slump value of NA-C, RCAH-C, RCAL-C, RCAM1-C and RCAM2-C
Figure 5.7:	Fresh concrete density of NA-C, RCAH-C, RCAL-C, RCAM1-C and RCAM2-C
Figure 5.8:	Variation in compressive strength with curing days
Figure 5.9:	Splitting tensile strength with curing age
Figure 5.10:	Flexural strength with curing age
Figure 5.11:	Coefficient of permeability of the concrete mixes
Figure 5.12:	Carbonated compressive strength vs Compressive strength after
	water curing
Figure 5.13:	Carbonated compressive strength vs Carbonation depth $\ldots \ldots 115$
Figure 5.14:	Carbonation depth of NA-C, RCAH-C, RCAL-C, RCAM1-C and
	RCAM2-C
Figure 5.15:	Fracture surface of (a) RCAH-C, (b) RCAL-C, (c) RCAM1-C, (d)
	RCAM2-C and (e) NA-C Micro-structural property 118
Figure 5.16:	Photomicrograph NA-concrete O.L. x 2.5X
Figure 5.17:	Photomicrograph RCAH-concrete O.L. x 2.5X
Figure 5.18:	Photomicrograph RCAL-concrete O.L. x 2.5X
Figure 5.19:	Photomicrograph RCAM1-concrete O.L. x 2.5X
Figure 5.20:	Photomicrograph RCAM2-concrete O.L. x 2.5X
Figure 5.21:	SEM micrographs of NA-concrete showing strong ITZ bond be-
	tween coarse-NA and cement paste, at 90 days
Figure 5.22:	SEM micrographs of RCAH-concrete showing the presence of ad-
	hered mortar, two ITZ and micro-cracks between the coarse-RCA
	and cement paste at 90 days
Figure 5.23:	SEM micrographs of RCAL-concrete show adhered mortar's pres-
	ence; therefore, the two ITZ but no micro-cracks between the
	coarse-RCA and cement paste at 90 days
Figure 5.24:	SEM micrographs of RCAM1-concrete show adhered mortar's
	presence; therefore, the two ITZ but no micro-cracks between
	the coarse-RCA and cement paste at 90 days

Figure 5.25:	SEM micrographs of RCAM2-concrete show adhered mortar's
	presence; therefore, the two ITZ and micro-cracks between the
	coarse-RCA and cement paste at 90 days
Figure 6.1:	Combined aggregate gradation
Figure 6.2:	Gradation curves of different types of aggregates
Figure 6.3:	XRD of aggregates (C - Calcite; B - Belite; P - Portlandite; Q
	- Quartz; CSH - Calcium Silicate Hydrate; M - Microcline; D -
	Dolomite)
Figure 6.4:	Comparison between slumps of different concrete mix 135
Figure 6.5:	Slump value of series 1 concrete (CxRC)
Figure 6.6:	Slump value of series 2 concrete (FxRC)
Figure 6.7:	Slump value of series 3 concrete (CxFxRC)
Figure 6.8:	Slump value of series 2 concrete (C100FxRC)
Figure 6.9:	Effect of F-RCA and C-RCA on the density of fresh concrete 139
Figure 6.10:	Fresh concrete density of CxRC (series 1)
Figure 6.11:	Fresh concrete density of FxRC (series 2)
Figure 6.12:	Fresh concrete density of CxFxRC (series 3)
Figure 6.13:	Fresh concrete density of C100FxRC (series 4)
Figure 6.14:	(Compressive strength of CC and CxRC
Figure 6.15:	(Compressive strength of CC and FxRC
Figure 6.16:	(Compressive strength of CC and CxFxRC
Figure 6.17:	(Compressive strength of CC and C100FxRC
Figure 6.18:	(Flexural strength of CC and CxRC
Figure 6.19:	(Flexural strength of CC and FxRC
Figure 6.20:	(Flexural strength of CC and CxFxRC
Figure 6.21:	(Flexural strength of CC and C100FxRC
Figure 6.22:	(Split tensile strength of CC and CxRC
Figure 6.23:	(Split tensile strength of CC and FxRC
Figure 6.24:	(Split tensile strength of CC and CxFxRC
Figure 6.25:	(Split tensile strength of CC and C100FxRC
Figure 6.26:	Coefficient of permeability of different concrete samples 153
Figure 6.27:	Coefficient of permeability of concrete of CxRC (series 1) 154

