

Thesis submitted in partial fulfillment for the Award of Degree

Doctor of Philosophy

By

Parul Rawat

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) **VARANASI- 221005** INDIA

2023

Roll No. 18061009

CERTIFICATE

It is certified that the work contained in the thesis titled "Static & Dynamic Characterization of Unreinforced and Reinforced Municipal Solid Waste (MSW Fines) for Geotechnical Applications" by "Ms. Parul Rawat" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy, and State of the Art (SOTA) for the award of Ph.D. Degree.

Arount

Dr.Supriya Mohanty Supervisor Assistant Professor Department of Civil Engineering Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India-221005 Supervisor Department of Civil Engineering Department of Civil Engineering National Institute of Technology, (BHU) Indian Institute of Technology, (BHU) Varanasi-221005

DECLARATION BY THE CANDIDATE

I. PARUL RAWAT, certify that the work embodied in this thesis is myown bonafide work and carried out by me under the supervision of Dr. SUPRIYA MOHANTY from July 2018 to January 2023 at the Department of Civil Engineering, Indian Institute of Technology, (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, thesis, etc., or available at websites and included them in this thesis and cited as my ownwork.

Date: 9.01. 2023

Place: Varanasi

Faulfaul

(Parul Rawat)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Supriya

Dr. Supriya Mohanty (Supervisor) Assistant Professor Department of Civil Engineering IIT (BHU), Varanasi-221005 Supervisor Department of Civil Engineering Indian Institute of Technology, (BHU) Varanasi-221005

9.01.23

Signature of Head of Department/Coordinator of School "SEAL OF THE DEPARTMENT/SCHOOL" जानपद अभियांत्रिकी विभाग Department of Civil Engineering भारतीय प्रौद्योगिकी संस्थान (बी.एच.यू.) in dian Institute of Technology,(B! att 1-221005/Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Static & Dynamic Characterization of Unreinforced and Reinforced Municipal Solid Waste (MSW Fines) for Geotechnical Applications

Name of the Student: Ms. Parul Rawat

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the DOCTOR OF PHILOSOPHY.

Date: 9.01.2023

Place:Varanasi

(Parul Rawat)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the Institute's copyright notice are indicated.

DEDICATED TO MY PARENTS

(Mr. Sanjay Singh Rawat and Mrs. Pratibha Rawat)

ACKNOWLEDGEMENT

This is the most difficult part of the thesis for me to write, I don't think a mere thanks could justify my emotions and gratitude for the people who have been through with me in my Ph.D. journey. Above all, I bow down to my "Ishta-Devata", the divinity that resides within me and every living creature.

This thesis would not be possible without the guidance of my supervisor, Dr. Supriya Mohanty, Civil Engineering Department, IIT(BHU), Varanasi. Although she is excellent at her job, she also inspires me personally and professionally about what it means to be an independent woman. I will be eternally grateful to her for inspiring, directing, and redirecting me, especially during the difficult Covid-2019 phase.

Being privileged to be a part of this century-old institute, I would like to express my sincere gratitude to the institute, IIT (BHU), and our civil engineering department. I would like to thank the Head of the Civil Engineering Department, Indian Institute of Technology (BHU), Varanasi, for providing all the facilities related to my research work. I wish to extend my sincere gratitude towards my RPEC members, Dr. Medha Jha as an internal expert and Dr. Chandna Rath as an external expert, for their help, valuable suggestions, and encouragement during the entire research work. I wish to express my deep regards to, Prof. Arun Prasad, Dr. Bala Ramudu Paramkusam, Dr. Suresh Kumar, and Dr. Manash Chakraborty for their unconditional support at every moment during the progress of my research. I also extend my heartfelt regards to all the faculty members of the Civil Engineering Department. I am also grateful to our laboratory staff, Basanta Prasad sir, Netra Pal sir and Deepak bhaiya for the assistance extended to them from time to time during this research work. I am very thankful to Sanjay bhaiya for his assistance in lab work even during the odd hours of the day.

There are numerous people in my whole Ph.D. journey whom I would like to thank and who have touched my life in various ways. I'd like to thank my small geotechnical lab family, which includes Ankita mam, Deepjyoti mam, Rashmi mam, Manish sir, Shivani mam, Jayanti mam, Abhay sir, Niteesh sir, Sourav sir, Surya sir, Amit Kumar Ram, Amit Singh, Mayank Nishant, Munni Pradeep, Sanjoli, and Gaurav. I am grateful to some of my transportation division colleagues, Mohit, Mayank, Vivek, Nirmal, and Saroj, who were always willing to assist and offer research suggestions. There are a few friends who have personally motivated me, and without them, this Ph.D. journey would be incomplete. I would like to thank Ankit sir, Shreyansh, Ranveer, Lillian, Ria, Shreyashi, Poonam, Neetu, Priyanka, and Numa for simply being there for me during my odd days. I am extremely grateful to Ravi Kishore Reddy for directing and assisting me during my early Ph.D. days. I am grateful to Amit Kumar Ram for consistently motivating me for my research, from sharing research ideas to lab trials, success, and failure. Your encouragement has made this journey much easier for me. I'd like to thank Arun Kaintura for his time and assistance with the machine learning section, which would not have been possible without him.

Finally, I am thankful for my family's faith, patience, encouragement, blessings, and love. I am blessed with parents who have always supported my decision and a brother who gives me the strength to persevere in the face of adversity; I will be eternally grateful to them. My last thank would be to Devi (my pet), who restores my faith and shows that life is simple, we just make it complicated.

