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ABSTRACT Peer-to-peer (P2P) trading is essential in maximising the benefits of renewable integration.
The paper proposes a novel framework for economic benefit through P2P trading among buildings at
different geographical locations. The number of transactions is reduced by grouping the buildings into virtual
communities (VCs) based on their geographical locations. A non-cooperative game is formulated and solved
in a decentralised manner for the energy management of individual buildings, building-to-building (B2B)
energy exchange, building-to-community (B2C) energy exchange, energy management of the respective
VC, and community-to-community (C2C) energy exchange. Load shifting is used to incorporate demand-
side management. Cloud computing-based proposed algorithm is used for determining the energy profile
and prices for each internal transaction (B2B, B2C, and C2C) separately to encourage the participation of
each building by benefiting them appropriately and avoiding privacy/security issues normally arising in any
data-centric framework. A shareable battery energy storage system (BESS) is also assumed to be present in
each VC. Load shifting is used in the modelling of buildings to incorporate demand-side management.

INDEX TERMS BESS, decentralized optimization, demand response, generalized Nash equilibrium, peer-
to-peer energy sharing.

NOMENCLATURE
ϵCE Charges due to carbon emission.
ϵLC Load curtailment factor.
Pchn,h,P

dis
n,h Charging/discharging power of battery.

ηlossn Self-discharge related parameter of the
battery of VC n.

3dis
h Weighted coefficient for discomfort due

to load shifting at hour h.
3im
h , 3ex

h Price of power import/export from/to util-
ity.

3UTI Battery utilization cost.
µ,ν Given constants.
σ ,ω,δ Auxiliary variables, dual multipliers,

penalty parameters respectively.
dc2cn,m distance between VC n and VC m.
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i,j,n,m,h Indices ∈ N.
Kd Cost coefficient of distance.
Lmaxn,i,h,L

min
n,i,h Maximum/minimum limit for load shift-

ing.
N b
n Number of buildings in the VC n.

N c Number of VCs.
Pb2bn,i,j,h,π

b2b
n,i,j,h Power imported by building i from build-

ing j and the respective payment.
Pb2cn,i,h,π

b2c
n,i,h Power imported by building i from its VC

n and the respective payment.
Pc2cn,m,h,π

c2c
n,m,h Power imported by VC n from VC m and

the respective payment.
ηchn ,ηdisn Charging/discharging efficiency of the

battery of VC n.
Pbn,i,h,P

s
n,i,h Power import/export from/to utility.

Plsn,i,h,Ln,i,h Shifted load and Actual load respectively.
Pmaxn,i ,P

min
n,i Power exchange limit of building i from

VC n.

21686

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-1754-4931
https://orcid.org/0000-0002-3905-9865
https://orcid.org/0000-0001-9210-0364
https://orcid.org/0000-0003-0947-3616


M. Mishra et al.: Scalable and Computational Efficient Peer-to-Peer Energy Management Scheme

Pchmaxn ,Pchminn Maximum/minimum limit for charg-
ing power of the battery of VC n.

Pdismaxn ,Pdisminn Maximum/minimum limit for dis-
charging power of the battery of VC
n.

qxb,qπb Current power/price strategy set of
buildings.

qxc,qπc Current power/price strategy set of
VCs.

Rn,i,h Total renewable generation by build-
ing i of VC n.

toll1,toll2 Tolerances.
SOCmax

n ,SOCmin
n Maximum/minimum limit for SOC of

the battery of VC n.
SOCn,h State of charge of the battery of the

VC n at hour h.
PR,DR Primal and dual residuals.

I. INTRODUCTION
Nowadays many buildings are equipped with renewable
energy sources (RESs) and battery energy storage system
(BESS) facilities to reduce the energy demand from the util-
ity grid, giving rise to the concept of (nearly) zero energy
buildings (ZEBs) [1]. Several studies on optimised models of
nearly ZEB solutions have been reported in the literature [2],
[3]. BESS, used to reduce power fluctuations of RESs, can
be installed either by individual buildings on their own or
can be installed jointly for a group of buildings [4], [5].
In comparison with the individual BESS, the shared BESS
gives more profit by incorporating the idle resources and
removing the individual ownership [5]. The net energy cost
of buildings can also be reduced by using demand-side man-
agement, i.e., shifting the load from high electricity price
periods to low price periods [6]. However, the load shift may
cause discomfort to the consumers residing in the buildings,
which is accounted for by adding a penalty charge to the
cost function. Instead of selling excess energy to the grid,
buildings can share it among themselves for better economic
benefits. Such an energy exchange is usually referred to as
Peer-to-Peer (P2P) energy sharing.

The P2P framework proposed in [7] uses the concept of
energy community and involves a community manager for
trading. A local trading centre (LTC) is proposed in [8] that
manages the P2P market. In [8], two different types of LTCs,
profit and non-profit-oriented, have been studied. A demand-
side management system has been introduced in [9] for coor-
dinated P2P energy sharing.

The main drawback with these frameworks is the presence
of centralised agents or centralised optimisation, which raises
concerns related to data privacy for prosumers.

Decentralized approaches have been adopted in the lit-
erature for privacy-preserving energy-sharing frameworks.
A Stackelberg-Nash game, proposed in [10] for P2P energy
sharing, preserves the privacy of the participants with the

help of an operation model based on enhanced Benders
decomposition. A two-stage distributed optimisation model,
based on cooperative game theory, is proposed in [11] for
P2P energy sharing in a small community. In the first stage,
it is decided whether to participate or not in P2P energy
sharing with the help of their social utility function, and
power profiles are calculated if they decide to participate. The
associated payment of P2P sharing is calculated in the second
stage. For designing a P2P energy-sharing framework, game
theory proves to be an effective tool [12].

