Biodegradation of phenol and its derivatives in packed and moving bed bioreactors using *Bacillus* sp. isolated from petroleum site

Thesis submitted in partial fulfillment for the

Award of degree

DOCTOR OF PHILOSOPHY

By Ganesh Swain

Under the supervision of

Prof. B. N. Rai

Dr. Ravi P. Jaiswal

DEPARTMENT OF CHEMICAL ENGINEERING & TECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY BANARAS HINDU UNIVERSITY VARANASI-221005

Roll. No: 17041001

2022

Dedication

I dedicated this Ph.D. thesis to the 139 crore Indians who paid the cost of this study; I am greatly indebted to them

Undertaking from the Candidate

l, Ganesh Swain, a research scholar under the supervision of Prof. B.N. Rai and co-supervision of Dr. Ravi P. Jaiswal, Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India give undertaking that the thesis entitled "Biodegradation of phenol and its derivatives in packed and moving bed bioreactors using *Bacillus* sp. isolated from petroleum site" submitted by me for the degree of Doctor of Philosophy is a record of first-hand research work done by me during the period of study.

I avail myself to respond such that action will be taken on my behalf, mistakes, error of facts, and misinterpretations, if any of course entirely of my own.

Janesh Ruan (Ganesh Swain)

Date 03/01/2022

Place, IIT (BHU), Varanasi

Declaration by the candidate

I, Ganesh Swain, certify that the work embodied in this Ph.D. thesis is my bonafide work carried out by me under the supervision of Prof. B.N. Rai and co-supervision of Dr. Ravi P. Jaiswal from July 2017 to December 2021 at the Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India. The matter embodied in this Ph.D. thesis has not been submitted to award any other degree/diploma. I declare that I have faithfully acknowledged and given credit to the research workers whenever their works have been cited in the text and the body of the thesis. I further declared that I have not willfully lifted some other work, paragraph, text, data, results, etc., reported dissertations, thesis, etc., or available at websites and included them in this Ph.D. thesis and cited as my work.

genesh Swan (Ganesh Swain)

Date. 03/01/2022 Place: IIT (BHU), Varanasi

Certificate from the Supervisor

It is certified that the above statement made by the student is correct to the best of my knowledge.

Prof. B.N. (Supervisor) Department of Chemical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi-221005, India प्राचार्य/Professor त्रसायनिक अभियांत्रिकी एवं प्रौद्योगिकी विभाग (Head of the Department) ात्रधान आवागका संस्थान Indian Institute of Technology Department of Chemical Engineering and Technology यि प्रीयोगिकी संस्थान Deptt. of Chemical Engg. & Tech. काझी हिन्दू विश्वविद्यालय Banaras Hindu University वाराणसी /Varanasi-221005

Dr. Ravi P. Jaiswal (Co-Supervisor) Department of Chemical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi-221005, India

सहायक प्राचार्य Assistant Professor रासायनिक अभियांत्रिकी एवं प्रौद्योगिकी विश्वाण Deptt. of Chemical Engg. & Tech. , Department of Chennear Engineering and Technology Indian Institute of Technology (Banaras Hindu University) प्रस्तू विश्वविद्धालन Banaras Hindu University

वाराणसी/Varana

Varanasi-221005, India

विभागाध्यक्ष/Head रासायनिक अभियांत्रिकी एवं प्रौद्योगिकी विभाग Deptt. of Chemical Engg. & Tech. भारतीय प्रौद्योगिकी संस्थान/Indian Institute of Technology काशी हिन्दू विश्वविद्यालय/Banaras Hindu University बाराणसी/Varanasi-221005

iv

Course Work/Comprehensive Examination Completion Certificate

This is to certify that **Mr. Ganesh Swain**, a bonafide research scholar of the Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), has completed the Ph.D. course work, comprehensive, candidacy and SOTA examination, which is a part of his Ph.D. work.

Behar.