Date:

Place: Varanasi

Parul Rawat

ABSTRACT

Municipal solid waste (MSW) management is a leading challenge for humans currently. As we not only have to deal with the daily generated waste but also must find the solutions for already generated waste which still lying somewhere on the earth's surface. Landfilling which use to be the most viable option to get rid of our waste is no longer an acceptable disposal option left. Poor waste management and increasing waste generation have become environmental and health hazards. Now, this piled-up waste from decades in these landfills causes an alarming situation and can't be ignored. Other than sanitary landfills there are numerous unsanitary landfills and open dump sites which create more dangerous situations in the environment. One of the ways to deal with it could be extracting the waste from the landfills and recirculating the material and land cost in the economy, through enhanced landfill mining techniques. The most abundantly excavated material from sanitary landfills or open dump sites is the municipal solid waste (MSW) fine fractions which consist of more than 50% of the waste composition. These fine fractions also called "MSW fines/soil-like material" have the potential to be used as a bulk replacement for construction/geomaterials. Before this material can be used in bulk in fields as geomaterials in structures, it is important to check the behaviour of the considered material under realistic loading conditions (monotonic or dynamic). The heterogenic characteristic of the MSW is the major factor that influences all the other parameters and makes this material more unpredictable and challenging to reuse. The material characteristic of the MSW is very specific to the site it has been collected (origin of the waste), so it requires specified pilot projects to deal with the waste locally. The data from these pilot projects can be further helpful to predict or model general geotechnical parameters (static or dynamic). Contributing to this objective a comprehensive experimental program has been planned. The MSW fines (particle size less than 4.75 mm) which contribute to the major portion of the decomposed waste and closely resemble the soil have been the focus of the study. The sample was collected from the local site Ramana in Varanasi. After segregation and processing, about 60% of waste was characterized as MSW fines. The basic physical, chemical, and geotechnical characterization of the waste categorize the MSW fines as lightweight, non-plastic silty sand-type material with good shear strength properties (cohesion and friction angle from 31.37 to 42.19 kPa and 26.69° to 30.74°, for relative compaction of 95 to 99% respectively) with an organic content of 5.9% and slight acidic behaviour. The study on MSW fines has been continued under static and cyclic loading conditions for unreinforced and reinforced categories. A set of 100 strain-controlled cyclic triaxial tests under consolidated undrained conditions were performed to study the cyclic behaviour of the considered MSW fines. The sensitivity of different parameters (relative compaction, effective confining pressure, cyclic shear strain, and loading frequency) on dynamic properties (dynamic shear modulus (G) and damping ratio (D)) of the MSW fines was evaluated. The MSW fines were reinforced with randomly distributed fibers which were also part of the waste collected from another site Karsada, Varanasi. These fibers were mixed to the MSW fines in 0.5, 1, 2, 4, 8, and 10%. The static and dynamic strength of the composite mix was evaluated to find the optimum percentage of fiber content in the mix. Through static strength tests, the optimum fiber content can be decided as 8%. But, the improvement in dynamic shear strength can't be seen as governed by the dynamic shear modulus of the material. The inclusion of fibers enhances the damping parameter of the MSW fines and can be used as shock absorbers but does not help in excess pore water pressure dissipation. It

can be concluded from the results that under static conditions, these waste fibers work satisfactorily and can be used as backfill or embankment material but has limited applications in high seismic zones.

Moreover, the small-strain shear modulus of unreinforced and fiber-reinforced MSW fines was evaluated through the laboratory bender element apparatus. The data evaluated from the laboratory tests were further used to develop empirical correlations for the unreinforced and fiber-reinforced MSW fines. Based on the experimental test results, the excess pore water pressure (r_u) model for the fiber-reinforced MSW fines was established. A cubic polynomial model was applied to correlate the normalized small-strain shear modulus (G_R/G_{UR}) and normalized shear strength (τ_R/τ_{UR}) of the reinforced and unreinforced MSW fines. Nonlinear models were fitted for the normalized shear modulus and damping ratio with cyclic shear strain for both the unreinforced and reinforced MSW fines. Further, the dynamic shear modulus data obtained from the cyclic triaxial tests of the unreinforced and reinforced MSW fines was used for the prediction model of MSW fines (dynamic shear modulus) through two machine learning techniques, i.e., Artificial neural network (ANN) and Gaussian process regression (GPR). The GPR model predicts better results for the dynamic shear modulus of unreinforced and reinforced MSW fines. The sensitivity analysis of the considered parameters on the dynamic shear modulus of MSW fines also correlated with the experimental results.

TABLE OF CONTENTS

CEI DEI ACI ABS TAI LIS LIS	RTIFICATE DICATION KNOWLEDGEMENT STRACT BLE OF CONTENTS ST OF FIGURES ST OF TABLES	i-iii iv v-vi vii-ix xvii xxv
NU	WIENCLAIURE	XXVII-XXXIV
CHA 1.1	APTER-IINTRODUCTIONGENERAL BACKGROUND1.1.1Scenario of Waste Generation1.1.2Solid Waste Management (SWM) in India1.1.3Landfill Mining	1 1 5 10
1.2 1.3 1.4 1.5	AN OVERVIEW AND PROBLEM IDENTIFICATION OBJECTIVES SCOPE OF THE STUDY ORGANIZATION OF THE THESIS	12 14 14 15
 CHA 2.1 2.2 2.3 2.4 2.5 	APTER-II REVIEW OF LITERATURE INTRODUCTION CHARACTERIZATION STUDIES OF MSW FINES 2.2.1 Characterization of Landfill-Mined Waste 2.2.1.1 Indian Landfill Studies 2.2.1.2 Landfill Studies Around the World 2.2.2 Physico-Chemical Characterization of MSW Fines 2.2.3 Geotechnical Characterization of MSW Fines DYNAMIC CHARACTERIZATION STUDIES OF MSW STUDIES ON REINFORCED MSW POTENTIAL RE-USABILITY AND CHALLENGES IN US SOIL-LIKE WASTE/MSW FINE FRACTION	19 19 20 20 21 22 35 49 66 78 SING
2.6 2.7	 2.5.1 MSW Compost/Soil Conditioner 2.5.2 Reusability as Landfill Cover 2.5.3 Engineered Fill Material 2.5.4 Construction Material TREATMENTS REQUIRED BEFORE FIELD APPLICATION SUMMARY 	80 82 83 84 86 88 92
CHA 3.1 3.2	APTER- III MATERIALS, EXPERIMENTAL PROGRAM METHODS, AND TEST PROCEDURES INTRODUCTION SOURCE OF MATERIALS USED 3.2.1 MSW Fines	M , 93 93 93 93