P2P energy trading among a large number of participants
(buildings) leads to an increase in computational complexity
and consequently the requirement for a robust communica-
tion infrastructure alongwith privacy concerns also increases.
Further, the P2P energy-sharing model proposed in these
works assumes the buildings to be geographically close,
which, in practice, may not be the case.

A flexible energy strategy with a multi-energy coupling
matrix is used in [13]. In [13], the authors discussed pro-
sumers’ multiple roles, i.e., buyer or seller. A game theo-
retic model is presented in [14] where sellers play a non-
cooperative game for price competition, and buyers are
involved in an evolutionary game for seller selection com-
petition. In [15], a two-level energy market was proposed.
The first level deals with intra-community trading, while the
second deals with the transactions between the utility and the
community controller. BESS has not been considered in the
market proposed in [15]. The optimization model proposed
in [16] has the objective of social welfare maximisation
of sellers and buyers. However, sellers and buyers are pre-
defined for a time period. A Stackelberg game is proposed
in [17] where sellers’ pricing problem is dealt with in the
upper level, and buyers’ purchasing problem is dealt with
in the lower level. The blockchain-based framework [17]
doesn’t consider the demand response and energy storage
system that is usually present in practical applications.

References [13], [14], [15], [16], [17], and [18] classify
the prosumers as sellers or buyers at the beginning itself
depending upon the available excess energy. But for each time
period, the prosumer should have the autonomy to choose the
role of seller or buyer or both because demand responsive
load, BESS and other participants’ strategies may motivate
the prosumer to switch roles.

In addition to energy scheduling, P2P trading involves
price/incentive distribution among participants to motivate
them to engage in P2P energy trading. A dynamic pricing
model for P2P energy sharing is proposed in [19] that is based
on the supply and demand ratio (SDR) and is bounded by
the feed-in tariffs. A dynamic pricing mechanism based on
the modified SDR method is used in [20] with the help of
a compensating factor for encouraging energy sharing. For
incentive distribution, a mid-market rate (MMR) method was
proposed in [21]. Based on the surplus power available to
the prosumers, the trading price can be set using the MMR
method [22].
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The use of the SDR and MMR methods needs the partici-
pants to share their energy profiles. These methods cannot be
applied without compromising data privacy.

Based on the above literature survey, certain research gaps
have been identified. The scalability and maintaining privacy
at the same time is an issue in the approaches suggested in
the above works. When the number of participants increases,
the computational complexity increases [23], and thereby the
communication burden also increases. For P2P energy shar-
ing, the buildings are assumed to be geographically close [6],
[14]. If the buildings considered are geographically distant
from each other, then loss coefficients must be considered.
The pricing schemes suggested in the above work either
don’t guarantee fair benefits to all the participants or require
participants to share their energy profiles, compromising
their data privacy. The prosumers, in the existing literature,
are classified into sellers and buyers at the beginning itself.
A prosumer should have the autonomy to select the role of
seller or buyer or both dynamically. In the P2P energy-sharing
framework, most of the work uses a simplified model of
buildings. In real life, the buildings have smart equipment
and smart metering system that enables them to incorporate
demand-side management.

In view of the aforementioned limitations, this paper pro-
poses a decentralised P2P energy-sharing framework that
uses the concept of Virtual communities (VCs) to tackle
the issue of scalability. The proposed framework has been
realised as P2P energy sharing between nearby buildings and
between buildings located geographically far away to account
for energy losses. A charge is also added for long-distance
energy sharing. The proposed two-level P2P framework con-
siders a realistic model of buildings which can endogenously
decide their role (buyer or seller or both) to maximise their
profits. The pricing scheme proposed in this work guarantees
the fair distribution of economic benefits of the P2P energy
framework. The contribution of this paper can be summarised
as follows.

• Cloud computing-based decentralised P2P energy shar-
ing framework is developed to reduce the energy cost
of all buildings. The power exchanges and prices cor-
responding to the P2P transactions are determined in a
decentralised way using the proposed algorithm based
on a non-cooperative game.

• The proposed framework uses the concept of virtual
communities connected through a computing cloud for
P2P energy trading between nearby and geographi-
cally distant buildings. The network loss is incorporated
by adding penalty charges based on inter-community
distances.

• The proposed framework does not require the surplus or
the deficit energy status of each participant in advance
for P2P energy sharing. The roles of prosumers are
decided endogenously.

• The data privacy of each prosumer is preserved by cloud
computing-based decentralised framework without any
prerequisite information about their energy status.

FIGURE 1. Peer-to-Peer energy sharing framework.

This paper is organised as follows. Section II-A describes
the system model. The problem formulation is discussed in
Section II. The methodologies used and process flow are
described in section III. In Section IV, simulation results are
presented to demonstrate the effectiveness of the proposed
approach. Finally, conclusions are given in section V.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Figure 1, several buildings are clustered based
on geographical distances to form virtual communities (VCs).
Each VC has a BESS shared with the building of that VC.
These VCs are a hypothetical group of buildings and BESS
that are connected through a computing cloud. For the build-
ings of a VC, it is considered non-profit-based, but for other
VCs, it is considered a profit-based community. The concept
of VCs helps in taking advantage of P2P energy sharing
among buildings with a less computational and communi-
cation burden. Also, a shareable BESS is easy to manage
with a VC cloud. The buildings consist of RESs, i.e. solar
photovoltaic (SPV) and wind power generators (WPG), flex-
ible load, a local energy management system and advanced
metering infrastructure. The buildings are connected to the
utility through the local distribution network. In addition,
a secure platform for information sharing and cloud com-
puting is present in each community for building-to-building
(B2B) and building-to-community (B2C) energy and price
sharing. Similarly, a secure platform is used for community-
to-community (C2C) energy and price sharing. The commu-
nication infrastructure is assumed to be robust in this model.

