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ABSTRACT 

 

Municipal solid waste (MSW) management is a leading challenge for humans 

currently. As we not only have to deal with the daily generated waste but also must find 

the solutions for already generated waste which still lying somewhere on the earth's 

surface. Landfilling which use to be the most viable option to get rid of our waste is no 

longer an acceptable disposal option left. Poor waste management and increasing waste 

generation have become environmental and health hazards. Now, this piled-up waste 

from decades in these landfills causes an alarming situation and can’t be ignored. Other 

than sanitary landfills there are numerous unsanitary landfills and open dump sites 

which create more dangerous situations in the environment. One of the ways to deal 

with it could be extracting the waste from the landfills and recirculating the material 

and land cost in the economy, through enhanced landfill mining techniques. The most 

abundantly excavated material from sanitary landfills or open dump sites is the 

municipal solid waste (MSW) fine fractions which consist of more than 50% of the 

waste composition. These fine fractions also called “MSW fines/soil-like material” 

have the potential to be used as a bulk replacement for construction/geomaterials. 

Before this material can be used in bulk in fields as geomaterials in structures, it is 

important to check the behaviour of the considered material under realistic loading 

conditions (monotonic or dynamic). The heterogenic characteristic of the MSW is the 

major factor that influences all the other parameters and makes this material more 

unpredictable and challenging to reuse. The material characteristic of the MSW is very 

specific to the site it has been collected (origin of the waste), so it requires specified 

pilot projects to deal with the waste locally. The data from these pilot projects can be 
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further helpful to predict or model general geotechnical parameters (static or dynamic). 

Contributing to this objective a comprehensive experimental program has been 

planned. The MSW fines (particle size less than 4.75 mm) which contribute to the major 

portion of the decomposed waste and closely resemble the soil have been the focus of 

the study. The sample was collected from the local site Ramana in Varanasi. After 

segregation and processing, about 60% of waste was characterized as MSW fines. The 

basic physical, chemical, and geotechnical characterization of the waste categorize the 

MSW fines as lightweight, non-plastic silty sand-type material with good shear strength 

properties (cohesion and friction angle from 31.37 to 42.19 kPa and 26.69° to 30.74°, 

for relative compaction of 95 to 99% respectively) with an organic content of 5.9% and 

slight acidic behaviour. The study on MSW fines has been continued under static and 

cyclic loading conditions for unreinforced and reinforced categories. A set of 100 

strain-controlled cyclic triaxial tests under consolidated undrained conditions were 

performed to study the cyclic behaviour of the considered MSW fines. The sensitivity 

of different parameters (relative compaction, effective confining pressure, cyclic shear 

strain, and loading frequency) on dynamic properties (dynamic shear modulus (G) and 

damping ratio (D)) of the MSW fines was evaluated. The MSW fines were reinforced 

with randomly distributed fibers which were also part of the waste collected from 

another site Karsada, Varanasi. These fibers were mixed to the MSW fines in 0.5, 1, 2, 

4, 8, and 10%. The static and dynamic strength of the composite mix was evaluated to 

find the optimum percentage of fiber content in the mix. Through static strength tests, 

the optimum fiber content can be decided as 8%. But, the improvement in dynamic 

shear strength can’t be seen as governed by the dynamic shear modulus of the material. 

The inclusion of fibers enhances the damping parameter of the MSW fines and can be 

used as shock absorbers but does not help in excess pore water pressure dissipation. It 
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can be concluded from the results that under static conditions, these waste fibers work 

satisfactorily and can be used as backfill or embankment material but has limited 

applications in high seismic zones.  

Moreover, the small-strain shear modulus of unreinforced and fiber-reinforced 

MSW fines was evaluated through the laboratory bender element apparatus. The data 

evaluated from the laboratory tests were further used to develop empirical correlations 

for the unreinforced and fiber-reinforced MSW fines. Based on the experimental test 

results, the excess pore water pressure (ru) model for the fiber-reinforced MSW fines 

was established. A cubic polynomial model was applied to correlate the normalized 

small-strain shear modulus (GR/GUR) and normalized shear strength (R/UR) of the 

reinforced and unreinforced MSW fines. Nonlinear models were fitted for the 

normalized shear modulus and damping ratio with cyclic shear strain for both the 

unreinforced and reinforced MSW fines. Further, the dynamic shear modulus data 

obtained from the cyclic triaxial tests of the unreinforced and reinforced MSW fines 

was used for the prediction model of MSW fines (dynamic shear modulus) through two 

machine learning techniques, i.e., Artificial neural network (ANN) and Gaussian 

process regression (GPR). The GPR model predicts better results for the dynamic shear 

modulus of unreinforced and reinforced MSW fines. The sensitivity analysis of the 

considered parameters on the dynamic shear modulus of MSW fines also correlated 

with the experimental results. 
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