Prof. B.N. Rai (Supervisor) Department of Chemical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi-221005, India

प्राचार्य/Professor ासायनिक अभियांत्रिकी एवं प्रीद्योगिकी विभाग Deptt. of Chemical Engg. & Tech. भारतीय प्रीद्योगिकी संरथ्णन Indian Institute of Technology बल्ल्सी हिन्दू विश्वविद्यालय Banaras Hindu University बारागर्सा/Varanasi-221005

Dr. Ravi P. Jaiswal

(Co-Supervisor) Department of Chemical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi-221005, India

सहायक प्राचार्य Assistant Professor रासायनिक अभियांत्रिकी एवं प्रौद्योगिकी विभाग Deptt. of Chemical Engg. & Tech. भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology काशी हिन्दू विश्वविद्यालब Banaras Hindu University बाएणसी/Varchasi-221000

22

(Head of the Department) Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India

> विभागाध्यक्ष /Head रासायनिक अभियांत्रिकी एवं प्रौद्योगिकी विभाग Deptt. of Chemical Engg. & Teeh. भारतीय प्रौचोगिकी संस्थान/Indian Institute of Technology कार्शा हिन्दू विश्वविद्यालय/Banaras Hindu University चाराणरसी /Varanasi-221005

Pre-Submission Seminar Completion Certificate

This is to certify that **Mr. Ganesh Swain**, a bonafide research scholar of the Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), has completed the pre-submission seminar - "Biodegradation of phenol and its derivatives in packed and moving bed bioreactors using *Bacillus* sp. isolated from petroleum site" held on 05th October

2021 which is a part of his Ph.D. work.

Date 03/01/2022

Place, IIT (BHU), Varanasi

lead of the Department)

विभागाध्यक्ष / Heead ससायनिक अभियांत्रिकी एवं प्रोद्योगिकी थिभाग Deptt. of Chemical Engg. & Teeh. भारतीय प्रौग्नोगिकी संस्थान / Indian Institute of Technology काशी हिन्दू विश्वविद्यालय / Banaras Hindu University वाराणसी / Varanasi-221005 **Copyright Transfer Certificate**

Title of the Thesis

: Biodegradation of phenol and its derivatives in packed and moving bed bioreactors using *Bacillus* sp. isolated from petroleum site

Candidate's Name : Ganesh Swain

Copyright Certificate

The undersigned hereby assigns to the Indian Institute of Technology (BHU), Varanasi, all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

Date 03/01/2022

Place, IIT (BHU), Varanasi

(Ganesh Swain)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

This is a great opportunity to owe immense gratitude to my esteemed supervisor **Prof. B. N. Rai** and co-supervisor **Dr. Ravi P. Jaiswal,** of the Department of Chemical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, India.

I also would like to thank my RPEC committee member, **Dr. Sanjay Kumar** (Department of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi), for providing me guidance along the way.

I would like to express my sincere gratitude to **Prof. R. S. Singh** for his advice and support throughout my doctoral work. He always made time to listen and provide prudent advice whenever I needed it.

I owe my thanks to **Prof. V. L. Yadav**, Head of the Department of Chemical Engineering, encouraging and providing all facilities to carry out my research work.

I am thankful to **Dr. Balendu Shekhar Giri** for their sincere guidance, co-operation, and motivation during the entire thesis work. I am grateful to all my lab-mates, namely **Mr. Ravi Kumar Sonwani, Ms. Amrita Shahi, Mr. Tapas Das, Mr. Kedar Sahoo, Mr. Kanhaiya Lal Maurya, Mr. Mohit Kumar, Mr. Himansu Tiwary, Mr. Pranjal Tripathy,** for helping me during the entire thesis work. I would like to express my most heartfelt and cordial thanks to my friends **Mr. Shyam Sundar Rao, Mr. Abhay Pratap Singh,** and **Mr. Anuj Chaturvedi**, who have always been a source of inspiration for me and stood by my side at the most challenging times. I am also thankful to Mr. Birendra Yadav, Mr. Ajay Kumar Pandey, Mr. Sudhir Kumar, Mr. Ajay Yadav, and Mr. Rakesh Kumar for their assistance during my research work.

I gratefully acknowledge the **Ministry of Human Resource of Development, MHRD** (India) and Scheme for Promotion of Academic and Research Collaboration, SPARC (India), for granting financial support and Indian Institute of Technology, BHU, Varanasi, India, for providing laboratory facility to carry out the research work. I also acknowledge the AIRF (JNU), New Delhi, India, for providing the GC-MS facility.

I am highly thankful to my parents **Mr. Mahendra Swain** and **Mrs. Mamata Swain**, for inspiring me to carry out my research work.