Figure 6.28:	Coefficient of permeability of concrete FxRC (series 2) $\ldots \ldots 154$
Figure 6.29:	Coefficient of permeability of concrete CxFxRC (series 3) 155
Figure 6.30:	Coefficient of permeability of concrete C100FxRC (series 4) $~$ 155
Figure 6.31:	Carbonated compressive strength vs Carbonation depth $\ldots \ldots 157$
Figure 6.32:	Carbonated compressive strength vs Compressive strength after
	water curing
Figure 6.33:	Carbonation depth of CC
Figure 6.34:	Carbonation depth of C30RC
Figure 6.35:	Carbonation depth of C60RC $\ldots \ldots 159$
Figure 6.36:	Carbonation depth of C100RC $\ldots \ldots \ldots$
Figure 6.37:	Carbonation depth of F30RC
Figure 6.38:	Carbonation depth of F60RC
Figure 6.39:	Carbonation depth of F100RC
Figure 6.40:	Carbonation depth of C30F30RC
Figure 6.41:	Carbonation depth of C60F60RC
Figure 6.42:	Carbonation depth of C100F30RC
Figure 6.43:	Carbonation depth of C100F60RC
Figure 6.44:	Carbonation depth of C100F100RC
Figure 6.45:	Ratio of 28 days compressive strength of FxRC and C100FxRC
	$(`f_c')$ with that of reference concrete $(`f_{cR}')$ versus Ratio between
	weighted density of aggregate mixtures in FxRC and C100FxRC $$
	(ρ) and reference concrete (ρ_R) ;
Figure 6.46:	Ratio of 28 days compressive strength of FxRC and C100FxRC
	$(`f_c')$ with that of reference concrete $(`f_{cR}')$ versus Ratio between
	weighted water absorption of aggregate mixtures in FxRC and
	C100FxRC ('WA') and reference concrete (' WA_R ')
Figure 6.47:	Ratio between water permeability of FxRC and C100FxRC ('wp') $$
	and reference concrete (' wp'_R) versus (a) Ratio between weighted
	density of aggregate mixtures in FxRC and C100FxRC (' $\rho')$ and
	reference concrete (' ρ'_R);

Figure 6.48:	Ratio between water permeability of FxRC and C100FxRC ('wp') $$
	and reference concrete (wp'_R) versus Ratio between weighted wa-
	ter absorption of aggregate mixtures in FxRC and C100FxRC
	('WA') and reference concrete (' WA'_R)
Figure 6.49:	Ratio between carbonation depth of FxRC and C100FxRC ('cd')
	and reference concrete (cd'_R) versus Ratio between weighted den-
	sity of aggregate mixtures in FxRC and C100FxRC (' ρ ') and ref-
	erence concrete (' ρ'_R);
Figure 6.50:	Ratio between carbonation depth of FxRC and C100FxRC ('cd')
	and reference concrete (cd'_{R}) versus Ratio between weighted water
	absorption of aggregate mixtures in FxRC and C100FxRC ('WA')
	and reference concrete (' WA'_{P})
Figure 6.51:	SEM image of CC
Figure 6.52:	SEM image of C30RC
Figure 6.53:	SEM image of C60RC
Figure 6.54:	SEM image of C100RC
Figure 6.55	SEM image of F30BC
Figure 6.56:	SEM image of F60BC
Figure 6.57.	SEM image of F100PC
Figure 6.59.	SEM image of C20E20DC 174
Figure 0.38 :	
Figure 6.59:	SEM image of C60F60RC
Figure 6.60:	SEM image of C100F30RC
Figure 6.61:	SEM image of C100F60RC
Figure 6.62:	SEM image of C100F100RC

Preface

As a result of the increasing rate of the urbanization, it is estimated that by 2050 the number of people living in cities will be approximately equal to the population of the whole world was in year 2000. Improved and large scale Infrastructural facilities have to be developed to accommodate the increasing urban population of the world. The requirement of growth of the construction industry putting direct pressure on natural resources, which are already depleting day by day. Development process not only uses the natural resources but also generate huge amount of waste. Apart from construction activities involved in infrastructural development, demolition activity is also a major part. Masonry and concrete of the demolished structure are treated as a waste due to their inertness. Hence, the waste generated during construction and demolition activities are termed as construction and demolition (C&D) waste. For sustainable development, the waste minimization and preservation of natural resources is the mostly required. Previous researches has established that demolition waste of buildings like concrete and masonry rubbles can be utilized as aggregate in the new concrete. When the waste recycled for aggregate contained concrete as well as other masonry produced aggregate is called recycled aggregate (RA). When only old concrete is recycled, it is called as recycled concrete aggregate (RCA). RCA can be subdivided in two major parts, coarse-RCA (C-RCA) and fine-RCA (F-RCA).