B. COST MODEL OF BUILDINGS
The cost function for building i of VC n, Cb

n,i, comprises
the cost of power exchange with the utility (Cu

n,i,h), the cost
of discomfort experienced by the consumer in shifting load
(C ls

n,i), cost of B2B energy sharing (Cb2b
n,i,h) and cost of B2C
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energy sharing (Cb2c
n,i,h), i.e.,

Cb
n,i =

24∑
h=1

(Cu
n,i,h + C ls

n,i,h + Cb2b
n,i,h + Cb2c

n,i,h) (1)

1) EXCHANGE WITH THE UTILITY
Each building i of VC n can trade with the utility. The
respective cost function at hour h is given by

Cu
n,i,h = (3im

h + ϵCE )Pbn,i,h −3ex
h P

s
n,i,h. (2)

2) LOAD SHIFTING
The consumer’s discomfort due to load shifting [6] is added
as a penalty to the cost function:

C ls
n,i = 3dis

h (Plsn,i,h − Ln,i,h)2 (3)

The quantum of load shift is constrained as follows:

Lminn,i,h ≤ Plsn,i,h ≤ Lmaxn,i,h, (4)
24∑
h=1

Plsn,i,h = ϵLC
24∑
h=1

Ln,i,h. (5)

Here, ϵLC = 1 for no load curtailment and ϵLC < 1 for load
curtailment.

3) B2B AND B2C ENERGY EXCHANGE
The cost of intra-VC B2B energy exchange is given by:

Cb2b
n,i,h =

N b
n∑

j=1
j̸=i

πb2bn,i,j,hP
b2b
n,i,j,h, (6)

The cost of B2C energy exchange is given by:

Cb2c
n,i,h = πb2cn,i,hP

b2c
n,i,h. (7)

Here, Pb2bn,i,j,h > 0 when ith building is importing from jth

building, while Pb2bn,i,j,h < 0 when exporting to jth building.
Similarly, Pb2cn,i,h > 0 when ith building is importing from the
VC and Pb2cn,i,h < 0 when it is exporting to the community.
Constraints related to B2B and B2C sharing are as follows:

Pb2bn,i,j,h + Pb2bn,j,i,h = 0, (8)

πb2bn,i,j,h = πb2bn,j,i,h, (9)

3ex
h ≤ πb2bn,i,j,h ≤ 3im

h , (10)

3ex
h ≤ πb2cn,i,h ≤ 3im

h . (11)

Here, (8) and (9) are constraints for B2B transactions. While
(10) and (11) are used to encourage more B2B and B2C
transactions than transactions with utility. The load balance
is given as follows:

Psn,i,h − Pbn,i,h −

N b
n∑

j=1
j̸=i

Pb2bn,i,j,h − Pb2cn,i,h = Rn,i,h − Plsn,i,h, (12)

Pminn,i ≤ Psn,i,h − Pbn,i,h −

N b
n∑

j=1
j̸=i

Pb2bn,i,j,h − Pb2cn,i,h ≤ Pmaxn,i . (13)

Here, (13) ensures the power exchange limits of the buildings.
Let γb :=[Pb ≥ 0, Ps ≥ 0, (4), (5), (8) to (13)].

C. COST MODEL OF VIRTUAL COMMUNITY
The VC charges/discharges the common BESS participates
in C2C transactions. The cost function for the VC n is given
by:

Cc
n =

24∑
h=1

(CBat
n,h + Cc2c

n,h ). (14)

1) BATTERY ENERGY STORAGE SYSTEM (BESS)
In this paper, the BESS utilization cost is considered, while
the installation cost of the BESS is not incorporated. Thus,
the cost of the BESS is given by:

CBat
n,h = 3UTI (Pchn,h + Pdisn,h), (15)

Pchminn ≤ Pchn,h ≤ Pchmaxn , (16)

Pdisminn ≤ Pdisn,h ≤ Pdismaxn , (17)

SOCn,h = (1 − ηlossn )SOCn,h−1 + ηchn P
ch
n,h − ηdisn Pdisn,h (18)

SOCmin
n ≤ SOCn,h ≤ SOCmax

n . (19)

Constraints (16) and (17) impose maximum and minimum
limits on the charging and discharging power of the BESS.
The state of charge (SOC) update equation is defined by (18).
The SOC level is constrained by (19).

2) C2C ENERGY EXCHANGE
The C2C energy exchange cost includes the cost of inter-VC
energy exchanges and penalties based on inter-VC distances.
The penalty only applies to VCs exporting energy to other
VCs. The cost function is as follows:

Cc2c
n,h =

N c∑
m=1
m̸=n

πc2cn,m,hP
c2c
n,m,h +

N c∑
m=1
m̸=n

Kddc2cn,mP
c2caux
n,m,h . (20)

Here, the auxiliary variable, Pc2c
aux

n,m,h , is used to penalise only
power export such that Pc2c

aux

n,m,h ≥ −Pc2cn,m,h and Pc2c
aux

n,m,h ≥ 0.
The objective Cc2c

n,h is subjected to the following constraints.

Pc2cn,m,h + Pc2cm,n,h = 0, (21)

πc2cn,m,h = πc2cm,n,h, (22)

3ex
h ≤ πc2cn,m,h ≤ 3im

h , (23)

Pdisn,h − Pchn,h +

N c∑
m=1
m̸=n

Pc2cn,m,h =

N b
n∑

i=1

Pb2cn,i,h. (24)

Here (21)-(23) are C2C power exchange and price related
constraints. In (24), network losses and other losses are
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neglected. If Pc2cn,m,h > 0 then nth VC is importing from mth

VC and if Pc2cn,m,h < 0 then nth VC is exporting to mth VC.
The VC is considered a non-profit entity for its buildings.

Hence, payments received or made by a VC will be dis-
tributed among the buildings within the VC as follows:

24∑
h=1

(CBat
n,h + Cc2c

n,h ) =

24∑
h=1

N b
n∑

i=1

πb2cn,i,hP
b2c
n,i,h. (25)

Let γc :=[(16) to (19), (21) to (25)].