Janesh Swaw (Ganesh Swain)

Date: 03/01/2022

Place, IIT (BHU), Varanasi

Table of contents

Conter	nt		Page no.
Certific	cate		iii
Declara	ation by th	ne candidate & certificate by the supervisor	iv
Copyrig	ght transf	er certificate	v
Acknow	wledgeme	ents	viii
Table o	of contents	s	х
List of	Figures		xvi
List of	Tables		xix
Abbrev	viations		xxi
Preface			xxiii
Chapter 1: Introduction			1-11
1.1	Introduc	ction	1
	1.1.1	Sources and pollution	1
	1.1.2	Toxicity and permissible limit in the environment	3
1.2	Treatme	ent methods	4
	1.2.1	Physical methods	4
	1.2.2	Chemical and advanced oxidation methods	5
	1.2.3	Biological methods	6
1.3	Factors	affecting biodegradation of phenol and its derivatives	8
	1.3.1	Effect of pH	8

	132	Effect of temperature	8
	1.5.2		0
	1.3.3	Effect of dissolved oxygen concentration	9
	1.3.4	Effect of phenolic concentration and other carbon sources	10
	1.3.5	Effect of nutrients	10
Chapt	Chapter 2: Literature review and Objective		
2.1.	Biodeg	radation of phenol and its derivatives by fungi, yeast,	12
	and bac	cteria	
	2.1.1	Biodegradation by fungi and yeast	12
	2.1.2	Biodegradation by bacteria	13
2.2.	Biodeg	radation of phenol and its derivatives	16
	2.2.1	Free cell system	16
	2.2.2	Immobilized system	17
2.3	Bioreac	etors	17
	2.3.1	Sequencing batch reactor	18
	2.3.2	Airlift bioreactor	19
	2.3.3	Packed bed bioreactor	19
	2.3.4	Moving bed biofilm reactor	20
	2.3.5	Rotating biological contactor	21
	2.3.6	Trickling Biofilter	21
2.4	Finding	s of the literature review and research gap	24
2.5	Objecti	ve of the work	27
Chapter 3: Materials and methods28			

3.1	Equipm	ents, materials, and glassware	28
3.2	Chemica	als and reagents	28
3.3	Experim	nental methods	29
	3.3.1	Collection of soil sample and isolation of microbial species	29
	3.3.2	Selection of potential microbial species for the biodegradation of phenol	30
	3.3.3	Identification of microbial species	31
3.4	Analytic	cal methods	32
		Section A: Phenol Biodegradation	
3.5	Biodegr	adation of phenol in the free cell system	33
	3.5.1	Process variables optimization	33
	3.5.2	Growth kinetic models	33
3.6	Biodegr	adation of phenol in a packed bed bioreactor	34
	3.6.1	Packed bed bioreactor set up, immobilization, and operation	34
	3.6.2	External mass transfer analysis in Bioremediation of phenol in a packed bed bioreactor	37
		3.6.2.1 The external liquid film diffusion process	37
		3.6.2.2 Phenol biodegradation rate constant	37
		3.6.2.3 Combined mass transport kinetics and phenol degradation	38
		3.6.2.4 A model formulation for phenol biodegradation	39
3.7	Phenol b	piodegradation in a moving bed biofilm reactor	40
	3.7.1	Description of modified carrier and reactor set-up	40
	3.7.2	Process parameters optimization using response surface methodology	42

	3.7.3	Substrate	utilization rate kinetics	42
		3.7.3.1	First-order kinetic model	42
		3.7.3.2	Second-order kinetic model (Grau model)	43
3.8	Phytotox	cicity analy	sis	44
			Section B: 4-chlorophenol Biodegradation	
3.9	Effect of	biogenic s	ubstrate on biodegradation of 4-chlorophenol	46
	3.9.1	Bioreacto	r set-up, immobilization, and operating procedure	46
	3.9.2	Experime	ental design using response surface methodology (RSM)	46
	3.9.3	Kinetic st	udy	47
		3.9.3.1	Monod model	47
		3.9.3.2	Modified-Stover Kincannon model	48
Se	ction C: (Comparati	ve analysis of a packed bed bioreactor and a moving bed biorea	actor
3.10	Compara 4-chloroj	ntive analys	is of a packed bed bioreactor and a moving bed bioreactor for degradation	49
	3.10.1	Experime	ental set-up: bioreactor start-up and operation	49
Chapte	er 4. Resu	lts and Dis	scussions	52-97
			Section A: Phenol biodegradation	
4.1	Selection	n of potenti	al microbial species	52
4.2	Identific	ation of mi	crobial species	53
4.3	Process	variables op	ptimization in free system	54
	4.3.1	Effect of	рН	54
	4.3.2	Effect of	temperature	55
	4.3.3	Effect of	initial phenol concentration	56

