LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Fig. 1.1	Diesel Fuel Ignition Process	03
Fig. 1.2	Formation of particulate matter and (b) structure of soot [Tree and Svensson, 2007]	08
Fig. 1.3	HACA mechanism of polycyclic aromatic hydrocarbon formation [adapted from Wang and Frenklach 1997]	10
Fig. 1.4	Direct ring-ring condensate of naphthalene from benzyl and propargyl [Colket <i>et al.</i> , 1994]	10
Fig. 1.5	Formation of naphthalene from combination of cyclopentadienyl radicals oxidized benzene [Castaldi <i>et al.</i> , 1996]	10
Fig. 1.6	Phenanthrene formation by combination of cyclopentadienyl and indenyl (oxidized naphthalene) [Castaldi <i>et al.</i> 1996]	10
Fig. 1.7	Phenanthrene formation by cyclization by acetylene addition, following sequential addition of propargyl radicals to phenyl [Danna <i>et al.</i> , 2000]	14
Fig. 1.8	Number of particles per aggregate as a function of non- dimensional length parameter L/dp (Adapted from Koylu <i>et al.,</i> 1997)	17
Fig. 1.9	Conceptual model DI combustion process soot and NOx formation	16
Fig. 1.10	Composition of diesel PM (Soot) [Kittelson et al., 1998]	19
Fig. 1.11	Illustrates the nature of diesel PM [Twiggs and Phillips, 2009]	21
Fig. 1.12	Mass and number based particle size distributions from diesel	22

exhaust [Mayer et al., 1995]

Fig. 1.13	TEM images of soot agglomerates imaged using transmission electron microscopy [adapted from Snelling, Liu <i>et al.</i> , 2004]	23
Fig. 1.14	TEM image of chain like agglomerates of diesel soot [adapted from Wentzel <i>et al.</i> , 2003]	24
Fig. 1.15	Soot spherule composed of nanocrystaline graphitic carbon and portraying an onion shell type structure [Russo, 2015]	24
Fig. 1.16	Substructure schematic of carbon particles [Vander Wal <i>et al.</i> , 1999]	25
Fig. 1.17	Effect of soot on vegetation	27
Fig. 1.18	Effects of soot on Environment	28
Fig. 1.19	Effect particulate matters in the air $(PM_{2.5})$ in Delhi	29
Fig. 1.20	Effect of soot emission on monuments	30
Fig. 1.21	Different effects of soot on health	31
Fig. 1.22	Function of a DOC Catalyst	33
Fig. 1.23	Functioning of typical DPF	37
Fig. 1.24	(a) Clean DPF and (b) Soot laden DPF	37
Fig. 1.25	DPF damage due to high temperature	38
Fig. 1.26	Flow pattern in wall flow monolith	41
Fig. 1.27	Partial flow diesel particulate filter	43
Fig. 1.28	Structure of diesel exhaust gas treatment equipment	43
Fig. 1.29	Particulate matter reductions by CRT filter	44
Fig. 1.30	Configuration and principle of operation of CRT filter	44

Fig. 1.31	Graphical representations of general prompt NOx mechanism and reactions of rich mixtures/fuels [Bowman, 24 th Combustion Symposium]	50
Fig. 1.32	Adverse effects of NOx	51
Fig. 1.33	Localized effect of soot on environment	55
Fig. 1.34	Acid rain and dry deposition	56
Fig. 1.35	Exhaust Gas Recirculation	66
Fig. 1.36	Effect of EGR on NOx emissions at different loads [Mehta et al., 1994]	68
Fig. 1.37	NOx control by SCR [Gruenwald et al., 2007]	72
Fig. 1.38	Selective catalytic reductions of NOx	74
Fig. 1.39	(a) Reaction steps for lean and (b) rich NOx conversion respectively	79
Fig. 1.40	Mechanism of decoupled deNOx process: direct NO decomposition	80
Fig. 2.1	4-Way Conversions	83
Fig. 2.2	Combine CRT-SCR System	83
Fig. 2.3	Structure of a DPNR catalyst (cross sectional view)	85
Fig. 2.4	NOx and PM (Soot) Reaction Mechanism of DPNR Catalyst	85
Fig. 2.5	NOx- aided continuously regeneration trap	88
Fig. 2.6	The continuously regenerable trap system by Johnson Matthey	89
Fig. 2.7	Scheme of the reaction mechanisms for the simultaneous NOx- Soot removal (Li <i>et al.</i> , 2012)	91
Fig. 2.8	Illustrative of the proposed mechanism of the simultaneous NOx- soot removal reaction in NO+O ₂ over catalyst	92