III. METHODOLOGY
A. SCHEDULING ENERGY PROFILES
1) NON-COOPERATIVE GAME
A non-cooperative game is used for scheduling energies of
various buildings and VCs. Letψ denote the non-cooperative
game, which comprises:

(i) Players: All buildings and VCs are players in the game.
(ii) Strategies: For buildings, the strategy is denoted by:

xbn,i,h := (Pbn,i,h,P
s
n,i,h,P

ls
n,i,h,P

b2b
n,i,j,h,P

b2c
n,i,h) and

πbn,i,h:=(πb2cn,i,h,π
b2b
n,i,j,h) such that both are within the

feasible set γb. For VCs, the strategy is denoted by:
xcn,h := (Pchn,h,P

dis
n,h,P

c2c
n,m,h) and π

c
n,h := (πc2cn,m,h) such

that both are within the feasible set γc.
(iii) Cost function (CF): The main goal is to minimise the

cost function for all the buildings of all the VCs. So,
here the cost function is Cb

n,i.

For the game ψ , let z∗p be the generalised nash equilibrium
(GNE) of player ‘p’ where zp is the strategy of the player
‘p’ such that: zp∈(xbn,i,h,π

b
n,i,h,x

c
n,h,π

c
n,h). This is only possible

if CF(z∗p, z
∗
−p) ≤ CF(zp, z∗−p) where z−p is the strategy of

other players except the player ‘p’. To find the GNE, a reg-
ularised Nikaido-Isoda-function (also known as NI-function)
is used [24]. The NI function is denoted by φ(z, q), where
q has the same dimensions as z. Thus, the regularised NI
function is given by:

φ(z, q)=
players∑
p

[CF(zp, z−p) − CF(qp, z−p)] −
ρ

2
||z− q||22.

(26)

The above function denotes the total gains of a player if it
switches from its current strategy zp to qp regardless of other
players’ strategies. Here ρ is a known parameter. Let τ be the
gain maximizer function such that:

τ (z, q) = argmax
q∈(γb,γc)

φ(z, q). (27)

τ (z, q) = argmax
q∈(γb,γc)

players∑
p

[CF(zp, z−p)

− CF(qp, z−p)] −
ρ

2
||z− q||22. (28)

The first term represents the current strategy which can be
ignored. Therefore,

τ (z, q) = argmin
q∈(γb,γc)

players∑
p

[CF(qp, z−p)] +
ρ

2
||z− q||22. (29)

The cost function is Cb
n,i. So, using (1), we can write:

τ (z, q) = argmin
q∈(γb,γc)

24∑
h=1

N c∑
n=1

N b
n∑

i=1

[Cu
n,i,h + C ls

n,i,h + Cb2b
n,i,h

+Cb2c
n,i,h] +

ρ

2
||z− q||22. (30)

According to (8) and (9), there will be no effect on the total
cost of the B2B (Cb2b

n,i,h) in the above equation. Thus,

τ (z, q) = argmin
q∈(γb,γc)

24∑
h=1

N c∑
n=1

[ N b
n∑

i=1

(Cu
n,i,h + C ls

n,i,h)

+

N b
n∑

i=1

Cb2c
n,i,h

]
+
ρ

2
||z− q||22. (31)

According to (25),
∑N b

n
i=1 C

b2c
n,i,h in the above equation can be

replaced as:

τ (z, q) = argmin
q∈(γb,γc)

24∑
h=1

N c∑
n=1

[ N b
n∑

i=1

(Cu
n,i,h + C ls

n,i,h)

+(CBat
n,h + Cc2c

n,h )
]

+
ρ

2
||z− q||22. (32)

Here, Cc2c
n,h will consist only of the penalty charged based on

the distance between the VCs. There will be no effect on the
actual cost of importing/exporting power because of (21, 22).
Thus,

τ (z, q) = argmin
q∈(γb,γc)

24∑
h=1

N c∑
n=1

[ N b
n∑

i=1

(Cu
n,i,h + C ls

n,i,h) + CBat
n,h

+Cc2cdistance
n,h

]
+
ρ

2
||z− q||22. (33)

It is observed from (33), that there is no reasonable solution
for πbn,i,h and π

c
n,h using above method. Therefore, the solu-

tions will be found separately in III-B, while only the energy
profiles are found as follows:

τ (z, q) = argmin
q∈(γb,γc)

24∑
h=1

N c∑
n=1

[ N b
n∑

i=1

(Cu
n,i,h + C ls

n,i,h) + CBat
n,h

+Cc2cdistance
n,h

]
+
ρ

2
||zxb − qxb||22 +

ρ

2
||zxc − qxc||22.

(34)

To find the GNE of the game, τ (z, q) is solved iteratively to
get the best response z∗p such that φ(z∗, q) = 0.
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2) DECENTRALIZATION
In the proposed framework, finding the GNE of the
non-cooperative game, described in section III-A1, involves
building level and VC level problems with their coupling
constraints. The building level and VC level are also cou-
pled. Algorithm 1 uses alternating direction method of
multipliers (ADMM) [25] in a nested manner to solve
the problem described in (34). Based on nested ADMM,
Algorithm 1 is proposed for a decentralised solution by
decoupling the coupled constraints using the auxiliary vari-
ables (σ b2bn,i,j,h,σ

b2c
n,i,h,σ

c2c
n,m,h) as follows:

σ b2bn,i,j,h = Pb2bn,i,j,h, (35)

σ b2bn,i,j,h + σ b2bn,j,i,h = 0, (36)

σ b2cn,i,h = Pb2cn,i,h, (37)

Pdisn,h − Pchn,h +

N c∑
m=1
m̸=n

Pc2cn,m,h =

N b
n∑

i=1

σ b2cn,i,h, (38)

σ c2cn,m,h = Pc2cn,m,h, (39)

σ c2cn,m,h + σ c2cm,n,h = 0. (40)