4.4	Substrat	e inhibitior	n models	57
4.5	Phenol b	oiodegradat	ion in a packed bed bioreactor	59
	4.5.1	Morphol	ogical characteristics of the biocarrier	59
	4.5.2	Performa	ance evaluation of a continuous packed bed bioreactor	60
	4.5.3	External	mass transfer analysis	62
4.6	Phenol b	oiodegradat	tion in a moving bed biofilm reactor	67
	4.6.1	Morphol	ogical characteristics of the biofilm carrier	68
	4.6.2	Optimiza	ation of pH, HRT, and air flow rate by using RSM technique	69
		4.6.2.1	Process optimization	70
		4.6.2.2	Effect of process variables on phenol and ammonia removal	71
		4.6.2.3	Development of correlations for the response variables using ANOVA and CCD model	72
		4.6.2.4	Verification of the developed model	73
	4.6.3	Kinetic s	study	74
		4.6.3.1	First-order kinetic model	74
		4.6.3.2	Second-order kinetic model	75
4.7	Phytoto	cicity analy	vsis	77
4.8	Analysis	s of metabo	lites during biodegradation of phenol	78
			Section B: 4-chlorophenol biodegradation	
4.9	Optimiz	ation study		80
4.10	Simultar	neous effec	t of process parameters on 4-CP and COD removal	82
	4.10.1	Effect of	² 4-CP concentration and peptone concentration	83
	4.10.2	Effect of	FHRT and peptone concentration	83

	4.10.3	Effect of 4-CP concentration and HRT	84
	4.10.4	Verification of the developed model	88
4.11	Kinetic a	analysis	88
	4.11.1	Monod model	88
	4.11.2	Modified Stover-Kincannon model	89
4.12	Phytotox	cicity analysis	91
	Section C	Comparison of efficiency of a packed bed and a moving bed biofilm re	eactor
4.13	Effect of	HRT on the performance of MBBR and PBBR	93
4.14	Effect of	4-CP concentration and ILR on the performance of MBBR and PBBR	95
Chapt	ter 5. Con	clusions	99-102
References			105-122
Appendix			123-127
List of	f research	publications	128-130

List of figures

Figure no.	Figure caption	Page no.
Figure 1	Chemical structures of phenol and some of its derivative compounds	2
Figure 2	The metabolic pathway for phenol biodegradation in aerobic condition via meta and ortho pathways	14
Figure 3.1	Process flow diagram of acclimatization and isolation of microbial species	30
Figure 3.2	Schematic diagram of PBBR set up for the removal of phenol	36
Figure 3.3	A schematic representation of a MBBR for phenol treatment	41
Figure 3.4	Process flow diagram of phytotoxicity analysis in distilled water (control), untreated wastewater, and treated wastewater	45
Figure 3.5	Schematic representation of moving bed bioreactor (MBBR) and packed bed bioreactor (PBBR) for 4-CP biodegradation	49
Figure 4.1	Schematic representation of removal efficiency of phenol by isolated microbial species (phenol concentration = 100 mg/L , pH = 7.0, temperature = 35 °C , time = 10 days)	51
Figure 4.2	Phylogenetic tree of isolated bacterial species <i>Bacillus flexus</i> GS1 IIT (BHU) (MK850444.1) for biodegradation of phenol	52
Figure 4.3	Effect of pH on the removal of efficiency phenol in free cell (phenol concentration = 150 mg/L , temperature = 30 °C)	54
Figure 4.4	Effect of temperature on the removal efficiency of phenol in free cell (phenol concentration = 150 mg/L , pH = 7.0)	55
Figure 4.5	Effect of the initial phenol concentration on the removal efficiency of phenol in free cell ($pH = 7.0$, temperature = 30 °C)	56
Figure 4.6	Graph plotted between specific growth rates against phenol	57

