
Chapter 6: A Low-cost approach to develop Silica doped 

Tricalcium Phosphate (TCP) scaffold by valorizing animal bone 

waste and rice husk for tissue engineering applications  

 
6.1.Introduction 

It has been estimated that more than 16-20 Million Metric Ton/Year of animal waste bone 

(AWB) is produced worldwide from slaughterhouses, restaurants, and household waste [1]. 

The disposal management of waste bone is a serious issue because these biological wastes 

tend to spread infectious disease through foul smell, when they are disposed directly to the 

ground. Also, the disposal of these wastes on agricultural and fertile land causes soil 

pollution resulting in infertility of land [2]. Food waste produced from restaurants and the 

slaughter industry causes loss in revenue as they require additional capital and resources for 

their disposal. The disposal of this bone waste and its management creates a hindrance to 

environmental protection and sustainable development [3]. If these by-products are utilized 

efficiently it will directly impact the economy of the country.  

In order to add extra wealth from these wastes, a large number of research studies are 

being carried out in the field of valorization of animal wastes. Many researchers have 

reported the use of animal waste in different fields, like as a source of heterogeneous catalyst 

for the transesterification of biodiesel. AWB generally contains HAp, which can be easily 

converted into Tricalcium phosphate (TCP) using simple steps [4]. HAp is commonly known 

for its catalytic activity, thermal and chemical stability [5] and therefore it can be utilized for 

the production of biodiesel [5-11]. HAp derived from the waste bone of different animal 

possesses different elemental compositions. For example, HAp derived from bovine bone 

contains 52.25 wt% of CaO and 38.37 wt% of P2O5; whereas HAp derived from Pig bone has 

different elemental compositions [12-14]. Therefore, due to varying elemental composition 

waste bone of different animals possesses different catalytic properties [5]. Khan et al. used 
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Ostrich waste bone (OBW) for the development of catalyst for the production of low-cost 

biodiesel [5]. Chingakham et al. [6] calcined AWB followed by hydrothermal reaction to 

develop a heterogeneous catalyst for transesterification of biodiesel. Similarly, Jung et.al 

produced biodiesel by thermally induced transesterification of fish waste [7]. Prabu et al. 

synthesized magnetic absorbent by chemical treating and carbonizing lamb bone at 600°C for 

the removal of Chromium (VI) heavy metal from an aqueous solution [15]. Amiri et. al used 

Ostrich waste bone with hydrogen peroxide (HP) for the removal of Cobalt from waste water 

and to activate peroxymonosulpfate for the degradation of dye [16]. AWB has been used to 

prepare animal feed products as they are rich source of essential amino acid, minerals, and 

vitamin B12 [17]. Gendy et al. synthesized novel green nano bio-catalyst fluorapatite from the 

waste bone for the purification of wastewater released from the petroleum industry [18]. 

In addition to the above-mentioned applications various research studies are being 

carried out related to use of animal bones for the development of biological grade HAp [19, 

20]. This synthesis involves simple thermal treatment of the thoroughly washed bones of 

animals at elevated temperatures ranging from 400 to 1200°C [21, 22]. Sintering time and 

temperature are the main parameters which are considered during HAp processing. Pal et al. 

[23] synthesized biological grade HAp from Lates calcarifer fish bone by simply heat-

treating the fish bone at a different temperature ranging from 200°C to 1200°C. The 

developed HAp is widely used for different applications like tissue engineering, biosensors, 

drug carriers, etc [24].  

Due to the physical and chemical properties like low crystallinity and highly 

substituted carbonate ions, biological HAp have higher tendency to absorb heavy metals [25, 

26]. Sekine et al. [27] synthesized carbonated nano-hydroxyapatite absorbent from frozen pig 
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bone to capture radioisotope Strontium (90Sr) for the removal of environmental pollutants. 