Fig. 3.1	(a) ABO_3 ideal cubic perovskite structure and (b) the perovskite framework	99
Fig. 3.2	Outlet gaseous species concentration in a TPSR run performed with La-K-Cu-FeO ₃ catalyst	106
Fig. 3.3	Crystal Structure of Spinels	117
Fig. 3.4	(a) The octahedral unit of brucite-like layers in an hydrotalcite structure and (b) Schematic representation of the hydrotalcite structure	121
Fig. 3.5	Application of mixed metal catalyst oxides	126
Fig. 4.1	Schematic diagram of preparation of diesel soot	134
Fig. 4.2	X-Ray pattern of the laboratory prepared diesel soot	137
Fig. 4.3	SEM images of the laboratory prepared diesel soot	137
Fig. 4.4	Flow diagram of SCS method	141
Fig. 4.5	Flow diagram of reactive grinding method	143
Fig. 4.6	(a) Planetary ball mill, (b) Jar and grinding balls (ZrO_2)	144
Fig. 4.7	Flow diagram of Sol-gel method	146
Fig. 4.8	TG curves of dehydrated $La(NO_3)_3$ in different atmospheres, at heating rate 15°C min ⁻¹ and at gas flow rate 90 mL min ⁻¹	147
Fig. 4.9	DTG curves of thermal decomposition of $La(NO_3)_3$ in nitrogen and 25% H ₂ + Ar; heating rate 15°C min ⁻¹ , gas flow rate 90 mL min ⁻¹ [Mentus <i>et al.</i> , 2007]	147
Fig. 4.10	Schematic view of Calorimeter	151
Fig. 4.11	Image of BET instrument	155
Fig. 4.12	Type II isotherm	157
Fig. 4.13	XRD instrument image	158

Fig. 4.14	Interaction of X-ray with crystal plane for constructive interference	160
Fig. 4.15	FTIR spectrometer image	164
Fig. 4.16	Image of XPS instrument	165
Fig. 4.17	Image of SEM instrument	167
Fig. 4.18	Scanning electron microscope	168
Fig. 4.19	The mechanism of characteristic X-ray generation	170
Fig. 4.20	Schematic diagram of experimental setup	173
Fig. 4.21	General view of the experiment assembly	174
Fig. 4.22	Schematic diagram of the Reactor	175
Fig. 4.23	General view of the gas chromatograph	175
Fig. 4.24	Schematic diagram of gas chromatograph	176
Fig. 4.25	Injector diagram for gas chromatograph	177
Fig. 4.26	Schematic diagram of the flame ionization detector	180
Fig. 4.27	General view of NO analyser	181
Fig. 4.28	Soot conversion to CO ₂ peak in GC	182
Fig. 4.29	A typical plot of chromatogram area of CO_2 formed by soot oxidation vs. Temperature	183
Fig. 5.1	Scanning electron micrographs of (A) LFes600, (B) LFes650, (C) LFes700, (D) LFes750	186
Fig. 5.2	Energy dispersive X-ray spectra catalyst of LFes700	188
Fig. 5.3	XRD of LFeO ₃ at different calcination temp of 600, 650, 700, 750°C	189
Fig. 5.4	FTIR spectra of the LFes700 catalyst	190

Fig. 5.5	Interface characteristics of the sample La 3d	191
Fig. 5.6	Interface characteristics of the sample Fe 2p	191
Fig. 5.7	Interface characteristics of the sample O 1s	192
Fig. 5.8	Soot conversions of LFeO ₃ at different calcinations temp of 600, 650, 700, and 750° C	193
Fig. 5.9	NO conversion of LFeO ₃ at different calcinations temp of 600, 650, 700, 750°C	195
Fig. 5.10	Scanning electron micrographs of (A) LFesc700 and (B) LFerg700	196
Fig. 5.11	N_2 Physisorption isotherms of catalysts (a) LFes700 (b) LFesc700 and (c) LFerg700 calcined at 700°C	197
Fig. 5.12	Pore size distribution curves of catalysts (a) LFes700 (b) LKFes700 and (c) LKFeCus700-B	198
Fig. 5.13	XRD of LFeO ₃ at different preparations method 700° C	200
Fig. 5.14	Comparison of soot conversion activity of $LaFeO_3$ catalyst by different preparation method	201
Fig. 5.15	Comparison of NO conversion activity of $LaFeO_3$ catalyst by different preparation method	202
Fig. 5.16	Scanning electron micrographs of (A) LCos700 and (B) LMns700	203
Fig. 5.17	Energy dispersive X-ray spectra catalyst of (A) LCos700 and (B) LMns700	203
Fig. 5.18	XRD of different perovskite catalysts	205
Fig. 5.19	FTIR spectra of the LaCoO ₃ catalyst	206
Fig. 5.20	XPS spectra of the (a) Co2p and (b) O1s levels of LCos700	207

