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CHAPTER- VI 

PREDICTION OF DYNAMIC SHEAR MODULUS OF 

UNREINFORCED AND REINFORCED MSW FINES: 

MACHINE LEARNING APPLICATION  

 

6.1 INTRODUCTION 
 

The mechanical or geotechnical properties of the MSW fines are very unpredictable 

due to the heterogeneity of the material and these properties are site-specific. The physical 

characteristics of the waste dumped in the landfills very much depend on the climate, 

culture, composition, consumption patterns of the community, etc. This physical 

composition governs the mechanical characteristics of the waste. The determination of 

these properties in the laboratory itself is a very challenging task and requires an ample 

amount of time, which makes this data very expensive (concerning time and cost of 

instrumentation) to generate. Other than this, excavation, segregation, handling, and 

placing of waste make it more challenging and costly. Machine Learning (ML) based 

mathematical or numerical models can be used to save cost and time to estimate the static 

and dynamic properties of the MSW and can cover a broader range of problems. As 

technology advances, predictive models are gravitating toward artificial intelligence (AI) 

approaches. AIs are computationally designed methods that are expected to mimic human 

thinking or cognitive skills in the solution of engineering problems. This technique is 

appropriate for solving engineering problems with many inputs or random variables where 

the correlation between input(s) and output(s) is unknown. Machine learning (ML) (a 
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branch of AI) is used to create a mathematical model that makes predictions without being 

explicitly programmed to do so (Kandiri et al., 2020). There are limited ML-based models 

used for MSW. 

 

 

  

There have been some past studies on predicted models for the MSW (shown in 

Table 6.1). Although there are studies, where ML is used for predicting some physical 

characteristics of the waste or waste generation, only a few studies that are recently been 

Table 6.1 Machine learning application for MSW model prediction. 

ML model used for MSW Objective Reference 

Artificial neural network 

(ANN), k-nearest 

neighbors (kNN), adaptive 

neuro-fuzzy inference 

system (ANFIS), and 

support vector machine 

(SVM) 

Prediction of monthly waste 

generation (Australia) 

Abbasi and El 

Hanandeh (2016) 

Decision trees and neural 

networks 

MSW generation and diversion 

in terms of socioeconomic and 

demographic variables 

Kannangara et al. 

(2018) 

Least-squares support 

vector machine (LS-SVM) 

Computing higher heating 

value concerning elemental 

compositions. 

Rostami and 

Baghban (2018) 

Feedforward neural 

network (FFNN) 

and an SVM. 

Estimating high heating value 

for various MSW 

Bagheri et al. 

(2019) 

ML-based fuzzy 

probabilistic 

model 

Compost usability index and its 

quality 

Mohurle and 

Devare (2019) 

ANN Applications for sustainable 

development, such as waste 

management 

Gue et al. (2020)  

Artificial Neural Networks 

(ANN), Multivariate 

Adaptive Regression 

Splines (MARS), Multi-

Gene Genetic 

Programming (MGGP), 

and M5 model Tree 

(M5Tree) 

Prediction of the shear modulus 

of MSW 

Alidoust et al. 

2021 
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introduced to evaluate the static or dynamic characteristics of the MSW. Even in the case 

of soils, ML applications are very limited and have been introduced in the last two decades.    

6.1.1 ML Applications in Constitutive Modeling of Soils 

 

For the last many decades, researchers are proposing consecutive models to predict 

the complex behaviour of soils. These models can be categorized as linear elastic perfectly 

plastic models, nonlinear models, critical state-based models, micromechanical models, 

etc. There are limitations attached to this model, certain assumptions underpin all 

constitutive models proposed, and each model is only appropriate for a subset of soil types, 

with numerous parameters, mathematical formulas become increasingly complicated. 

Although the mathematical equation in a constitutive model is derived from the 

experimental observations, and the formula's form provides excellent accuracy for 

only selected tests, the model's predictive ability for other tests with different stress paths 

is limited. The ML models can overcome these drawbacks with the following advantages 

(Zhang et al., 2021b):  

• Without making any assumptions, the ML model can learn the stress-strain relationship 

directly from the raw data. 

• As long as the experiments of such soils are included in a database, the ML can develop 

a uniform model for simulating the behaviours of various soils. 

• With an increasing number of datasets, the predictive accuracy and application scopes 

of ML-based models can be improved. 

• ML-based model is data-driven, no parameter calibration is required once the ML 

configurations are determined. 