Fishbone skeleton and polymeric sponge was used by Naga et. al to develop highly porous 

3D biogenic HAp scaffold with porosity 85±0.4% and compressive strength in the range of 

0.13 to 1.72 MPa [28]. Porous HAp scaffold with 65% porosity has been synthesized using 

cortical bones of pigs as raw material and ammonium bicarbonate as a space holder material, 

suitable for biomedical application [29]. Deb et al. [20] utilised fish scale to develop bone 

scaffold with 75% porosity and compressive strength of 7.26 MPa.  

With respect to the above discussion, it can be concluded that HAp/TCP derived from 

thermal treatment of animal bones possess excellent biocompatibility, bioactivity, and 

osteoconduction properties. The porous scaffold synthesized using these HAp exhibits 

excellent biological fixation with the host tissue at the implantation site [30-34]. In spite of 

the above-mentioned advantages, it has been found that due to lack of mechanical strength, 

these scaffold experiences fast revascularization. Thus, their trabeculae are more easily 

absorbed and hence their pore structure becomes weaker and fails in load-bearing 

applications [35, 36]. The compressive strength of bio-scaffold in the range of 1-10 MPa is 

ideally suitable for tissue engineering applications [37]. Therefore, it is important to develop 

mechanically stable HAp based scaffolds mimicking the properties of natural bone. Different 

approaches have been adopted to increase bioactivity and strength of HAp based ceramic 

scaffolds. Among which the addition of Silica and bioactive glass to the HAp matrix is of 

common practice [38, 39]. Bioactive glass of type Na2O-CaO-SiO2 supports the phenomenon 

of osteointegration because they produce Silanol (Si-OH) group in biological medium which 

initiates nucleation of HAp [40]. Addition of SiO2 particles is a common approach to 

enhance mechanical properties of scaffolds [41]. The use of SiO2 as a reinforcement phase is 
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recommended because of its biocompatibility, bioactivity, corrosion resistance, and anti-

oxidant properties [42]. The most important requirement of any scaffold structure used for 

tissue engineering application is that each scaffold material should be biocompatible and 

should favor the bone cell attachment and differentiation on their surface [43]. 

 Thus, considering the benefits of use of waste materials, in the present research work 

is an approach to develop silica doped TCP scaffold by utilizing HAp and SiO2 from AWB 

and RH respectively. RH is used to perform multiple functions, which primarily acts as a 

space holder material in addition to the cheap source of silica during processing of the 

scaffold [41]. The physical, mechanical, and biological properties of the developed scaffold 

have been studied and compared with that of natural bone. The developed scaffold can be 

used as a natural bone substitute for tissue engineering applications. The present work creates 

a scope for sustainable development by valorizing animal and agricultural waste. 

6.2.Experimental 

6.2.1.  Raw material Synthesis and Characterization 

The raw materials used in the study was waste bone left out from restaurants and butcher 

shops, and rice husk obtained from local agricultural farms. The waste bone of bovine, goat, 

lamb, fish and chicken are used in the study. Waste bone was washed thoroughly so that 

unwanted materials like bone marrow, spices, etc can be washed away using deionized water. 

Washed bone was boiled along with common salt in order to degrease it for 2 hours followed 

by drying and crushing in the oven and grinder respectively. Similarly, RH was washed 3 

times using deionized water so that impurities like clay, stone, etc can be removed. The 

washed RH was dried in the oven followed by crushing in a blender to convert it into RH 

powder. The RH powder and Bone Powder (BP) were sieved and powder of different sizes 
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was collected. Sucrose solution was used as a binder throughout the experiment. Thermal 

degradation behavior of BP, RH, and Sucrose was studied using Thermogravimetric analysis 

(TGA). SEM of pure BP and RH was carried out to study their surface morphology. To study 

the chemical changes taking place during sintering pure BP was characterized by means of 

FTIR.  