	3.2.2	Fibers			94
3.3	TEST	ING PRC	OGRAM		94
	3.3.1	Sample	Collection a	and Segregation of Waste	94
		3.3.1.1	MSW Fine	es	96
		3.3.1.2	Fibers		96
	3.3.2	Laborat	orv Studv		99
		3.3.2.1	Morpholog	gy, Mineralogy, and Chemical	
			Characteri	stics Tests	102
			33211	Scanning Electron Microscope (SEM)	
			5.5.2.1.1	Test	102
			33717	nH	102
			33213	pri Organic Content	102
			3.3.2.1.3	Total Dissolved Solids (TDS)	103
			3.3.2.1.4	Chloride Content	103
			33216	Total Dissolved Sulphate	104
			3.3.2.1.0	Colour Unit Test	104
			33218	X-ray Diffraction (XRD) Test	104
			33210	X-ray Eluorescence (XRE) Test	104
		3377	2 Geotech	nical Characterization Tests	105
		5.5.2.2	2 Geoteenii 3 3 2 2 1	MSW Fines	105
			5.5.2.2.1	3.3.2.2.1.1 Grain size distribution	100
				332212 Atterberg limit test	100
					106
				3.3.2.2.1.3 Compaction test	106
				3.3.2.2.1.4 Compressibility	100
				characteristics	100
				3.3.2.2.1.5 Permeability test	107
				3.3.2.2.1.6 Unconfined compression	107
				strength test (UCS)	107
				3.3.2.2.1.7 I maximizes in $3.2.2.1.7$	107
				3.3.2.2.1.8 California bearing ratio	100
			22222	(CBR) test	109
			3.3.2.2.2	Fiber-Reinforced MSW Fines	109
				5.5.2.2.2.1 Compaction test	109
				3.3.2.2.2.2 Compressibility	
				characteristics	109
				3.3.2.2.2.3 Triaxial tests	110
		3.3.2.3	Strain Con	ntrolled Cyclic Triaxial Tests	111
			3.3.2.3.1	Testing Equipment	115
			3.3.2.3.2	Test Procedure	117
		3.3.2.4	Bender Ele	ement Test	120
			3.3.2.4.1	Testing Equipment	120
			3.3.2.4.2	Test Procedure	123
СЦ	лртгр	- 11/	IARODA	ATORV TEST RESULTS AND	
CUL!	31 I C K	- 1 4	DISCUSS	SION	127
41	INTR	ODUCTI	ON		127
42	STAT	ICLAR)RATORY '	TEST RESULTS	127
••-	4.2.1	Mornho	logy Miner	alogy and Chemical Characteristics	127
		4.2.1.1	nH		128
			r		

		4.2.1.2	Organic C	Content	128
		4.2.1.3	Total Diss	solved Solids	128
		4.2.1.4	Chloride a	and Total Dissolved Sulphate Content	129
		4.2.1.5	Colour Ur	nit Test	129
		4.2.1.6	Elemental	/ Compound Analysis	129
		4.2.1.7	Scanning	Electron Microscope (SEM) Test	132
	4.2.2	Geotech	inical Chara	cterization of MSW Fines	135
		4.2.2.1	Grain Size	Analysis	135
		4.2.2.2	Specific G	ravity	137
		4.2.2.3	Atterberg l	Limit	137
		4.2.2.4	Compactio	on Characteristics	137
		4.2.2.5	Compressi	bility Characteristics	138
		4.2.2.6	Permeabili	ty Characteristics	139
		4.2.2.7	CBR Test		140
		4.2.2.8	UCS Test		141
		4.2.2.9	Static Tria	xial Tests	142
	4.2.3	Fiber-R	einforced M	SW Fines	145
		4.2.3.1	Compactio	on Characteristics of Fiber-Reinforced	
			MSW Fine	es	146
		4.2.3.2	Compressi	bility Characteristics of Fiber-Reinforced	
			MSW Fine	es	146
			4.2.3.2.1	Compressibility Parameters	147
			4.2.3.2.2	Determination of Coefficient of	
				Consolidation	151
		4.2.3.3	Shear Stree	ngth Behaviour of Fiber-Reinforced MSW	
			Fines		156
			4.2.3.3.1	Unconsolidated Undrained Triaxial Test	
				on MSW Fine Samples (Diameter:	
				38mm; Height:76mm)	156
			4.2.3.3.2	Triaxial Test on MSW Fine Samples	
				(Diameter: 50mm; Height:100mm)	159
4.3	DYNA	AMIC LA	BORATOR	Y TEST RESULTS	161
	4.3.1	Strain C	ontrolled C	yclic Triaxial Test on Unreinforced MSW	
		Fines			162
		4.3.1.1	Cyclic Beł	naviour of Compacted MSW Fines	162
			43111	Variation of Deviator Stress Pore Water	102
			1.3.1.1.1	Pressure and Mean Effective Stress with	
				Number of Cycles	162
			43112	Variation of Deviator Stress with Axial	102
			1.3.1.1.2	Strain and Mean Effective Stress	169
		4312	Liquefactio	on Potential of Compacted MSW Fines	173
		4313	Dynamic F	Properties of Compacted MSW Fines	175
		1101110	43131	Effect of Loading Frequency on	170
			1.3.1.3.1	Dynamic Properties of Compacted MSW	
				Fines	175
			43132	Effect of Confining Pressure on Dynamic	115
			1.2.1.2.2	Properties of Compacted MSW Fines	177
			43133	Effect of Relative Compaction on	1//
				Dynamic Properties of Compacted MSW	
				Fines	179
					11/

