Experimental and computational studies on doped-Ag₂O photocatalysts

Thesis submitted in partial fulfillment

for the Award of Degree

Doctor of Philosophy

by

ARUP KUMAR DE

DEPARTMENT OF CHEMISTRY
INDIAN INSTITUTE OF TECHNOLOGY
(BANARAS HINDU UNIVERSITY)
VARANASI- 221005

Roll No. 17051015

CHAPTER 7: Summary and conclusions

7.1 Summary

This final chapter gives an overview of the thesis work. It is based on the crucial results found from the different investigations. The single-phase photocatalysts suffer from several limitations during a photocatalytic reaction. Therefore, doping strategies have been adopted to solve those issues. The incorporation of cation (Zn, Ni, and Cd) and an anion (sulfur) dopant in the Ag_2O lattice change its photocatalytic performance.

The first investigation introduces Zn in Ag_2O nanoparticles through a hydrothermal precipitation protocol. The experimental and parallel computational studies prove that Zn occupies an interstitial position in the Ag_2O lattice. Zn doping widens the bandgap of Ag_2O and increases charge carriers' separation in the material, improving its photocatalytic activity towards MO and RhB degradation. Better photocatalytic activity is reflected in the photocatalyst's TOF values (as shown in Chapter 3). Table 7.1 compares this work with the TOF values of other doped systems previously reported in the literature. It is appropriate to highlight the use of low energy consuming 14W cool LED light source in all photocatalytic investigations of this thesis. Thus, the synthesized Zn doped Ag_2O is a promising photocatalyst for MO degradation.

Table 7.1 Comparison of TOF values of differently doped photocatalysts (reported in the literature) with Zn-doped Ag_2O on MO degradation.

Photocatalysts	TOF (mol g ⁻¹ min ⁻¹)	Light source	Reference
Eu doped SnO ₂	1.75×10^{-7}	200W Philips HPL-N	(Bhosale et al.,
			2019)
Al doped ZnO	3.25×10^{-7}	20W UV lamp	(Xiaoliang et al.,

Chapter 7: Summary and conclusions

			2013)
Na doped ZnO	1.83×10^{-7}	20W UV lamp	(Xiaoliang et al.,
			2013)
Fe doped TiO ₂	1.11×10^{-8}	200W Hg lamp	(X. H. Wang et al.,
			2006)
Sr doped Ag ₂ O	2.16×10^{-7}	Sunlight	(Kiani et al., 2019)
Zn doped Ag ₂ O	2.72×10^{-5}	14W cool white LED	Our work (A3)
(Chapter 3)			

Doping also changes the photocatalytic behavior of Ag₂O towards CIP degradation. The CIP degradations are performed with our prepared photocatalysts in Chapters 4 (Ni doping) and 6 (Cd doping). Both the types of cation doping shift the Ag₂O VB edge to a more positive potential value. But comparatively, Cd doping shifted the VB edge significantly, and because of this, superoxide radical generation was not possible for D1. It is also reflected in the lower TOF value (see Table 7.2) of the Cd doped Ag₂O system (D1) and its poor recyclability. Both the TOF value and recyclability increased for the D1/10V heterostructure (for TOF values, see Table 7.2). It is mainly due to a proper charge separation by the Z scheme mechanism. Overall, Nidoped and Cd-doped Ag₂O/BiVO₄ photocatalysts are good for CIP degradation and comparable to the literature reported (see Table 7.2).

Table 7.2 Comparison of CIP degradation TOF values of doped photocatalysts (reported) with those prepared in this thesis.

Photocatalysts	TOF (mol g ⁻¹ mir	1 ⁻¹) Light source	Reference
B doped TiO ₂	2.74×10^{-7}	Sunlight	(Manasa et al.,
			2021)
Ce doped TiO ₂	1.37×10^{-7}	Sunlight	(Manasa et al.,
			2021)
Fe doped ZnO	5.7×10^{-7}	Sunlight	(Das et al., 2018)
Zn doped BiOCl	3.33×10^{-6}	300W Xenon lamp	(D. Xu et al.,
			2020)
Zn doped Cu ₂ O	3.57×10^{-7}	500W metal halide	(X. Yu et al.,
		lamp	2019)
Ni-doped Ag ₂ O	6.55×10^{-6}	14W cool white	Our work (N2)
(Chapter 4)		LED	
BiOCl/Cu doped Bi ₂ S ₃	4.42×10^{-6}	300W Xe lamp	(Du et al., 2022)
g - C_3N_4/Ti_3C_2	1.81×10^{-6}	500W Xe lamp	(N. Liu et al.,
			2019)
Bi ₂ WO ₆ /Ta ₃ N ₅	7.35×10^{-7}	300W Xe lamp	(S. Li et al., 2020)
Fe ₂ O ₃ /Bi ₂ WO ₆	2.21×10^{-7}	300W Xe lamp	(S. Y. Song et al.,
			2020)
Cd doped Ag ₂ O	2.25×10^{-6}	14W LED lamp	Our work (D1)
(Chapter 6)			
Cd-doped Ag ₂ O/BiVO ₄	2.97×10^{-6}	14W LED lamp	Our work
(Chapter 6)			(D1/10V)

Photocatalytic RhB degradation is executed on Zn doped (Chapter 3) and sulfur (S) doped (Chapter 5) systems. The cation (Zn²⁺) and anion (S²⁻) doping cause a significant change in the Ag₂O lattice. The former is expanding, and the latter is contracting the native Ag₂O lattice structure. Even their photocatalytic mechanisms are different for the RhB degradation. The TOF values are represented in Table 7.3. Higher TOF of the Zn doped Ag₂O (A3) indicates it is better than S doped Ag₂O nanomaterial (B2) for RhB degradation. However, a comparison with the existing literature gives proper feedback on the activities of these two doped Ag₂O photocatalysts (see Table 7.3).

Table 7.3 Compares TOF of differently doped photocatalysts (reported in literature) for RhB degradation with the Zn-doped and S-doped Ag_2O photocatalysts prepared in this thesis.

Photocatalysts	TOF (mol g ⁻¹ min	Light source	Reference
	1)		
Zn doped CdS	3.58×10^{-8}	Sunlight	(Singh et al.,
			2022)
B doped TiO ₂	2.9×10^{-7}	500W Xe lamp	(Niu et al., 2020)
Ba doped ZnO	3.46×10^{-7}	500W UV-A lamp	(Shirdel &
			Behnajady, 2020)
Y doped CeO ₂	1.67×10^{-7}	250W halogen lamp	(Akbari-
			Fakhrabadi et al.,
			2015)

Chapter 7: Summary and conclusions

Sr doped Ag ₂ O	3.46×10^{-7}	Sunlight	(Kiani et al., 2019)
S doped Ag ₂ O	1.18×10^{-5}	14W cool white	Our work (B2)
(Chapter 5)		LED	
Zn doped Ag ₂ O	1.99×10^{-5}	14W cool white	Our work (A3)
(Chapter 3)		LED	

7.2 Future scope of the thesis work

In conclusion, this thesis demonstrates that doping could be an efficient technique to tune a small bandgap semiconductor's electronic structure and thereby its photocatalytic performance. It will also be possible to prepare heterostructure with a doped photocatalyst. Therefore, the future scope of this work points out the following aspects.

- The photocatalytic properties of other small bandgap semiconductor materials such as cuprous oxide (Cu₂O), cupric oxide (CuO), α-MnO₂, etc., can be improved via doping by different metals and nonmetal ions.
- The prepared doped semiconductors can be components of different heterostructures for diverse photocatalytic applications.