Many ML algorithms have been used by researchers, including genetic programming 

(GP) (Cabalar and Cevik, 2011), evolutionary polynomial regression (EPR) (Javadi and 
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Rezania, 2009; Cuisinier et al., 2013; Asr et al., 2013), support vector machine (SVM) 

(Zhao et al. 2014; Kohestani and Hassanlourad, 2016), backpropagation neural network 

(BPNN) (Ghaboussi and Sidarta, 1998; Basheer, 2002; Banimahd et al., 2005; Hashash and 

Song, 2008; Hi and Li, 2009; Sezer, 2011; Araei, 2014; Lin et al., 2019), radial basis 

function (RBF) (Peng et al., 2005), recurrent neural network (RNN) (Romo et al., 2001), 

long short-term memory (LSTM) (Wang et al., 2018; Zhang et al., 2020), and gate recurrent 

unit (GRU) (Wang and Sun, 2019) for clay, sand, gravel, ballast, rockfill, frozen soil, 

reinforced soil, and soils with various mixtures to simulate the stress-strain responses.   

6.2 PROBLEM SETTING 
 

Machine learning modeling is a proven effective measure to efficiently study the 

behavior of various systems. These systems otherwise can be resources intensive in terms 

of time required to perform these experiments. The machine learning models can be learned 

from the data obtained by computer simulations or physical experiments. These simulations 

or experiments are obtained in the form of system inputs and corresponding system outputs 

and approximate the behavior of any underlying real-life system. The input-output 

relationship of these underlying processes can be derived from the data, which makes it 

computationally efficient to run these models. A machine learning model takes input and 

output from a computationally expensive model or process.   

 

            

                   

 

 

 

 Figure 6.1 Machine learning model 
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A typical machine-learning model learning requires the following steps:  

a) Model formulation: it involves proper parameterization of the study problem and 

defining process variables. 

b) Sample Design: the choice of sampling strategy influences the performance of the 

machine learning model. This is also called data collection (sampling).  

c) Model fitting/Training: a model can be used that best fits the data. In the model 

training, the modeling parameters are optimized to best represent the input-output 

relationship.  

d) Model validation: a trained model is validated for accuracy and robustness with the 

help of performance metrics (error measures).  

e) Prediction: the system response can be predicted at a new point using a trained 

machine learning model.       

6.2.1 Prediction Models  

 

To study the properties of the MSW fines, physical experiments were performed in 

the laboratory, and data is recorded. The detail of the input variables are Input variables: 

Relative compaction, confining pressure, frequency, and shear strain. The output quantity 

of interest is the dynamic shear modulus. Two cases are considered in the analysis: a) fiber-

reinforced MSW fines and, b) MSW fines (unreinforced).    

6.2.1.1 Artificial Neural Network (ANN) 

 

The neural networks are inspired by biological neural networks and derived their 

ability by processing data utilizing parallelism. These processing elements are called 

neurons, which function together in a group as their biological counterparts to solve a 
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problem utilizing organizational principles believed to be used in humans. A biological 

neuron is a special cell that processes information (in the form of impulses, and signals). 

Similarly, a computational or artificial neuron is a building block of the neural network and 

processes information. A neural network is composed of a group of neurons (single unit 

perceptron) and is created by assembling these neurons in a suitable architecture. The most 

common form of these networks is a multi-layer feed-forward structure. However, 

specifying the architecture and then training the network are still the main issues in creating 

such a neural network. 

 

 

 

 

 

 

 

 

 

 

Moreover, a binary threshold unit as a computational model is shown in Figure 6.2, 

(McCulloch and Pitts, 1943). Where, [x1, x2, …, xm] are the inputs that are parameterized 

by suitable weights [w1, w2, …, wm] to generate an output. In a computational neuron, an 

activation function is used to control the amplitude of the output of a neuron. Also, known 

as a mathematical neuron, it can be described as (Equation 6.1) 

     𝑦 =  𝐹(∑ 𝑤𝑗 𝑥𝑗 + 𝑏𝑛
𝑗=1 )                                                         (6.1) 

where, xj is the input space, wj is the weight value, b is the bias, F is a transfer function and 

y is the output value.  

Figure 6.2 Constitution of an artificial neurons 
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A neural network architecture is formed when two or more artificial neurons are 

combined to form an artificial neural network. The way the network is connected is called 

as topology/architecture or graph of a network. The optimum topology of the network 

defines the network’s ability to solve a problem efficiently and accurately. However, as the 

parent biological neural networks learn responses to given inputs, in a similar way these 

networks need to learn accurately. This is achieved by learning proper responses through 

neural network training. The mathematical objective of learning is to optimize the values 

of weights and biases on the given inputs to minimize the error or maximize the learning. 