			4.3.1.3.4	Effect of Strain Amplitude on Dynamic	101
		4 2 1 4		Properties of Compacted MSW Fines	181
		4.3.1.4	Degradatio	n Index of Compacted MSW Fines	185
	4.3.2	Dynami		zation of Fiber-Reinforced MSW Fines	188
		4.3.2.1	Effect of F	C on Cyclic Strength Parameter "G" of	
		1 2 2 2	Fiber-Reinf	forced MSW Fines	188
		4.3.2.2	Degradatio	n Index of Fiber-Reinforced MSW Fines	191
		4.3.2.3	Effect of F	C on Cyclic Strength Parameter "D" of	102
		1221	Fiber-Reini	forced MISW Fines	193
		4.3.2.4	effect of F	inforced MSW Eines	104
	133	Shear W	UI FIDEI-RE	Determination Through Bender Element	194
	4.5.5	Analysis	ave velocity	Forced and Reinforced MSW Fines with	
		Fibers	s for ememi	orect and remitireed wis with thes with	197
		4.3.3.1	Considerati	on of Parameters for Bender Element Test	197
		4.3.3.2	Effect of C	onsidered Parameters on Shear Wave	177
			Velocity (V	(s_1)	
					198
			4.3.3.2.1	Effect of Excitation Frequency (f) on V_s	198
			4.3.3.2.2	Effect of Relative Compaction (R_c) on V_s	202
			4.3.3.2.3	Effect of Confining Pressure (σ_c) on V_s	203
			4.3.3.2.4	Effect of Fiber Content (FC) on V_s	205
		1333	4.5.5.2.5 Comparison	Effect of Saturation of V_s	200
		4.5.5.5	Literature	ii of Flesent Study Results with Fast	208
44	SUM	ЛARY	Literature		200
	bein				210
CHA	APTER	- V	CORREL	ATION STUDIES	213
5.1	INTRO	ODUCTIO	NC		213
5.2	PORE	WATE	R PRESSUE	RE RATIO (r _u) MODEL FOR FIBER-	
	REINI	FORCED	MSW FINE	S	212
5.3	CORR	ELATIO	N BETWEE	IN SMALL STRAIN SHEAR MODULUS	
	(G _{max})	WITH S	HEAR STR	ENGTH (τ) FOR FIBER REINFORCED	
	MSW	FINES			218
5.4	PRED	ICTION	MODEL	FOR DISSIPATED ENERGY OF	
	UNRE		ED AND	REINFORCED MSW FINES AT	220
		EFACTIC			220
	5.4.1	Energy I	Nethod	Madal for Distincted Engineer of	220
	5.4.2	Linear	Regression	Model for Dissipated Energy of	222
	513	Non Lin	Diced MS w	sion Model for Dissingted Energy of	223
	5.4.5	Reinford	red MSW Fi	nes at Liquefaction	224
55	CORR	ELATIO	NS BETWE	EN NORMALIZED SHEAR MODULUS	<i>22</i> -т
0.0	AND	CYCLIC	SHEAR	STRAIN OF UNREINFORCED AND	
	REINI	FORCED	MSW FINF	S	226
5.6	CORR	ELATIO	NS BETWE	EEN DAMPING RATIO AND CYCLIC	0
-	SHEA	R STRAI	N OF UNR	EINFORCED AND REINFORCED MSW	
	FINES	5			231
5.7	LIMIT	TATIONS	OF THE PI	RESENTED CORRELATIONS	236
5.8	SUMN	MARY			236

СНА	PTER- V	I PREDICTION OF DYNAMIC SHEAR	
		MODULUS OF UNREINFORCED AND	
		REINFORCED MSW FINES: MACHINE	
		LEARNING APPLICATION	239
6.1	INTROE	DUCTION	239
	6.1.1 N	IL Applications in Constitutive Modeling of Soils	241
6.2	PROBLE	EM SETTING	242
	6.2.1 P	rediction Models	243
	6	.2.1.1 Artificial Neural Network (ANN)	243
	6	.2.1.2 Gaussian Process Regression	245
	6	.2.1.3 Sensitivity Analysis	246
6.3	RESULT	TS AND DISCUSSION	247
	6.3.1 T	est Setup	247
	6.3.2 P	rediction Using Artificial Neural Network	248
	6.3.3 P	rediction Using Gaussian Process Regression	250
	6.3.4 S	ensitivity Analysis	252
6.4	SUMMA	ARY	252
CILA	отго з		255
	STIMMA	DV AND CONCLUSIONS AND FUTURE SCOPE	200
/.1	711	ART AND CONCLUSIONS	255
	7.1.1 C	velic Triavial and Bander Element Laboratory Test Pesults	250
	7.1.2 C	Synce That and Dender Element Laboratory Test Results	257
7 2		TIONS AND SCOPE FOR FUTURE WORK	259
1.2	T 2 1 I	initations	200
	7.2.1 L	cope for Future Work	200
	7.2.2 0	cope for future work	200
REF	ERENCH	ES	263
LIST	T OF PUP	BLICATIONS	313
APP	ENDIX-A	A GEOSYNTHETIC REINFORCED MSW FINES	317
A.1	INTRO	DUCTION	317
A.2	MATE	RIAL PROPERTIES	317
A.3	EXPER	IMENTAL STUDY	319
1 1.00	A.3.1	Testing Program	319
	A.3.2	Sample Preparation	319
A.4	EXPER	IMENTAL RESULTS AND DISCUSSION	321
	A.4.1	Strength Performance of Reinforced MSW Fines under	
		Static Loading Condition	321
	A.4.2	Shear Strength Behaviour of Geotextile Reinforced MSW	
		Fines	323
	A.4.3	Shear Strength Behaviour of Geonet Reinforced MSW Fines	324
	A.4.4	MSW Fines–Geosynthetic Strength Ratio	329
	A.4.5	Strength Performance of Geosynthetic Reinforced MSW	
		Fines under Cyclic Loading Condition	330
	A.4.6	Comparative Analysis of Strength Under Static and Cyclic	
		Loading Conditions	337
A.5	SUMM	URY	339

LIST OF FIGURES

Figure No.	Description	Page No.
1.1	Top 20 waste generating countries with their GDP	4
1.2	Waste composition of (a) world (b) India	4
1.3	Indian landfill data (Source@ CPCB annual report (2019-20)	9
1.4	Indian solid waste management data (Source@ CPCB annual report (2019-20)	10
2.1	Cyclic triaxial test results and comparison with literature: (a) normalized shear modulus reduction curve (b) material dumping curve as a function of shear strain. (Source @ Zekkos et al. 2008)	70
2.2(a)	Plot of the variation of shear wave velocity (V_s) of MSW landfills with depth (z). (Source @ Choudhury and Savoikar 2009)	71
2.2(b)	Plot of the variation of normalized shear modulus (G/Gmax) of MSW landfills with the percentage cyclic shear strain. a for clay; b for peat; c lower bound; d upper bound; e average values; f recommended (upper bound); g for 100% composition of waste of particle size smaller than 20 mm; h for 62–75% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm. (Source @ Choudhury and Savoikar 2009)	72
2.2(c)	Plot of the variation of the material damping ratio of MSW landfills with the percentage cyclic shear strain. a for clay; b for peat; c lower bound; d upper bound; e recommended (lower bound); f average values; g for 100% composition of waste of particle size smaller than 20 mm; h for 62–75% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm; i for 8–25% composition of waste of particle size smaller than 20 mm. (Source @ Choudhury and Savoikar 2009)	73
2.3	Potential use and considered treatments for MSW fine fraction	91
3.1	Location map of the sample collection sites	95
3.2	Cycle showing collection and segregation of MSW fine fractions	97
3.3	(a) 4 mm rejected sample collected from site-2, Karsada waste to energy plant, Varanasi; (b) air-blowing method for separating	98