6.2.2. Synthesis of the Porous Scaffold 

BP powder (63-180 μm) and RH powder were used to prepare samples. RH powder of 63-

180 μm particle size was used as a space holder material and source of silica as well. 0.04 

wt% sucrose solution had been used as a binder for making green compacts. BP and RH 

powder of different wt% were mixed in mortar pestle along with 0.04 wt% of sucrose 

solution followed by dry compaction in the hydraulic press. A cylindrical die of 16 mm 

diameter was used to fabricate green compacts. To represent samples of different 

compositions a general formula aBPbRH was used where BP represents bone powder and RH 

stands for rice husk powder. In this formula, a, and b are variables where ‘a’ represents wt% 

of BP and ‘b’ represents wt% of RH powder. The prepared green compacts were sintered at 

an elevated temperature of 1000°C and 1300°C to get HAP-SiO2 based porous scaffold as 

shown in Fig. 6.1. The schematic diagram comprised of all the manufacturing steps are 

shown in Fig. 6.2. 
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Fig. 6.1. Representative Green and sintered samples prepared using BP, RH and sucrose 

(as the binder). The effect of sintering temperature can be visualized by volumetric 

contraction and change in color of the samples. 
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Fig. 6.2. Schematic representation for the fabrication process of HAp-SiO2 scaffold 

6.2.3.  Characterization 

The apparent porosity of the sintered porous samples was measured by water immersion 

technique based on the Archimedes principle. To identify the functional groups and phases 

present, the sintered samples were characterized by Fourier Transform Infrared (FTIR- 
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BRUKER (Yokohama, Kanagawa, Japan), TENSOR 27-3772) spectroscopy, and X-ray 

diffraction respectively. Surface and particle morphology of HAP-SiO2 porous scaffold were 

characterized by Scanning Electron Microscopy (SEM, FEI Inspect S30 Sweden) and High-

Resolution Transmission Electron Microscopy (HRTEM FEI, TECNAI G2-20 TWIN, 

Eindhoven, Netherlands) respectively. Elemental compositions of all the samples were 

studied by Energy Dispersive X-Ray spectroscopy (EDS).  

6.2.4.  Evaluation of Bioactivity 

To determine the bioactivity of the HAp-SiO2 scaffold, samples were immersed in simulated 

body fluid (SBF) and incubated for different periods. The SBF was prepared according to the 

Kokubo method [41] in 1000ml of deionized water and the samples were incubated in SBF 

for 7 and 14 days. After the mentioned incubation period the samples were removed from the 

solution and dried in the oven to remove trapped moisture content. The surface and elemental 

characteristics of these dried samples were studied by SEM and EDS analysis. 

6.3.Results and Discussion 

6.3.1.  Thermal degradation behavior of BP, RH, and Sucrose 

Thermal degradation behavior of BP, RH and sucrose was studied through TGA and their 

results are shown in Fig. 6.3. The degradation of BP takes place in three different stages 

initiating with the evaporation of entrapped water, followed by decomposition of organic 

material and finally dehydroxylation, and formation of phosphate ions. The first stage of 

degradation initiates between room temperature and 150°C. In the second stage, combustion 

of organic content i.e., collagen takes place between 200°C and 600°C. In the final stage of 

combustion i.e., between 600°C to 1000°C, the decomposition of structural carbonate takes 

place, due to release of carbon dioxide. It can be concluded that about 35% of total weight 
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loss was achieved and the remaining 65% was burnt-out residue, a similar observation was 

also reported by Olsen et.al. [42]. The above analysis indicates that all the organic content of 

raw bone is eliminated during heat treatment. Thermogravimetric analysis of RH and sucrose 

shows similar decomposition behavior, the major weight loss takes place between 200°C to 

480°C which can be attributed to burnout of organic constituents and combustion of 

carbonaceous phases like cellulose and hemicelluloses. It can be observed from Fig. 3 that 

the ash content of sucrose is almost negligible and nearly 15% of ash was obtained after 

combustion of RH [43].  