In this study RCA was used as aggregate (both coarse and fine) for the production of concrete. The use of RCA is one of the best solutions to mitigate the problem of ecological instability created by concrete waste. Literature shows that the RCA has less crushing strength, impact resistance, specific gravity, and more water absorption capacity than the natural aggregate (NA). About 25% to 30% RCA can be used in concrete production in place of NA without any harmful effect. When the replacement quantity is increased beyond 30%, the properties of concrete starts reducing in comparison to NA-concrete. Two important approaches have been reported in literature to maximize the use of RCA into structural concrete: a) by minimizing the adhered mortar content; b) by strengthening the adhered mortar/strengthening of old inter-facial transition zone (ITZ). This study focuses on both approach for improving the properties RCA and hence RCA-concrete.

This present research is focused on the maximum utilization of RCA in place of NA for the production of new medium grade (M30 grade) concrete. Several methods were used to investigate the impact of both F-RCA and C-RCA, and their combination on the characteristics of concrete. The experimental investigation carried out in this study was divided majorly into three parts. In the first part, properties of RCA produced from the different types of concrete was analyzed. The objective was to observe the effect of parent concrete strength on produced aggregate by analysing the various physical and mechanical properties of F-RCA and C-RCA. Properties of RCA were lower than the properties of NA, and when the strength of old concrete increased the properties degrades further. The reduction in the aggregate properties is due the presence adhered mortar on it. Therefore, to improve the quality of C-RCA adhered mortar should be removed to the maximum extent.

In the second part, three types of mechanical/thermal treatment methods were studied for the removal of adhered mortar from C-RCA. The three methods are quenching and abrasion (QA), heating and abrasion (HA), simple dry abrasion (SDA). Four types of concrete samples were prepared by using 100% C-RCA obtained in the first part of study. RCA sampled for this part of study was classified as the aggregate obtained from high strength, low strength and mixed strength concrete waste. The objective was to analyze the effect of C-RCA type (based on the strength of old concrete) on the performance of concrete produced. Also, three RCA samples were treated with QA method while the fourth sample was treated with QA as well SDA method before mixing in concrete. This was done to observe the impact of treatment method type on the property of new concrete. Coupled effect of treatment application to remove adhered mortar and adopting a "re-modified two-stage mixing approach (R-TSMA)" to strengthen the adhered mortar, enhanced the bond strength between C-RCA and new mortar.

The third part of the study deals with the study on the effect of percentage replacement of C-NA and F-NA with C-RCA and F-RCA, respectively, on the properties of concrete. Replacement percentage of C-RCA as well as F-RCA used in this experiment was 30%, 60% and 100% (as a replacement of C-NA and F-NA by volume). Compared to C-RCA there has been significant resistance towards the use of F-RCA. In this experimental study both coarse as well as F-RCA were used, in order to investigate their compatibility with their substitutes NA. This study also proposes a technique based on experimental examination for the 100% use of C-RCA and F-RCA as a one-to-one substitute for C-NA natural sand (NS) in fresh concrete. The methods adopted in this study gives a promising result, concrete with 100% C-RCA performed equivalent to NA concrete. Upto 30% F-RCA can easily replace NS in the normal strength concrete, and upto 60%in the low strength concrete. The performance gap between conventional and recycled concrete was reduced with an increase in curing age. The recycled concrete containing three different combinations of F-RCA and C-RCA (0% and 100%, 30% and 0%, 30% and 100%) satisfied the target compressive strength criteria for M30 grade concrete as per IS 10262:2009. This study also shows that the density of RCA affected the concrete properties more than its water absorption. Also, the water permeability of recycled concrete (followed by its carbonation depth and compressive strength) was negatively influenced by incorporation of RCA.