Levenberg-Marquardt training algorithm has proven successful in terms of realization 

accuracy and improved convergence in a budget time. It forms a good transition between 

the Gauss-Newton algorithm and the steepest descent method. Its basic idea is to combine 

training around the area with complex curvature. Once the network is trained accurately, it 

can be used to predict the output at any new input in the problem domain. An accurate 

neural network not only depends on the above factors but also on the statistical 

normalization of the data, training time, and activation function type.      

6.2.1.2 Gaussian Process Regression 

In regression analysis, a model can be fitted to define a function on a given input 

(training data) and corresponding outputs. In a nonlinear problem, a model outcome will 

be a single function that represents the data and its relationship. There may be the cases 

where a series of functions (at least more than one) defines the input-output relationship 

precisely. Extending it, a Gaussian process (Regression) model can be described by a 

probability distribution over possible functions that describes these input-output 

relationships. This is a prior (assumption) over infinite possible functions. The prior 

distribution of these functions is the multivariate Gaussian distribution. The prior 
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distribution consists of an infinite number of functions which reduces as the number of data 

points increases (keeping only the best that fit the present data well). 

A Gaussian distribution is represented by its mean and variance. Similarly, a 

Gaussian process which is a distribution over the functions is defined by a mean function 

and a covariance function (Equation 6.2).   

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)                                      (6.2) 

where, f(x) is the set of functions, m(x) is a mean function, and k(x,x′) is a covariance 

function that represents the covariance between points (x,x′) in the input domain. “x” are 

the observed data points. The shape of the Gaussian processes is defined by the covariance 

function. The covariance function relates one observation to another observation and is the 

heart of the Gaussian process regression (GPR) model. The covariance is described by a 

kernel that is parameterized (called kernel parameters or hyperparameters). For example, a 

radial basis kernel function (RBF) can be defined as (Equation 6.3): 

                                       𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2exp (−

1

2𝑙
(𝑥𝑖 − 𝑥𝑗)

𝑇
(𝑥𝑖 − 𝑥𝑗))                            (6.3) 

The RBF function is parameterized by σf (vertical scale) and l (horizontal scale) 

which are the hyperparameters. These hyperparameters need to be optimized to obtain the 

best representation of the data by a GPR model. Once the hyperparameters are tuned, the 

predictions at a new point can be performed.   

6.2.1.3 Sensitivity Analysis 

 

In any functional model, the output quantity of interest can be influenced differently by 

the input variables of the system. The output can be more sensitive to some input variables 

or may not be affected at all by variables. The sensitivity of each input variable can be 
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calculated to study its impact on the output. This value is often represented by a numerical 

value. These interactions can come in several forms such as: 

• Sensitivity contribution of a single input variable on the output variance.  

• The sensitivity contribution is because of the interaction of the two input variables 

(higher-order sensitivity indices). 

• The total sensitivity contribution to the output by the individual and interaction of the 

two input variables.  

Several methods are available to perform the sensitivity analysis (SA), here SOBOL 

(SOBOL, 2001) indices have been considered for the sensitivity analysis (SA), which is a 

widely used method to determine the sensitivity of the input variables. SOBOL indices can 

be represented as (Equations 6.3 and 6.4) 

                                               𝑆𝑖 =
𝑉𝑎𝑟(𝑀𝑖(𝑋𝑖))

𝑉𝑎𝑟(𝑌)
,    𝑖 = 1, … , 𝑛                                                 (6.3) 

                                           𝑆𝑖𝑗 =
𝑉𝑎𝑟(𝑀𝑖𝑗(𝑋𝑖𝑗))

𝑉𝑎𝑟(𝑌)
,    1 ≤ 𝑖 < 𝑗 ≤ 𝑛                                     (6.4) 

where, Si is the first-order SOBOL indices of an individual input variable and Sij is the 

second-order indices representing interactions between the variables. M is a random 

variable that depends on the input observations of X, and Y is the output.  

6.3 RESULTS AND DISCUSSION 
 

6.3.1 Test Setup 

 

In this section, the performance of the prediction of the machine learning models 

and sensitivity analysis is demonstrated. A total number of 100 samples are used for the 

unreinforced MSW fines and 21 for the fiber-reinforced MSW fines respectively. The data 

is divided into training (70%) and testing sets (30%). Two prediction models are considered 



 
 

248 
 

to predict the dynamic shear modulus, i.e., artificial neural network and Gaussian process 

regression.   