concentrations using (a) Monod model, (b) Andrew-Haldane model

Figure 4.7	SEM images of low-density polyethylene (a) before	59
	immobilization (blank), (b) after immobilization	
Figure 4.8	Effect of various flow rates on removal efficiencies of phenol in a	61
	continuously operated packed bed bioreactor; $C_0 = 100 \text{ mg/L}$, pH=	
	7.0 \pm 0.2, temperature = 30 \pm 3 $^{\circ}$ C	
Figure 4.9	The straight-line plot between $\frac{1}{k_p}$ against $\frac{1}{G^n}$ for various values of <i>n</i>	64
	$(R^2 > 0.97 \text{ for all values of } n = 0.33, 0.5, 0.7, 0.8, 1.0)$	
Figure 4.10	The plot of $\ln K_m$ vs. $\ln G$ for evaluation of N and n .	65
Figure 4.11	SEM images of PP-PUF (a) before immobilization (b) after	66
	immobilization	
Figure 4.12	The effect of simultaneous variation of AFR and pH on the	70
	removal of (a, b) phenol; (c, d) COD; (e, f) ammonia	
Figure 4.13	First-order kinetic model plot for the removal of phenol, ammonia,	74
	and COD	
D ! 4.1.4		
Figure 4.14	Second-order kinetic model plot for the removal of phenol,	75
Figure 4.15	Images of Vigna radiata seeds germinated in (a) distilled water,	77
	(b) untreated wastewater, (c) treated wastewater	
Figure 4.16	GC-MS analysis of (a) phenol (control); (b) treated wastewater	78
Figure 4.17	GC-MS spectra of control (a) phenol and intermediate metabolites	79
	(b) catechol and (b) 2-hydroxymuconic semialdehyde	
Figure 4.18	The response surface methodology plots for the biodegradation of	84
	4-CP: (a, b) effect of peptone and 4-CP concentration; (c, d) effect	
	of HRT and peptone concentration; (e, f) effect of HRT and 4-CP	
	concentration	

Figure 4.19	The response surface methodology plots for the biodegradation of	85
	COD: (a, b) effect of peptone and 4-CP concentration; (c, d) effect	
	of HRT and peptone concentration; (e, f) effect of HRT and 4-CP	
	concentration	
Figure 4.20	Monod model plot for the removal of (a) 4-CP, (b) COD	88
Figure 4.21	Modified Stover-Kincannon model plot for the removal of (a) 4-	89
	CP, (b) COD	
Figure 4.22	Images of Vigna radiata seeds germinated in (a) distilled water,	91
0	(b) untreated wastewater, (c) treated wastewater (after 7.0 days)	
Figure 4 22	Effect of hudroulic retention time on (a) ACD and (b) COD	02
Figure 4.25	removal efficiency in MBBR and PBBR	93
	Temoval efficiency in WIDDK and I DDK	
Figure 4.24	Effect of hydraulic retention time on (a) attached biomass, and (b)	94
	mixed liquor suspended solid in MBBR and PBBR	
Figure 4.25	Effect of inlet loading rate and initial 4-CP concentration on (a) 4-	95
	CP, and (b) COD removal efficiency in MBBR and PBBR	
Figure 4.26	Effect of inlet loading rate on (a) attached biomass and (b) mixed	96
LIGUIT HAV	liquor suspended solids in MBBR and PBBR	70
	1 · · · · · · · · · · · · · · · · · · ·	

List of tables

Table no.	Table caption	Page no.
Table 1	Summary of advantages and disadvantages of various methods used for wastewater treatment	7
Table 2.1	A summary of microbial cells used for biodegradation of phenol and derivatives	15
Table 2.2	Various bioreactors used for biodegradation of phenol and its derivatives	22
Table 3.1	Composition of MSM used for the preparation of wastewater	29
Table 3.2	Dimensional specifications, conditions, and outcomes of the PBBR	36
Table 3.3	The design details of MBBR and PBBR and characteristics of the biocarrier	50
Table 4.1	Monod and Andrew-Haldane kinetic parameters for biodegradation of phenol	59
Table 4.2	Effect of the flow rate and inlet loading rate on removal efficiency and elimination capacity of packed bed bioreactor (PBBR)	61
Table 4.3	Experimentally calculated values of k_p (obtained from Eq (10)) and measured values of <i>G</i> , $1/G^n$, $1/k_p$ at different flow rates	64
Table 4.4	Slope and intercept obtained from the graph plotted between $1/k_p$ vs. $1/G^n$ at corresponding values of n	64
Table 4.5	Evaluated values of N , external mass transfer area (a_m) , intrinsic first-order reaction rate constant (k_s) for different values of n and K	64
Table 4.6	Calculated values of mass transfer coefficient (k_m) at different mass fluxes (<i>G</i>) for $n=0.7$ and $K=1.625$	65