 

Fig. 6.3. Thermogravimetric analysis (TGA) of BP, RH and Sucrose in air 
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6.3.2.  Phase analysis of porous HAp-SiO2 composite 

Fig. 6.4 shows the XRD diffraction pattern of the composites sintered at different 

temperatures with two hours of holding time. The effect of addition of RH and sintering 

temperature on transformational behaviour of HAp to TCP was studied. Sample 100BP0RH 

sintered at 1000°C shows sharp peak of HAp when compared with standard JCPDS card 

whereas sample 85BP15RH sintered at 1000°C shows the additional peak of TCP indicating 

the initiation of phase transformation of HAp to TCP due to the presence of SiO2 (by-product 

of burnt RH). Some peaks of SiO2 are also observed in XRD pattern which may be due to 

unreacted SiO2. XRD analysis of 100BP0RH and 85BP15RH sintered at 1300°C shows increase 

in the intensity and sharpness of TCP peaks which is due to combine effect of temperature 

and SiO2 in HAp to TCP phase transformation. Semi-quantative phase analysis of the 

samples sintered at different temperatures i.e. 1000°C, 1100°C, 1200°C, and 1300°C are 

studied with the help of X’Pert High Score software and the percentage of HAp, TCP and 

SiO2 phases formed are shown in Table 6.1. From Table 6.1 it is evident that as the sintering 

temperature and weight percent of RH increases the transformation of HAp to TCP increases. 

It was found that sample 85BP15RH sintered at 1300°C consists of 67% of TCP phase and 

10% of HAp phase confirming the role of silica and sintering temperature in phase 

transformation of HAp to TCP. A detailed discussion on the mechanism of HAp to TCP 

transformation is presented in the next section of this article. 

Table 6.1 Semi- quantitative analysis of phases formed in silica doped TCP scaffold sintered 

at different temperatures 

Sample Code Sintering Temp. HAp% TCP% SiO2% 

100BP0RH 1000 °C 100 0 0 

85BP15RH 1000 °C 80 11 9 
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100BP0RH 1100°C 90 10 0 

85BP15RH 1100°C 75 15 10 

100BP0RH 1200°C 86 14 0 

85BP15RH 1200°C 65 25 10 

100BP0RH 1300°C 54 46 0 

85BP15RH 1300°C 11 76 13 

 

 

Fig. 6.4. XRD diffraction pattern of BP samples sintered at different temperatures with 

different wt% of RH 
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6.3.3. Mechanism of Transformation of HAp to TCP 

The transformation of HAp to TCP is generally based on two parameters i.e., the effect of 

sintering temperature and the amount of silica added in the HAp matrix. The transformation 

mechanisms based on these two parameters are discussed systematically. During the high 

temperature sintering of HAp two different phenomenon’s i.e., decomposition and 

dehydroxylation takes place [47]. During dehydroxylation OH ions loose from HAp and 

forms oxyhydroxyapatite. At a temperature between 800-1300°C reversible dehydroxylation 

takes place along with HAp decomposition. During this process HAp decomposes into TCP 

(α and β TCP) according to the reaction in Eq. (1). Similarly, the mechanism of SiO2 

promoting the phase transformation of HAp to TCP can be explained by the interfacial 

reaction between HAp and RH derived SiO2. As explained above due to high temperature 

sintering a phenomenon of decomposition and dehydroxylation takes place. During 

dehydroxylation process OH radicals loose from the material and creates vacancies in the 

HAp lattice. These positively charged defects will be compensated by the substitution of Si4+ 

at P5+ site leading the transformation of HAp to Si-TCP. The chemical stability of the formed 

Si-TCP would be possible either by the formation of O2- vacancies or due to the presence of 

excess calcium Ca2+. This will compensate the charge compensation created by Si4+ 

substitution in the place of P5+ in the TCP lattice. The charge compensation process either by 

formation of O2- vacancy or presence of excess Ca2+ is dependent on the SiO2: HAp mole 

ratio. M. Sayer et al. [48] reported that charge compensation process either by formation of 

O2- vacancies or due to the presence of excess calcium Ca2+ is dependent on molar ratio of 

SiO2: Hap. A molar ratio of at least 0.33 of SiO2: HAp is required for the transformation of 

Si-TCP having chemical composition of Ca3[(P0.9Si0.1O 3.95)]2 when charge of Si-TCP is 
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compensated by formation of O2- vacancies. And a minimum of 0.25 molar ratio of SiO2: 