	fibers from waste; and (c) heterogeneous fiber mix separated from the waste	
3.4	Photographic view of the strain-controlled cyclic triaxial testing equipment	116
3.5	Stages of sample preparation and mounting for cyclic triaxial test	119
3.6	Schematic of typical hysteresis loop	120
3.7	Bender element apparatus setup	122
3.8	Bender element attached to the triaxial cell	122
3.9	A typical input and output wave presented on oscilloscope display	123
3.10	Stages of sample preparation and mounting for bender element test	124
3.11	Testing program flow chart for the bender element test	124
4.1	Colour of leachates noticed from MSW fines	129
4.2	(a) EDX spectral image (b) X-ray diffraction pattern (c) Percentage of compounds by XRF (X-ray fluorescence spectroscopy) for MSW fines	130
4.3	Scanning electron micrographs of MSW fraction below 75 microns at magnification of (a) 1.00 kX; (b) 500X; (c) 5.00 kX; and (d) 10.00 kX	133
4.4	Grain size distribution curve of MSW sample (site 1) collected from field and finer portion used as MSW fines (below 4.75 mm)	136
4.5	Typical images of particles of MSW retained on (a) 2 mm; (b) 1 mm; (c) 425 micron; (d) 150 micron; (e) 90 micron; and (f) 75 micron IS sieve	136
4.6	Compaction curve for the MSW fines sample	138
4.7	(a) Variation of compression index (C _c); (b) coefficient of consolidation (C _v) with increase in percentage of R_C ; (c) variation of void ratio with applied stress at different R_C ; and (d) variation of permeability with increase in percentage of R_C of MSW fine samples.	139
4.8	(a) Load versus deformation graph for unsoaked and soaked CBR test at 95% R_C of MSW sample; and (b) variation of CBR values with increase in percentage of R_C of MSW samples at 5	141

mm deformation

4.9	Variation of shear strength with increase in percentage of R_C of MSW samples at different confining pressure (σ_c)	143
4.10	Compaction curves for MSW fines and MSW fines mixed with different fiber content	146
4.11	(a) Variation of void ratio (<i>e</i>) Vs log of vertical stress (σ_v) (b) Change in void ratio (<i>e</i>) with fiber content (FC)	149
4.12	(a) Compression index (C_c) variation with stress range for all FC (b) Compression index (C_c) variation with fiber content (FC)	150
4.13	(a) Determination of C_{ν} through a logarithm of time method (b) square root of time method at σ_{ν} (800 kPa)	154
4.14	Coefficient of consolidation (C_v) variation with vertical stress (σ_v) for all FC by (a) logarithm of time method (b) square root of time method and (c) computational method	155
4.15	Shear strength variations with FC at different confining pressure	157
4.16	Stress-strain variation of fiber-induced MSW fines	158
4.17	Strength Ratio variations with FC at different confining pressure	158
41.8	(a) Mobility of cohesion (c); and (b) friction angle (ϕ) with axial strain for MSW fines (0% fiber content) and optimum fiber content (8% fiber content)	159
4.19	Stress-strain behaviour of the unreinforced and reinforced MSW fines with fibers under confining pressure of (a) 50 kPa (b) 100 kPa (c) 150 kPa	161
4.20	Typical test result plots at $\gamma=1.5\%$, $f=1$ Hz, $\sigma'_c = 100$ kPa and $R_c=90\%$: (a) deviator stress (q) versus number of cycles (N); (b) excess pore water pressure ratio (r_u) versus number of cycles (N); (c) mean effective stress (p') versus number of cycles (N)	164
4.21	Typical test result plots at $\gamma=1.5\%$, $f=1$ Hz, $\sigma'_c = 100$ kPa and $R_c=98\%$: (a) deviator stress (q) versus number of cycles (N); (b) excess pore water pressure ratio (r_u) versus number of cycles (N); (c) mean effective stress (p') versus number of cycles (N)	165
4.22	Typical test result plots at $\gamma=1.5\%$, $f=1$ Hz, $\sigma'_c = 50$ kPa and $R_c=98\%$: (a) deviator stress (q) versus number of cycles (N); (b) excess pore water pressure ratio (r _u) versus number of cycles	166

4.23	Typical test result plots at γ =1.5%, <i>f</i> =0.3 Hz, $\sigma'_c = 100$ kPa and $R_c=90\%$: (a) deviator stress (q) versus number of cycles (N); (b) excess pore water pressure ratio (r _u) versus number of cycles (N); (c) mean effective stress (p') versus number of cycles (N)	167
4.24	Typical test result plots at γ =0.6%, <i>f</i> =1 Hz, $\sigma'_c = 100$ kPa and R_c =90%: (a) deviator stress (q) versus number of cycles (N); (b) excess pore water pressure ratio (r _u) versus number of cycles (N); (c) mean effective stress (p') versus number of cycles (N)	168
4.25	Typical test result plots at $\gamma=1.5\%$, $f=1$ Hz, $\sigma'_c = 100$ kPa and $R_c=90\%$: (a) deviator stress (q) versus axial strain (ε); (b) deviator stress (q) versus mean effective stress (p')	170
4.26	Typical test result plots at $\gamma=1.5\%$, $f=1$ Hz, $\sigma'_c = 100$ kPa and $R_c=98\%$: (a) deviator stress (q) versus axial strain (ε); (b) deviator stress (q) versus mean effective stress (p')	170
4.27	Typical test result plots at $\gamma=1.5\%$, $f=1$ Hz, $\sigma'_c = 50$ kPa and $R_c=98\%$: (a) deviator stress (q) versus axial strain (ε); (b) deviator stress (q) versus mean effective stress (p')	171
4.28	Typical test result plots at $\gamma=1.5\%$, $f=0.3$ Hz, $\sigma'_c = 100$ kPa and $R_c=90\%$: (a) deviator stress (q) versus axial strain (ε); (b) deviator stress (q) versus mean effective stress (p')	171
4.29	Typical test result plots at $\gamma=1.5\%$, $f=0.3$ Hz, $\sigma'_c = 100$ kPa and $R_c=90\%$: (a) deviator stress (q) versus axial strain (ε); (b) deviator stress (q) versus mean effective stress (p')	172
4.30	Effect of relative compaction (R_c) on liquefaction potential of compacted MSW fines	174
4.31	Effect of effective confining pressure (σ'_c) on liquefaction potential of compacted MSW fines	175
4.32	Variation of (a) dynamic shear modulus (G); and (b) damping ratio (D) with number of cycles (N) for different frequency (<i>f</i>), variation of (c) dynamic shear modulus (G); and (d) damping ratio (D) with frequency (<i>f</i>) for different R_c corresponding to σ'_c	176
4.33	= 100 kPa and γ =1.5% Variation of (a) dynamic shear modulus (G); and (b) damping ratio (D) with number of cycles (N) for different σ'_c , variation	170
	of (c) dynamic shear modulus (G); and (d) damping ratio (D) with σ'_c for different R_c corresponding to $f=1$ Hz and $\gamma=1.5\%$	178
4.34	Variation of (a) dynamic shear modulus (G); and (b) damping ratio (D) with number of cycles (N) for different R_c , variation of	180