Thus, constraints (8), (24), and (21) are replaced by con-
straints (35, 36), (37, 38), and (39, 40), respectively. The
augmented Lagrangian becomes:

L(q, σ, ω)

=

24∑
h=1

N c∑
n=1

[ N b
n∑

i=1

(Cu
n,i,h + C ls

n,i,h +

N b
n∑

j=1
j̸=i

δ1

2
(qxb

b2b

n,i,j,h

−σ b2bn,i,j,h+
ωb2bn,i,j,h

δ1
)2+

δ2

2
(qxb

b2c

n,i,h −σ b2cn,i,h+
ωb2cn,i,h

δ2
)2)+CBat

n,h

+Cc2cdistance
n,h +

δ3

2
(qxc

c2c

n,m,h − σ c2cn,m,h +
ωc2cn,m,h

δ3
)2

]
+
ρ

2
||zxb − qxb||22 +

ρ

2
||zxc − qxc||22. (41)

(41) is split into four parts as follows:

• For building i of VC n,

F1(qxb, σ b2b, σ b2c)

=

24∑
h=1

[Cu
n,i,h + C ls

n,i,h

+

N b
n∑

j=1
j̸=i

δ1

2
(qxb

b2b

n,i,j,h − σ b2bn,i,j,h +
ωb2bn,i,j,h

δ1
)2

+
δ2

2
(qxb

b2c

n,i,h − σ b2cn,i,h +
ωb2cn,i,h

δ2
)2] +

ρ

2
||zxb − qxb||22.

(42)

• For B2B auxiliary variable update of VC n,

F2(qxb, σ b2b) =

24∑
h=1

N b
n∑

i=1

N b
n∑

j=1
j̸=i

δ1

2
(qxb

b2b

n,i,j,h − σ b2bn,i,j,h

+
ωb2bn,i,j,h

δ1
)2. (43)

• For VC n,

F3(qxb, qxc, σ b2c, σ c2c)

=

24∑
h=1

[
N b
n∑

i=1

(
δ2

2
(qxb

b2c

n,i,h − σ b2cn,i,h

+
ωb2cn,i,h

δ2
)2) + CBat

n,h + Cc2cdistance
n,h +

N c∑
m=1
m̸=n

δ3

2
(qxc

c2c

n,m,h

−σ c2cn,m,h +
ωc2cn,m,h

δ3
)2] +

ρ

2
||zxc − qxc||22. (44)

• For C2C auxiliary variable update,

F4(qxc, σ c2c) =

24∑
h=1

N c∑
n=1

N c∑
m=1
m̸=n

[
δ3

2
(qxc

c2c

n,m,h

−σ c2cn,m,h +
ωc2cn,m,h

δ3
)2]. (45)

The entire process is explained in Algorithm 1. First, the
base strategies are initialized, followed by the minimization
of objective functions and updating of the decoupling vari-
ables in steps. At the beginning of the iteration, buildings
optimise their strategy (step 14), and then their B2B decou-
pling variables are updated (step 16). After this, each VC
will optimise their strategy and update the B2C decoupling
variables (step 20). At the end of the iteration, C2C decou-
pling variables are updated (step 25). The penalty parameters
are updated with the help of their respective primal residuals
(PR) and dual residuals (DR). In the end, the base strate-
gies are updated using the relaxation method [26] in step
37. The process is repeated until the tolerance is achieved,
as shown in step 39. The results of this program will be
xbn,i,h := (Pbn,i,h,P

s
n,i,h,P

ls
n,i,h,P

b2b
n,i,j,h,P

b2c
n,i,h) and xcn,h :=

(Pchn,h,P
dis
n,h,P

c2c
n,m,h), which will be used for payment distribu-

tion described in the next section.

B. PAYMENT DISTRIBUTION OF VARIOUS ENERGY
SHARING PROFILES
For the calculation of πbn,i,h := (πb2cn,i,h, π

b2b
n,i,j,h) and π

c
n,h :=

(πc2cn,m,h) in this work, Algorithm 1 is modified as described
below.

1) C2C PRICE
The price for each inter-VC energy sharing is computed. The
computed price is distributed among the buildings within
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Algorithm 1
1 Initialize ρ, toll1, toll2, d=1
2 For each VC,
3 For each building,
4 Initialize zxb(1) := (Pb(1),Ps(1),Pls(1),Pb2b(1),Pb2c(1))
5 End for.
6 Initialize zxc(1) := (Pch(1),Pdis(1),Pc2c(1))
7 End for.
8 Repeat
9 Intialise k=1, σ (1) = 0, and ω(1) = 0
10 Set δ(1), µ, ν
11 Repeat
12 For each VC,

———-Building level———–
13 For each building,
14 min

qxb∈γb
F1(qxb, σ b2b(k), σ b2c(k))

15 End for.
———-Intra-VC level———-

16 Update σ b2b: min
σb2b∈{(35),(36)}

F2(qxb(k + 1), σ b2b)

17 ω1(k+1) = ω1(k)+δ1(k)(qxb
b2b

(k+1)−σ b2b(k+1))
18 PR1 = ||qxb

b2b
(k + 1) − σ b2b(k + 1)||

19 DR1 = ||σ b2b(k + 1) − σ b2b(k)||
———-VC level———-

20 min
σb2c∈{(37),(38)}

qxc∈γc

F3(qxb(k + 1), qxc, σ b2c, σ c2c(k))

21 ω2(k+1) = ω2(k)+δ2(k)(qxb
b2c

(k+1)−σ b2c(k+1))
22 PR2 = ||qxb

b2c
(k + 1) − σ b2c(k + 1)||

23 DR2 = ||σ b2c(k + 1) − σ b2c(k)||
24 End for.

———-Inter-VC level———
25 Update σ c2c: min

σ c2c∈{(39),(40)}
F4(qxc(k + 1), σ c2c)