Table 4.7	Comparison data of k_p values obtained from Eq (10) to those ones	66
	calculated from Eq. (18) for different values of n	
Table 4.8	Experimentally obtained responses at various conditions used in RSM optimization	70
Table 4.9	Analysis of fit summary statistics obtained from RSM	70
Table 4.10	ANOVA analysis for the quadratic model fitted to various responses	73
Table 4.11	Summary of kinetic parameters obtained by first-order and second- order model for removal of phenol, COD, and ammonia, respectively	77
Table 4.12	A summary of toxicity analysis of treated and untreated wastewater by <i>Vigna radiata</i> seed germination	78
Table 4.13	Experimentally obtained responses at various conditions used in RSM optimization	82
Table 4.14	Analysis of fit summary statistics obtained from RSM	87
Table 4.15	ANOVA analysis for the quadratic model fitted to various responses	87
Table 4.16	Summary of kinetic parameters obtained by Monod and modified Stover-Kincannon model for removal of 4-CP and COD, respectively	91
Table 4.17	A summary of toxicity analysis of treated and untreated wastewater by <i>Vigna radiata</i> seed germination	92
Table 4.18	The summary of experimental results obtained from continuous operation of a moving bed bioreactor	98
Table 4.19	The summary of experimental results obtained from continuous operation of a packed bed bioreactor	98

Abbreviations

Abbreviation	Nomenclature
4-CP	4-chlorophenol
2,4-DCP	2,4-Dichlorophenol
P-NP	Para-Nitrophenol
DO	Dissolved oxygen (mg/L)
PBBR	Packed bed bioreactor
LDPE	Low-density polyethylene
PUF	Poly urethane foam
PP	polypropylene
HRT	Hydraulic retention time (h)
RE	Removal efficiency (%)
EC	Elimination capacity (mg/L.d)
ILR	Inlet loading rate (mg/L.d)
MSM	Minimal salt medium
MBBR	Moving bed biofilm reactor
RSM	Response surface methodology
COD	Chemical oxygen demand (mg/L)
CCD	Central composite design
μ_{max}	Maximum specific growth rate (day ⁻¹)
K_s	Half-saturation constant (mg/L)
K _i	Substrate inhibition constant

S ₀ , F ₀	Initial substrate concentration (mg/L)
<i>S</i> , <i>F</i>	Final substrate concentration (mg/L)
U_{max}	Maximum substrate utilization rate (mg/L. d)
X	Biomass concentration (mg/L)
V	Volume of the bioreactor (L)
Q	Feed flow rate (mL/h)

Preface

Industrialization has improved the living style and economic prospects of the people as well as the country. In the meantime, the toxic pollutants (mainly phenol, phenolic derivatives, dyes, polycyclic aromatic hydrocarbons, etc.) are discharged to the ecosystem by various industries like petroleum, pharmaceutical, paints, and pesticides, and cause environmental issues. The carcinogenic, mutagenic, and teratogenic properties of the pollutants make researchers to explore cost-effective and eco-friendly technology for the degradation of such pollutants. In this direction, the biodegradation process is preferred as an effective tool for the mineralization of xenobiotic compounds.

The adopted microorganisms which have a history of exposure to the contaminated site exhibit higher biodegradation rates than other microorganisms. Hence, the acclimatization and isolation of the potent microbial species can enhance the biodegradation rate. The realtime applications of various microorganisms and packing support have been widely studied for wastewater treatment. However, the continuous performance evaluation of attachedgrowth bioreactors, such as packed bed bioreactor (PBBR) and moving bed bioreactor (MBBR), are relatively less researched for such applications. The objective of this study is to evaluate the efficacy of the potential bacterial species isolated from a petroleum contaminated site for the biodegradation of phenol and its derivatives in the PBBR and MBBR. In addition, this study employed the low-density polyethylene and polyurethane foam, a packaging waste, in bioreactors for the purpose of bacterial immobilization. A comparative analysis has also been carried out to investigate the performance of PBBR and MBBR operated at identical conditions.

The present thesis is categorized into **5 chapters**. **Chapter 1** embeds the introduction (sources and toxic effect) of phenol and its derivatives, treatment methods, and various

factors affecting the biodegradation process. **Chapter 2** contains a detailed analysis of the literature review, research gaps, and the objective of the thesis work. **Chapter 3** includes the materials and methods of the experimental work. The results and discussions (phenol biodegradation, 4-chlorophenol biodegradation, and comparative study between PBBR and MBBR) are briefly explained in **Chapter 4**. The conclusions of the thesis work and the scope for future work have been mentioned in **Chapter 5**.