(N); (c) mean effective stress (p') versus number of cycles (N)

(c) dynamic shear modulus (G); and (d) damping ratio (D) with R_c corresponding to f=1 Hz, $\sigma'_c = 100$ kPa, and $\gamma=1.5\%$

4.35 Variation of (a) dynamic shear modulus (G); and (b) damping ratio (D) with the shear strain (γ) for different R_c corresponding to $\sigma'_c = 100$ and f=1 Hz, variation of (c) dynamic shear modulus (G); and (d) damping ratio (D) with the shear strain (γ) for different σ'_c corresponding to f=1 Hz and $R_c=96\%$, variation of (e) dynamic shear modulus (G); and (f) damping ratio (D) with the shear strain (γ) for different frequency (f) corresponding to $R_c = 96\%$ and $\sigma'_c = 100$ 182 Degradation index plot with respect to number of cycles for 4.36 different relative compaction (R_c) at (a) f=1Hz, σ'_c =100 kPa, 186 $\gamma=0.6\%$ (b) f=1Hz, $\sigma'_{c}=100$ kPa, $\gamma=1.5\%$ Degradation index plot with respect to number of cycles for 4.37 different effective confining pressure (σ'_c) at (a) f=1Hz, 186 $\gamma=0.6\%$, $R_c=98\%$ (b) f=1Hz, $\gamma=1.5\%$, $R_c=98\%$ Degradation index plot with respect to number of cycles for 4.38 different shear strain (γ) at (a) f=1Hz, σ'_{c} =100 kPa, R_{c} =90% (b) 187 f=1Hz, $\sigma'_{c}=100$ kPa, $R_{c}=98\%$ 4.39 First cycle hysteresis loop for different FC (a) at γ =1.5% (UU condition) (b) $\gamma=0.6\%$, (c) $\gamma=0.9\%$, and (d) $\gamma=1.2\%$ for CU condition 189 4.40 Variation of dynamic shear modulus (G) with no. of loading cycles (N) for (a) at $\gamma=1.5\%$ (UU condition) (b) $\gamma=0.6\%$, (c) $\gamma=0.9\%$, and (d) $\gamma=1.2\%$ for CU condition. (e) G (for first cycle) variation with FC at different γ 190 4.41 Degradation index variation with no. of loading cycles (N) for (a) at $\gamma=1.5\%$ (UU condition) (b) $\gamma=0.6\%$, (c) $\gamma=0.9\%$, and (d) γ =1.2% for CU condition 192 4.42 Variation of damping ratio (D) with no. of loading cycles (N) for (a) at $\gamma=1.5\%$ (UU condition) (b) $\gamma=0.6\%$, (c) $\gamma=0.9\%$, and (d) γ =1.2% for CU condition. (e) G (for first cycle) variation with FC for different γ 193 4.43 Excess PWP ratio (r_u) variations with FC at (a) $\gamma=0.6\%$, (b) $\gamma=0.9\%$, and (c) $\gamma=1.2\%$. Variation of r_u with N at (d) 0% FC (e) 8% FC for different γ 196 Input-output wave response for (a) unconfined unsaturated 4.44 MSW fine sample at MDD (b) unsaturated (UU) sample of MSW fine at σ_c (100 kPa) (c) saturated (UU) sample of MSW fine at σ'_c (100 kPa) at different excitation frequencies. (d) 199 Input-output wave response at different FC for unsaturated

xxi

	MSW fine sample at σ_c (100 kPa) and f (1kHz)	
4.45	Shear wave velocity (V_s) variations with excitation frequency (f) for (a) different fiber content (FC) (b) different relative compaction (R_c)	201
4.46	Shear wave velocity (V_s) variation with confining pressure (σ_c) for different excitation frequencies (f) at fiber content (FC) of (a) 0% (b) 0.5% (c) 1% (d) 2% (e) 4% (f) 8% (g) 10%	203
4.47	Shear wave velocity (V_s) variation with fiber content (FC) at excitation frequency (f) of (a) 0.5 kHz (b) 2 kHz. (c) Variation of G _R /G _{UR} ratio with FC for different excitation frequencies and confining pressure	207
4.48	Shear wave velocity (V_s) variation with (a) excitation frequency (f) (b) relative compaction (R_c) at f (1.5kHz), for the MSW fine sample at MDD at UU and CU conditions	208
4.49	Comparative past studies of small strain shear modulus (G_{max}) with fiber content (FC). (1-(Alidoust et al., 2018); 2-(Li and Senetakis, 2017); 3-(Claria and Vettorelo, 2016))	210
5.1	(a) Curves for r_u versus N/N _L (γ =0.6%). Comparisons between experimental and model predicted results for (b) γ =0.6%, (c) γ =0.9%, and (d) γ =1.2%	215
5.2	Correlation between G_R/G_{UR} and τ_R/τ_{UR}	219
5.3	Typical variation of dissipated energy/unit volume per cycle until liquefaction of MSW fines sample at $R_c=90\%$ tested at $f=1$ Hz, $\gamma=0.6\%$ and $\sigma'_c=100$ kPa	222
5.4	Typical variation of cumulative energy/unit volume per cycle until liquefaction of MSW fines sample at $R_c=90\%$ tested at $f=1$ Hz, $\gamma=0.6\%$ and $\sigma'_c=100$ kPa	222
5.5	Variation of cumulative dissipated energy with cyclic shear strain (γ) of MSW fines specimen representing effect of relative compaction (90 to 98%), effective confining pressure (50 kPa, 20 LP = 100	
	Hz) // KPa and 100 kPa), loading frequency (1 Hz, 0.5 Hz and 0.3	223
5.6	Variation of predicted values of dissipated energy of MSW fines with the observed experimental results	224
5.7	Variation of cumulative dissipated energy with cyclic shear strain (γ) and fiber content (FC)	225
5.8	Variation of normalised cumulative dissipated energy $(\Delta W_R/\Delta W_{IIR})$ with normalised factor 'm' (FC/ γ)	226
5.9	Correlation plot of G/G _{max} - log γ for MSW fines (considering the loading frequency (0.3, 0.5, and 1Hz) and effective confining pressure (50, 70, and 100 kPa) at relative compaction of (a) 90% (b) 92% (c) 94% (d) 96% and (e) 98%	227