26 ω3(k + 1) = ω3(k) + δ3(k)(qxc
c2c

(k + 1) − σ c2c(k + 1))
27 PR3 = ||qxc

c2c
(k + 1) − σ c2c(k + 1)||

28 DR3 = ||σ c2c(k + 1) − σ c2c(k)||
———-Penalty-parameter update———-

29 Do for (PR1,DR1, δ1),(PR2,DR2, δ2), and (PR3,DR3, δ3)
30 If PR < µDR, then δ(k + 1) =

δ(k)
ν

31 elseif PR > DR
µ then δ(k + 1) = νδ(k)

32 else δ(k + 1) = δ(k)
33 End do.
34 k=k+1
35 Until ||{||ω1(k) − ω1(k − 1)|| + ||ω2(k) − ω2(k − 1)||

+||ω3(k) − ω3(k − 1)||}|| < toll2
36 Updating the strategies:
37 z(d + 1) =

1
k+1 z(d) +

k
k+1q(k)

38 d=d+1
39 Until ||z(d) − q(k)|| < toll1

the VC as described in III-B2. The game ψ is redefined as
follows:

(i) Players: All VCs will be players in the game.
(ii) Strategies: The strategies will include only πcn,h :=

(πc2cn,m,h) such that they are within the feasible set γc.
(iii) Cost function (CF): Here, every VC will try to reduce

its cost as mentioned in (14). All the other parameters
are either given or calculated from this equation, except
for πc2cn,m,h. Therefore, the cost function for nth VC
becomes:

CFn =

24∑
h=1

N c∑
m=1
m̸=n

πc2cn,m,hP
c2c
n,m,h. (46)

πc2cn,m,h should be such that:

Cb
n,i + Cc

n ≤ (Cb
n,i + Cc

n)
assuming
no c2c

. (47)

Therefore, the profit is more if C2C transactions take place.
As earlier, (29) is modified as follows:

τ (z, q) = argmin
q∈{(22),(23),(47)}

players∑
p

[CFp(qp, z−p)] +
ρ

2
||z− q||22.

(48)

τ (z, q) = argmin
q∈{(22),(23),(47)}

24∑
h=1

N c∑
n=1

N c∑
m=1
m̸=n

[qπcn,m,hP
c2c
n,m,h]

+
ρ

2
||zπc − qπc ||22. (49)

Here, zp ∈ (πc2cn,m,h) and ‘q’ have the same dimensions as that
of ‘z’. An auxiliary variable σ c2cn,m,h is used to deal with the
coupled constraint (22), such that:

σ c2cn,m,h = πc2cn,m,h, (50)

σ c2cn,m,h = σ c2cm,n,h. (51)

The modified augmented Lagrangian becomes:

Lπ
c
(q, σ, ω) =

24∑
h=1

N c∑
n=1

N c∑
m=1
m̸=n

[qπcn,m,hP
c2c
n,m,h +

δ3

2
(qπcn,m,h

−σ c2cn,m,h +
ωc2cn,m,h

δ3
)2] +

ρ

2
||zπc − qπc ||22.

(52)

In Algorithm 1, remove steps (3-5, 13-19, and 21-23), and the
rest of the steps is modified as follows.
In step 6, initialize zπc (1).
In step 20, for VC n, do

min
qπc∈{(22),(23),(47)}

F3(qπc , σ c2c(k)). (53)

Here,

F3 =

24∑
h=1

N c∑
m=1
m̸=n

[qπcn,m,hP
c2c
n,m,h +

δ3

2
(qπc

c2c

n,m,h − σ c2cn,m,h

+
ωc2cn,m,h

δ3
)2] +

ρ

2
||zπc − qπc ||22.

In step 25, update σ c2c by

min
σ c2c∈{(50),(51)}

F4(qπ
c2c
c (k + 1), σ c2c). (54)

Here,

F4 =

24∑
h=1

N c∑
n=1

N c∑
m=1
m̸=n

[
δ3

2
(qπc

c2c

n,m,h − σ c2cn,m,h +
ωc2cn,m,h

δ3
)2]. (55)

By applying the above modification in Algorithm 1, we will
get πc2cn,m,h for each VC. The same will be distributed among
the buildings within the VC.
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FIGURE 2. Flowchart of proposed energy sharing framework.

2) B2C AND B2B PRICE
All the energy profiles and prices for C2C transactions were
calculated earlier, which will be used to compute B2C and
B2B prices. A modified version of Algorithm 1 is again used.
The game ψ is redefined as follows:
(ii) Players: All buildings are players in the game.
(ii) Strategies: The strategies will include only πbn,i,h :=

(πb2cn,i,h, π
b2b
n,i,j,h) such that they are within the feasible

set γb.
(iii) Cost function (CF): Every building will try to minimise

cost. Other parameters are already calculated except
(πb2cn,i,h and π

b2b
n,i,j,h). Thus for i

th building of nth VC,

CFn,i =

24∑
h=1

[πb2cn,i,hP
b2c
n,i,h +

N b
n∑

j=1
j̸=i

πb2bn,i,j,hP
b2b
n,i,j,h]. (56)

This πb2cn,i,h and π
b2b
n,i,j,h should be such that

Cb
n,i ≤ Cb

n,i
assuming

no b2c and no b2b

(57)

Therefore, B2C and B2B transactions increase profits. Let
γ π1 :=[(10), (11), (57)] and γ π2 :=[(9), (25)]. As earlier, (29)

is modified as follows:

τ (z, q) = argmin
q∈{γ π1 ,γ

π
2 }

players∑
p

[CFp(qp, z−p)] +
ρ

2
||z− q||22,

(58)

τ (z, q) = argmin
q∈{γ π1 ,γ

π
2 }

24∑
h=1

N c∑
n=1

N b
n∑

i=1

{qb2cn,i,hP
b2c
n,i,h +

N b
n∑

j=1
j̸=i

qb2bn,i,j,h

Pb2bn,i,j,h} +
ρ

2
||zπ

b2b
− qπ

b2b
||
2
2 +

ρ

2
||zπ

b2c
− qπ

b2c
||
2
2.