HAp is required for the transformation of Si-TCP having chemical composition of 

Ca3.08[(P0.92Si0.08O4)]2 when charge of Si-TCP is compensated by incorporation of excess 

calcium Ca2+. It can be concluded that the overall phase transformation initiates with the loss 

of OH radical during Si addition and Si-TCP phase can be formed. The extent of phase 

transformation depends on the SiO2: HAp mole ratio which can be varied from 0.25-0.33 

depending on the method of charge compensation weather oxygen vacancies or excess 

calcium. Apart from formation of Si-TCP, SiO2 also promotes formation of a glassy phase 

when SiO2: HAp mole ratio exceeds to 1. The schematic diagram of the explained 

mechanism is shown in Fig. 6.5. The above discussion was also supported by previous 

studies which reports formation of unique Si-TCP crystalline phase while sintering HAp in 

the presence of SiO2 at higher temperature [48, 49]. It is important to mention that during 

high-temperature processing certain by-products like CaO and P2O5 are formed according to 

the reaction in Eq. (1) and (2). These by-products further combine with SiO2 to form a 

bioactive glassy network of Ca-Si-P-O phase [48, 50]. Thus, from the above analysis it can 

be concluded that due to high temperature sintering and addition of SiO2 in HAp matrix a 

phenomenon of decomposition and dehydroxylation takes place resulting in transformation 

of HAp to TCP. The addition of SiO2 during higher temperature sintering enhances HAp to 

TCP transformation along with the formation of bioactive glassy component and as the mole 

ratio of HAp: SiO2 increases this transformation increases. 

Ca10(PO4)6(OH)2                3Ca3(PO4)2 + CaO + H2O               (1) 

10Ca3(PO4)2 + 2SiO2                10Ca3(P0.9Si0.1O3.95)2 + P2O5       (2) 
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Fig. 6.5. Mechanism of phase transformation of HAp to TCP by Si substitution 

6.3.4. FTIR analysis 

The effect of sintering on raw and sintered samples can be distinguished through visual 

observation. As the sintering temperature increases from 900°C to 1400°C the color of the 

samples changes from yellowish to off-white followed by complete white color. The reason 

behind this change in color can be attributed to the decomposition of organic phases like 

protein and collagen present in raw bone [51, 52]. The vibrational spectra shown in Fig. 6.6 

(a) also confirms the above discussion. The FTIR band present at 1640cm-1 corresponds to 

Amide I of collagen [53] which was present in raw bone, and as the sintering temperature 

increases, this collagen disappears completely, Fig. 6.6 (b, c). Further, the FTIR spectra 

demonstrate the presence of different functional groups like phosphate (PO4
3-), carbonate 

(CO3
2-), and hydroxyl (OH-) groups in the samples. The broadband appeared at 961.5 cm-1, 

1015 cm-1, and 1087 cm-1 corresponds to phosphate groups [54, 55]. The band that appeared 

at 1453-1470 cm-1 correlates with the presence of characteristics peaks of CO3
2- [56]. Thus, 

the presence of sharp peaks of (PO4
3-) and (OH-) confirms the formation of HA and TCP 
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[57]. The vibrational spectra of samples mixed with different 15 wt% of RH and sintered at 

1000°C and 1300°C reveals the presence of absorption bands of SiO2 Fig. 6.6 (d, e). The 

absorbance band around 1130-1000 cm-1 corresponds to the siloxane group (Si-O-Si) and the 

absorption band around 1625 cm-1 and 3400-3200 cm-1 corresponds to the presence of silanol 

group (Si-OH). It is important to mention that HAp and SiO2 share several similar vibrational 

modes which may be due to similarities in vibrational characteristics between SiO4
4- and 

PO4
3- [58]. 