5.10	Correlation plot of G/G_{max} log γ for fiber-reinforced MSW fines (considering the loading frequency of 1Hz, effective confining pressure of 100 kPa and density of 1.51g/cc at all the fiber content (0 to 10%)	231
5.11	Correlation plot of D– log γ for MSW fines (considering the loading frequency (0.3, 0.5, and 1Hz) and effective confining pressure (50, 70, and 100 kPa) at relative compaction of (a) 90% (b) 92% (c) 94% (d) 96% and (e) 98%	232
5.12	Correlation plot of D– log γ for fiber reinforced MSW fines (considering the loading frequency of 1Hz, effective confining pressure of 100 kPa and density of 1.51g/cc at all the fiber content (0 to 10%)	235
6.1	Machine learning model	242
6.2	Constitution of an artificial neurons	244
6.3	Prediction of dynamic shear modulus for (a) Unreinforced MSW fines, and (b) Fiber reinforced MSW fines using ANN model	249
6.4	Prediction of dynamic shear modulus for (a) Unreinforced MSW fines, and (b) Fiber reinforced MSW fines using GPR model	250
A.1	Geosynthetics used in the study (a) Geotextile, and (b) Geonet	318
A.2	Flow chart of the testing program considered for the present study	320
A.3	Geosynthetics arrangements considered for the study	321
A.4	Sample images (a) 1-layer reinforcement, (b) 2-layers reinforcement, and (c) 3-layers reinforcement before failure, and failure pattern images of sample for (d) 1-layer geotextile reinforcement, (e) 2-layers geotextile reinforcement, (f) 3-layers geotextile reinforcement, (g) 1-layer geonet reinforcement, (h)	
A.5	2-layers geonet reinforcement, and (1) 3-layers geonet reinforcement at confining pressure of 150 kPa Deviator stress variation with number of reinforcement layers for (a) Geotextile, and (b) Geonet at confining pressure of 150 kPa	322 324
A.6	Peak shear strength variation with number of reinforcement layers for (a) Geotextile, and (b) Geonet for varying confining	325
A.7	pressures (50,100 and 150 kPa) Mohr circles for unreinforced and reinforced (a) Geotextile, and (b) Geonet at confining pressure of 150 kPa	326

A.8	Average shear strength comparison of geotextile and geonet	326
A.9	Comparison of present study (a) cohesion (c), and (b) friction angle (ϕ) with other composite reinforced studies. (Note: ¹ (Fiber reinforced MSW fines (Present study); ² (Maher and Ho 1993); ³ (Noorzad and Mirmoradi 2010); ⁴ (Ram Rathan Lal and Mandal 2013); ⁵ (Chen et al. 2014); ⁶ (Benessalah et al. 2016); ⁷ (Dasaka	327
A.10	and Sumesh 2011)).) Deviator stress vs axial strain plot (10 cycles) for (a) unreinforced (b) 1-layer geotextile (c) 2-layers geotextile (d) 3- layers geotextile (e) 1-layer geonet (f) 2-layers geonet, and (g)	333
A.11	3-layers geonet Comparison of hysteresis loop (1 st cycle) for unreinforced and (a) geotextile reinforced, and (b) geonet reinforced MSW fines	335
A.12	Dynamic shear modulus (G) variation with number of cycle (N) for unreinforced and (a) geotextile reinforced, and (b) geonet reinforced MSW fines, and Damping ratio (D) variation with number of cycle (N) for unreinforced and (c) geotextile reinforced, and (d) geonet reinforced MSW fines (a) Deviator stress improvement with reinforcement layers	319
A.13	(a) Deviator success improvement with reinforcement layers (static loading conditions) (b) Deviator stress reduction with reinforcement layers (cyclic loading conditions), and (c) strength ratio ($SR_{S/D}$) with number of reinforcement layers	338

xxiv

LIST OF TABLES

Table No.	Description	Page No.
2.1	The categories to evaluate the objectives of Landfill Mining projects	20
2.2	Characterization of the excavated landfill waste	30
2.3	Screen size considered for the segregation in past projects	35
2.4	Metal concentrations found in MSW fine fractions of landfills (Conc. in mg/kg dry weight)	43
2.5	Global standards for heavy metals concentration limits in soils/composts (Conc. in mg/kg)	46
2.6	Physico-chemical characteristics of the MSW fine fraction (water extract) for a few Indian landfill sites	48
2.7	Geotechnical properties of MSW	63
2.8	Effect of different parameters on the dynamic properties of municipal solid waste (Source @ Zekkos et al., 2008)	70
3.1	Experimental testing program for physical, chemical, morphological, and geotechnical characteristics	100
3.2	Standards used for different laboratory tests	101
3.3	Testing program for MSW fines under cyclic loading condition (Cyclic triaxial test)	112
3.4	Testing program for fiber-reinforced MSW fines under cyclic loading condition (Cyclic triaxial test)	115
3.5	Specification of cyclic triaxial test equipment	117
4.1	List of compounds present in MSW fines	132
4.2	Summarized chemical characteristics of MSW landfills in India	134
4.3	Variation of unconfined compressive strength (q_u) and cohesion (c) with increase in Maximum Dry Density (%)	142
4.4	Variation of cohesion and angle of internal friction with increase in R_C of MSW fines	143
4.5	Summarized geotechnical characteristics of MSW fines	144
4.6	Settlement analysis with fiber content	149