Fig. 5.21	XPS spectra of fresh LMns700 (c) Mn 2 p and (d) O 1s	207
Fig. 5.22	Soot conversion activity of different perovskite catalyst	208
Fig. 5.23	NO conversion activity of different perovskite catalyst	209
Fig. 5.24	Scanning electron micrographs of (A) LFes700 and (B) LKFes700	210
Fig. 5.25	Energy dispersive X-ray spectra catalyst of LKFes700	211
Fig. 5.26	XRD comparison between pure perovskite and A-site K substituted catalysts	212
Fig. 5.27	FTIR of LKFes700 catalyst	212
Fig. 5.28	XPS spectra of fresh LKFes700 catalyst, (a) La 3d, (b) K 2p, (c) Fe 2p, (d) O 1s	213-214
Fig. 5.29	Soot conversion activity, comparison between pure perovskite and A-site K substituted catalysts	215
Fig. 5.30	NO conversion activity, comparison between pure perovskite and A-site K substituted catalysts	216
Fig. 5.31	Scanning electron micrographs of (A) LKFeCus700-A, (B) LKFeCus700-B, (C) LKFeCus700-C	217
Fig. 5.32	Energy dispersive X-ray spectra catalyst of (A) LKFeCus700-A, (B) LKFeCus700-B, (C) LKFeCus700-C	218
Fig. 5.33	XRD of LKFeCus700-A, LKFeCus700-B, LKFeCus700-C	219
Fig 5.34	FTIR of catalyst (a) LKFeCus700-A, (b) LKFeCus700-B, (c) LKFeCus700-C	220-221
Fig 5.35	XPS study of LKFeCus700-B; (a) La 3d, (b) K 2p, (c) Fe 2p, (d) Cu 2p, (e) O 1s	222
Fig. 5.36	Nitrogen adsorption-desorption isotherm for Lkicus700-B catalyst	223

Fig. 5.37	Soot conversion activity of LKFeCus700-A, LKFeCus700-B, LKFeCus700-C	224
Fig. 5.38	NO conversion activity of LKFeCus700-A, LKFeCus700-B, LKFeCus700-C	225
Fig. 5.39	Scanning electron micrographs of LKFeCos700	226
Fig. 5.40	Energy dispersive X-ray spectra catalyst of LKFeCos700	227
Fig. 5.41	XRD comparison between LKFeCus700-B and LKFeCos700	228
Fig. 5.42	Comparative Soot conversion activity between LKFeCus700-B and LKFeCos700	229
Fig. 5.43	Comparative NO conversion activity between LKFeCus700-B and LKFeCos700	230
Fig. 5.44	Scanning electron micrographs of (B) LKFeCus700-B, (D) LKFeCus700-D, (E) LKFeCus700-E	231
Fig. 5.45	XRD of LKFeCus700-A, LKFeCus700-B, LKFeCus700-C	232
Fig. 5.46	Surface area of LKFeCus700-E catalyst	233
Fig. 5.47	Pore volume of LKFeCus700-E catalyst	233
Fig. 5.48	Soot conversion activity by different calcinations strategy	235
Fig. 5.49	Soot conversion activity by different calcinations strategy	236
Fig. 5.50	Effect of contact type on soot oxidation on LFes700 catalyst (1000 ppm NO, 10% O ₂ + 99.9% Ar)	237
Fig. 5.51	Effect of contact type on soot oxidation on LKFeCus-B catalyst (1000 ppm NO, 10% O_2 + 99.9% Ar)	237
Fig. 5.52	Effect of contact type on soot oxidation on LKFeCus-E catalyst (1000 ppm NO, 10% O ₂ + 99.9% Ar)	238

Fig. 5.53	Effect of soot conversion over Perovskite-type Catalysts without	239
	NO (calcined at 700°C, Catalyst/ Soot: 10/1, Tight Contact, Flow	
	rate: 100ml/min)	
Fig. 5.54	Effect of NO conversion activity different contact condition on	240
	LFes700 catalyst (1000 ppm NO, 10% O ₂ + 99.9% Ar)	
Fig. 5.55	Effect of NO conversion activity different contact condition on	240
	LKFeCus700-B catalyst (1000 ppm NO, 10% O ₂ + 99.9% Ar)	
Fig. 5.56	Effect of NO conversion activity different contact condition on	241
	LKFeCus-E catalyst (1000 ppm NO, 10% O ₂ + 99.9% Ar)	
Fig. 5.57	NO decomposition at different temperatures	242