(59)

Here, zπ
b

∈ (πbn,i,h, π
b
n,i,j,h) and ‘q’ have the same dimensions

as that of ‘z’. Auxiliary variables σ b2cn,i,h and σ
b2b
n,i,j,h are used to

handle the coupled constraint γ π2 :

σ b2bn,i,j,h = πb2bn,i,j,h, (60)

σ b2bn,i,j,h = σ b2bn,j,i,h, (61)

σ b2cn,i,h = πb2cn,i,h, (62)

(CBat
n,h + Cc2c

n,h ) =

N b
n∑

i=1

σ b2cn,i,hP
b2c
n,i,h. ∀n (63)
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TABLE 1. Comparison of all the cases.

FIGURE 3. (a) Load profile of buildings in all communities, (b) RES power
generation.

The modified augmented Lagrangian becomes:

Lπ
b
(q, σ, ω)

=

24∑
h=1

N c∑
n=1

N b
n∑

i=1

[qb2cn,i,hP
b2c
n,i,h +

N b
n∑

j=1
j̸=i

qb2bn,i,j,hP
b2b
n,i,j,h

+

N b
n∑

j=1
j̸=i

δ1

2
(qπ

b2b

n,i,j,h − σ b2bn,i,j,h +
ωb2bn,i,j,h

δ1
)2+

δ2

2
(qπ

b2c

n,i,h − σ b2cn,i,h

TABLE 2. Community-to-community power exchange.

+
ωb2cn,i,h

δ2
)2]+

ρ

2
||zπ

b2b
− qπ

b2b
||
2
2 +

ρ

2
||zπ

b2c
− qπ

b2c
||
2
2.

(64)

In Algorithm 1, remove steps related to the VC’s optimisa-
tion, i.e. remove steps (6 and 25-28) and modify accordingly.
In Step 4, initialize zπ

b
. In step 14, for building i of VC n do

min
qπb∈γ π1

F1(qπ
b
, σ b2b(k), σ b2c(k)). (65)

Here,

F1 =

24∑
h=1

[qb2cn,i,hP
b2c
n,i,h +

N b
n∑

j=1
j̸=i

qb2bn,i,j,hP
b2b
n,i,j,h +

N b
n∑

j=1
j̸=i

δ1

2
(qπ

b2b

n,i,j,h

−σ b2bn,i,j,h +
ωb2bn,i,j,h

δ1
)2 +

δ2

2
(qπ

b2c

n,i,h − σ b2cn,i,h +
ωb2cn,i,h

δ2
)2]

+
ρ

2
||zπ

b2b
− qπ

b2b
||
2
2 +

ρ

2
||zπ

b2c
− qπ

b2c
||
2
2.

In step 16, for each VC n, update σ b2b by

min
σ b2b∈{γ π2 }

F2(qπ
b2b

(k + 1), σ b2b). (66)

Here,

F2 =

24∑
h=1

N b
n∑

i=1

N b
n∑

j=1
j̸=i

δ1

2
(qπ

b2b

n,i,j,h − σ b2bn,i,j,h +
ωb2bn,i,j,h

δ1
)2.
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FIGURE 4. Building to Utility Power Exchange (a) Case I , (b) Case II , (c) Case III .

FIGURE 5. (a) The charging and discharging power of VC’s battery, (b) C2C
Net Power Exchange.

In step 20, for each VC n, do

min
σ b2c∈{γ π2 }

F3(qπ
b2c
(k + 1), σ b2c). (67)

where,

F3 =

24∑
h=1

N b
n∑

i=1

[
δ2

2
(qπ

b2c

n,i,h − σ b2cn,i,h +
ωb2cn,i,h

δ2
)2]. (68)

Thus, all the energy schedules and the respective prices
for various energy-sharing schedules are computed. All the
discussed steps of P2P energy sharing and the correspond-
ing price determination are summarised in the flowchart as
depicted in Figure 2.

IV. SIMULATION RESULTS
In this work, nine (09) buildings having different load profiles
(Figure 3(a)) and renewable generations (Figure 3(b)) are
considered. The buildings are clustered into three (3) VCs
(C1, C2, and C3), each comprising three (03) buildings.
In Figure 3(b), the SPV and WPG data are given for the
rated capacity of 125kW and 100kW, respectively. All build-
ings in C1 and buildings 2 and 3 in C2 have 125 kW, and
100 kW of SPV and WPG installed capacity, respectively.
SPV and WPG installed capacities are 100 kW and 50 kW,
respectively, in all other buildings. Each VC has a BESS of
200kW. The SOC level is to bemaintained in [20%,90%]. The
charging and discharging power is limited to 50kW for all the
BESSs. ηch and ηdis are 96% and 106%, respectively. ηloss

and the BESS utilization cost is equal to 0.5% and 0.06$/kW,

respectively. A time-varying energy price (Figure 8) is con-
sidered for energy exchange (import and export) with the
utility. The charge for carbon emission is 0.05$/kW. Since
no load curtailment is done, the load curtailment factor is 1.
The coefficient of discomfort is 0.03$/kW 2. The load can
be shifted up to ±10%. Other parameters are ρ = 0.01,
σ = 0.02, toll1 = 0.01, toll2 = 0.001, µ = 0.02, and ν = 2.
The code is implemented on a laptop with a Core i3 1.20 GHz
processor with 4 GB RAM. GAMS/CONOPT4 solver is used
for optimization.
To show the effectiveness of the proposed P2P framework,

four different cases are considered:
Case I (Base case): In this case, all the buildings man-

age their energy to meet their load demand. Buildings can
exchange energy with the utility only.
Case II: In this case, B2B and B2C transactions are

considered.
Case III: In an extension to the second case, C2C transac-

tions are also considered.
Case IV: This case is similar to Case III. In addition,

penalty charges based on the distance between VCs are con-
sidered in C2C transactions.