4.7	Percentage change in compression index (C_c) between reinforced and unreinforced MSW fines	150
4.8	Maximum values for coefficient of consolidation (C_v)	152
4.9	Variation of strength parameters with fiber content	156
4.10	Shear strength parameters for unreinforced and reinforced MSW fines with fibers under different triaxial conditions	160
4.11	Effect of different parameters on the dynamic properties of MSW fine fractions and sand	184
4.12	R_c effect on V_s at different confining pressures and excitation frequencies	202
5.1	Nonlinear fittings for the parameters a, b, b_1 , and c used in the r_u (excess pore water pressure ratio) model	217
5.2	Nonlinear fittings for the parameters A, B, C, and D used in the cubic polynomial model	219
5.3	Hyperbolic model parameters and R^2 values for the fitted normalized shear modulus (G/G _{max}) vs. log γ correlation at different R_c	230
5.4	Model parameters and R^2 values for the fitted damping ratio vs. shear strain correlation at different R_c	232
6.1	Machine learning application for MSW model prediction	240
6.2	Root Mean Squared Error (RMSE) values obtained from prediction model analysis	251
6.3	Sensitivity indices for the first-level interactions	252
A.1	Properties of the reinforcing material used	318
A.2	Strength ratio values obtained from the experimental study	330
A.3	Variation of dynamic shear strength parameter with the number of reinforcement layers	337

NOMENCLATURE

- AASHTO- American association of state highway and transportation officials
- AI- Artificial intelligence
- ANN- Artificial neural network
- B- Skempton's pore pressure parameter
- **BE-** Bender element
- **BPNN-** Backpropagation neural network
- c- Cohesion
- C&D- Construction and demolition
- C.C.- Cross-correlation
- CBR- California bearing ratio test
- Cc- Coefficient of curvature
- Cc- Compression index
- CD- Consolidated drained
- CIF- Central instrument facility
- CIPET- Central institute of plastic engineering and technology
- COD_d- Dissolved chemical oxygen demand
- CODt- Total chemical oxygen demand

CPCB- Central pollution control board

CPT- Cone penetration test

CSR- Cyclic stress ratio

CTX- Cyclic triaxial

Cu- Coefficient of uniformity

CU- Consolidated undrained

 C_{v} - Coefficient of consolidation

D- Material damping ratio

DI- Deionized

DOC- Dissolved organic carbon

DS- Direct shear

DSS- direct simple shear

DST- Direct shear test

e- Void ratio

EDTA- Ethylene diamine tetra acetic acid

EDX- Energy dispersive x-ray

ELFM- Enhanced landfill mining

ELV- End of the life vehicle

EPR- Evolutionary polynomial regression

f-Loading frequency

- FAO- Food and agriculture organization
- FC- Fiber content
- FL- Fiber length
- G- Secant/ dynamic shear modulus
- G/Gmax- Normalized shear modulus reduction
- GDP- Gross domestic product
- G_{max}- Small strain shear modulus
- GP- Genetic programming
- GPR- Gaussian process regression
- GRU- Gate recurrent unit
- Gs- Specific gravity
- HDPE- High density polyethylene
- INDOT -Indiana department of transportation
- IRC- Indian road congress
- IS- Indian standard
- IW- Industrial waste
- k- Coefficient of permeability
- kN- Kilo newton
- kPa- Kilopascal
- LBR- Laboratory leach bed reactors

LFM- Landfill mining

LFMSF -landfill-mined soil fraction

LSTM- Long short-term memory

MAM- Microtremor analysis method

MASW- Multichannel analysis of surface waves

MBT- Mechanically biologically treated

MC -Moisture content

MDD- Maximum dry density

MICP -Microbiologically induced calcium carbonate precipitation

ML- Machine learning

ml- Millilitres

MNRE- Ministry of new and renewable energy

MoEF &CC- Ministry of environment, food, and climate change

MPa- Megapascal

MSW- Municipal solid waste

MSWC -MSW compost

MT- Million metric tonnes

N- Number of cycles

NJDEP -New jersey department of environmental protection

N_L -Initial cycles of liquefaction

NP- Non-plastic

- NTPC- National thermal power corporation limited
- OMC- Optimum moisture content
- P.P.- Peak-to-peak
- p'- Mean effective stress
- PAH- Polycyclic aromatic hydrocarbons
- PCC- Pollution control committees
- PETE- Polyethylene terephthalate
- PI- Plasticity index
- PWP- Pore water pressure
- q- Deviator stress (dynamic loading case)
- qmax- Maximum deviator stress
- q_u- Unconfined compressive strength
- **R-**Reinforced
- **RBF-** Radial basis function
- RC- Resonant column
- RCTS- Resonant column torsional shear
- RDCSCC- Residential direct contact soil clean up criteria
- **RDF-** Refuse-derived fuel
- **RE-**Reinforced earth

REEs- Rare earth elements

- RNN- Recurrent neural network
- ru- Excess PWP (pore water pressure) ratio
- S.S.- Start-to-start
- SASW- Spectral analysis of surface waves
- SEM- Scanning electron microscope
- SEPA- Swedish environmental protection agency
- SLM- Soil-like material
- SM- Silty sand
- SPCB- State pollution control board
- SPT- Standard penetration tests
- SR- Strength ratio
- SS- Simple shear
- SVM- Support vector machine
- SWM- Solid waste management
- TDS- Total dissolved solids
- TOC- Total organic carbon
- TPD- Tonnes per day
- TX- Triaxial
- UCS- Unconfined compression test

UR- Unreinforced

- US TCLP- United states toxicity characteristic leaching procedure
- USCS- Unified soil classification system
- USEPA- United states environmental protection agency
- UU- unconsolidated undrained
- *V_p* Compression wave velocity
- V_s Shear wave velocity
- WST- Weight sounding test
- WtE- Waste-to-energy
- XRD- X-ray diffraction
- XRF- X-ray fluorescence
- $\Delta u =$ Change in pore pressure
- Δ W- Dissipated energy/ unit volume
- $\Delta \sigma_c$ = Change in confining pressure
- λ Wavelength
- ρ Material density
- δ Degradation index
- ε Axial strain
- $\boldsymbol{\varphi}$ Internal friction/ Angle of friction
- γ- Shear strain

µm- micrometer

- σ_c =Effective confining pressure
- σ_c Confining pressure
- σ_{d} Deviator stress (static loading case)
- σ_v vertical stress
- τ Shear strength