A network architecture of [4,5,5,1], i.e., 4 inputs, 2 hidden layers with 5 neurons 

each, and one output layer are used for the unreinforced MSW fines case. In the case of 

reinforced MSW fines, a network architecture [2,2,2,1], i.e., 2 inputs, 2 hidden layers with 

2 neurons each, and one output layer is used. The training of the neural network is 

performed with the Levenberg-Marquardt algorithm for both cases. To learn a Gaussian 

process regression model on the input data, the Matern52 kernel function is used. The 

modeling ability and fit of the predicting models are assessed using the root mean squared 

error. The ANN model is written in python and MATLAB is used for the GPR models 

(Equation 6.5).  

                                                       𝑅𝑀𝑆𝐸 = √∑ ‖𝑦(𝑖)−𝑦̂(𝑖)‖2𝑁
𝑖=1

𝑁
                                         (6.5) 

where, N is the number of samples, y(i) is the observed output and 𝑦̂(i) is the corresponding 

predicted output value.  

 6.3.2 Prediction Using Artificial Neural Network  

 

In Figure 6.3, the prediction results of dynamic shear modulus are presented for 

both the cases of unreinforced and reinforced MSW fines using the Artificial Neural 

Network (ANN) model. An ANN model results in good approximation for both test and 

trained data. It captures the dynamic behaviour, i.e., the dynamic shear modulus 

satisfactorily. At a few locations, the model seems to be overtrained and results in a 

satisfactory outcome. The RMSE values of 226 and 244 are observed for the training and 

testing data which is significant considering the dynamic shear modulus value of the MSW 

fines(Figure 6.3(a)). In the case of reinforced MSW (Figure 6.3(b)), the approximation is 
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better, and all variations are captured by the model. The RMSE values come out to be 106 

and 159 for the training and testing data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3 Prediction of dynamic shear modulus for (a) Unreinforced MSW 

fines, and (b) Fiber reinforced MSW fines using ANN model 

 

(a) 

(b) 
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(a) 

6.3.3 Prediction Using Gaussian Process Regression 

 

In Figure 6.4 (a), the results of dynamic shear modulus from the Gaussian process 

regression (GPR) model are demonstrated for the unreinforced and reinforced MSW fines. 

In both cases, the GPR model captures all significant trends in the dynamic shear modulus 

(G) behaviour. The RMSE value of 27 and 187 were observed in the case of unreinforced 

MSW fines for the training and testing data set (Figure 6.4 (a)). Similarly, the RMSE value 

of 0.42 and 177 were observed in the case of fiber-reinforced MSW fines for the training 

and testing data set (Figure 6.4 (b)).     
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Table 6.2 Root Mean Squared Error (RMSE) values obtained 

from prediction model analysis. 

 

Material RMSE value 

ANN Model GPR Model 

 Train Test Train Test 

Unreinforced MSW fines 221 246 27 187 

Reinforced MSW fines 147 158 0.42 177 

(b) 

Figure 6.4 Prediction of dynamic shear modulus for (a) Unreinforced MSW 

fines, and (b) Fiber reinforced MSW fines using GPR model 
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Moreover, in Table 6.1, the results are compared for all the cases. In both cases, the 

GPR model shows improvement over the ANN model. On the test data set, an improvement 

of over 24% and 10% is observed by the GPR model over the ANN model for the 

unreinforced and reinforced MSW fines respectively. The choice of kernel function and its 

initial parameters highly affects the GPR model.  

6.3.4 Sensitivity Analysis  

 

The results of the sensitivity analysis of the considered parameters in the case of 

unreinforced MSW fines on dynamic shear modulus are presented in Table 6.2. The first-

order interactions highlight that the input variable has a higher impact on the dynamic shear 

modulus. While the highest individual influence is from shear strain (77.5%) and the lowest 

is from the frequency (0.2%). The relative compaction and effective confining pressure 

have limited influence in comparison to shear strain.  

Table 6.3 Sensitivity indices for the first-level interactions. 

 

Variable Sensitivity Index (First 

level Interactions) 

Contribution 

% 

Relative Compaction 0.045 4.5 

Effective Confining 

Pressure 

0.112 11.2 

Frequency 0.002 0.2 

Shear Strain 0.775 77.5 

 

6.4 SUMMARY  
 

The dynamic shear modulus (G) computed from the cyclic triaxial test for the 

unreinforced and reinforced MSW fines was predicted through two machine learning 

techniques, i.e., the ANN model and the GPR model. It was observed that the GPR method 

produced better results for the unreinforced case, whereas both ANN and GPR model works 

well for the reinforced MSW fines.  The sensitivity analysis shows the highest influence of 
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shear strain on the dynamic parameter (G) with a 77.5% contribution, with the negligible 

effect of loading frequency, which has also been concluded in chapter IV through 

experimental analysis.   
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