Table 1 shows the summary of results for all the cases.
InCase I, the cost function of each building is the highest, and
the energy exchange with utility is also the highest among all
cases. InCase II, the cost function of each building is reduced
compared to the base case due to B2B transactions and
BESS. As shown in Figure 3(a), all buildings in a VC have
different load profiles. Due to this, buildings have different
surplus/deficit power in a time interval. Therefore, intra-VC
B2B transactions can occur at a price lying between the utility
buying and selling price. Also, BESS is used in B2C trans-
actions. In case II, the energy cost decreases from 300.18$,
126.17$, and 415.76$ to 268.40$, 56.38$, and 385.86$ for
C1, C2, and C3, respectively. The reduction is enhanced
further in case III by C2C transactions. The cost function
is the lowest in case III among all the cases. In case III,
buildings have more opportunities to exchange energy with
buildings of other VCs through C2C transactions. In case IV,
the cost function has increased compared to case III because
of the penalty charges (due to distances). But, still, the cost
function is less compared to case I and case II.
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FIGURE 6. B2B Power Exchange for case II and case III (a) Community 1, (b) Community 2, (c) Community 3.

FIGURE 7. B2C Power Exchange (a) Community 1, (b) Community 2, (c) Community 3.

FIGURE 8. Price for internal transactions for case III (a) B2B, (b) B2C, (c) C2C.

Table 1 shows that the total power imported from the utility
reduces in case II and case III compared to case I. The same
holds for the total power exported to the utility. Around 12th−
15th hours, the power exported by the buildings to the utility
in case I (Figure 4(a)) is used for B2B (Figure 6) and B2C
(Figure 7) trading in case II and case III. Figure 5(a) shows
that the VC’s BESS is getting charged at the same time when
buildings are exporting to the utility in case I (Figure 4(a)),
i.e., during 12th−15th hours.When the utility electricity price
is high, energy stored in BESS is used during 18th − 21th

hours. Due to the availability of C2C trading in case III, the
power exchange in B2C transactions has increased compared
to case II (Figure (7)).
In Figure 6(a), for C1, the power exchanged in B2B trans-

actions is almost the same in case II and case III except

for 11th − 13th hours. During this time interval, the vari-
ation in case II and case III is quite visible for C3 (Fig-
ure 6(c)). In table 1, for each case, it is seen that the total
power imported through B2B transactions is equal to the
total power exported throughB2B transactions. This validates
equation (8). The power imported or exported during B2C
transactions, in case II is much less than in case III or case IV
(Table 1). This is because, in case II, the B2C transactions
imply using the BESS only. Furthermore, this overall B2C
power is slightly less in case IV compared to case III.

Table 2 shows the total power imported and exported
separately in C2C trading in case III and case IV.
Due to the penalty imposed (based on distance) in
case IV, the imported/exported power decreases compared
to case III. In (Figure 5(b)), the net power exchanged in
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C2C transactions is depicted for case III and case IV.
For case III, the equation (24) can easily be verified from
Figure 5(a), 7(b) and 5(b). During 12th − 14th hours, for C2,
the power imported from C2C transactions (Figure 5(b)),
and the power imported from all the buildings inside C2
through B2C transactions (Figure 7(b)) is used for charging
the VC’s BESS as shown in Figure 5(a). After 18th hour,
C3 is importing from the other two VCs (Figure 5(b)) and
is discharging its BESS (Figure 5(a)). The power from the
BESS and C2C trading are then transferred to buildings of
C3 through B2C transactions (Figure 7(c)). Therefore, B2B,
B2C and C2C energy sharing provides an opportunity to take
advantage of the demand diversity of all buildings in all the
VCs and to utilize RESs and BESSs more effectively.

The energy management of buildings and VCs depends on
the energy exchange prices. In case I , the buildings have to
exchange energy at utility prices. But in case II and case III
energy exchange is possible at a price between the settled
price of VCs and the utility price, as shown in Figure 8. Due to
this energy sharing at a price between the settled price of VCs
and the utility price, there is a reduction in energy exchange
with the grid resulting in lower energy costs for buildings
as shown in Table 1. Further, the energy exchange profile
and BESS charging profiles are also different for case II
and case III due to more opportunities for energy sharing in
case III as compared to case II , as shown in Figure 5 and
Figure 7.
In Figure 8, the prices for all the internal transactions are

shown. As expected, the prices are between the utility prices
to encourage the buildings to participate in the P2P sharing
framework. In Figure 8(a) and Figure 8(c), at 5th hour and
8th hour, respectively, a slight variation is observed in prices.
But the respective power component is zero as shown in 6(a)
and Figure 5(b), respectively. Thismeans that variation has no
significance. Thus, the prices for B2B (Figure 8(a)) and B2C
(Figure 8(c)) are almost identical for all the buildings. But a
vast variation is observed in B2C prices (Figure 8(b)). This is
because the VC’s cost is distributed to the buildings through
these prices according to equation (25). The B2C prices
depend on the contribution of buildings in B2C transactions.

V. CONCLUSION
A novel decentralised P2P energy management scheme has
been proposed for virtual communities comprising several
buildings equipped with RESs and load-shifting systems. The
energy management scheme includes B2B, B2C, and C2C
energy trading, optimal BESS scheduling, and demand side
management. A non-cooperative game theoretic approach
is used in a decentralised manner making the players a
seller/buyer/both endogenously. Numerical results elucidate
the proposed framework’s effectiveness in minimising the
cost function for each building. The grouping of buildings
into virtual communities reduces the number of transactions,
enhances the scalability of the system, and improves compu-
tational efficiency. Future research intends to incorporate the

stochastic load and renewable generation models to make the
proposed framework more effective.
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