 

 

Fig. 6.6. FTIR analysis of (a) unsintered pure BP, (b, c) pure BP samples sintered at 1000°C 

and 1300°C, (d, e) samples sintered at 1000°C and 1300°C with 15 wt% of RH 
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6.3.5.  Morphological analysis of scaffold by SEM and TEM imaging 

Scanning electron micrographs of raw BP and RH powder are shown in Fig.6.7. The raw BP 

particles appear to be agglomerated and RH particles appear to be micro rod-shaped fibers as 

shown in the SEM micrograph. SEM images of the samples shown in Fig. 6.8 (a-d) reveal 

the microstructural change in the HAp matrix due to the addition of SiO2 and high-

temperature sintering. Fig.6. 8 (a) and (b) show pure HAp samples sintered at 1000°C and 

1300°C respectively. The initiation of grain growth of TCP crystals can be easily visualized 

from Fig. 6.8 (a) and as the sintering temperature increases the phenomenon of grain growth 

takes place. The fully developed grains with clear demarcation in grains and grain boundary 

were observed at higher sintering temperatures. Fig 6.8 (c) and (d) show SEM micrographs 

of BP samples with 15 wt% of RH powder sintered at 1000°C and 1300°C respectively. Due 

to the incorporation of SiO2 in the HAp matrix and high-temperature sintering, a glassy phase 

network was observed across the HAp and TCP crystals. Due to the excess amount of glassy 

phase, it was difficult to differentiate the grain boundary, which was easily visible earlier in 

Fig. 6.8 (b). The presence of pores on the samples seen in the micrographs, are the result of 

the carbonization of randomly distributed RH powder. Thus, from the microstructural study, 

it can be concluded that the addition of RH performs multiple roles. Initially, it acts as a pore 

former and formerly the burnt-out residue of RH acts as a source of SiO2 which plays a major 

role in the formation of crystalline-glassy composite. The TEM micrograph of the samples 

sintered at 1300°C shows irregular drop-like HAp/TCP crystals as shown Fig. 6.9 (a, b). 

TEM micrographs of samples at higher magnification show the formation of hexagonal HAp 

and TCP structure as confirmed by their characteristic lattice spacing of 0.526 nm and 0.38 

nm respectively. Elemental analysis of the samples was recorded by EDS as shown in Fig. 
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6.9 (c). The Ca/P molar ratio of all the samples sintered at 1000°C and 1300°C was in the 

range of 1.95-1.99 and 2.35-2.9 respectively. These results are similar to the theoretical value 

of the Ca/P molar ratio of HAp (1.67) and TCP (1.5) [59]. 

 The elemental analysis obtained from EDS and XRF reveals varying amount of CaO, 

P2O5, and Ca/P ratios under different sintering conditions (Table 2). The Ca/P ratio of all the 

samples was in the range of 1.93 to 2.7 which was higher than that of the stoichiometric 

value of pure HAp (1.67) and TCP (1.5). This deviation in the Ca/P ratio can be attributed to 

the presence of other calcium phosphate phases in the HAp lattice. The higher value of Ca/P 

ratio was due to the higher substitution of carbonate ions at the phosphate site [60]. 

 

Fig. 6.7. SEM of thoroughly washed (a) raw BP and (b) dried RH powder 

Table 6.2 Elemental composition, Ca/P ratio, and physical properties of unsintered and 

sintered samples.  

Sample Colour Change in 

Volume (%) 

CaOa (wt %) P2O5
a (wt %) Ca/Pb ratio 

Pure BP Unsintered Light Yellow 0* 56.33 37.32 2.705 

BP Sintered @ 1000°C Off White 15 59.85 35.06 1.93 

BP Sintered @ 1300°C White 23 - - 2.33 
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* Average initial volume of cylindrical pellets before heat treatment is considered as 100%. 

a Data obtained from XRF analysis 

b Data obtained from EDS 

 

 

Fig. 6.8. SEM and EDS analysis of (a) 100BP0RH sintered at 1000°C, (b) 100BP0RH 

sintered at 1300°C, (c) 85BP15RH sintered at 1000°C, (d) 85BP15RH sintered at 1300°C at 

different magnifications 
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Fig. 6.9. (a) TEM, (b) HRTEM and (c) EDS analysis of 85BP15RH sintered at 1300°C 

6.3.6.  Porosity and Mechanical properties 

Figure 6.10 (a, b) shows the effect of RH content on the porosity and compressive strength of 

the scaffold sintered at different temperatures i.e., 900°C to 1400°C respectively. It is 

observed that for the samples sintered in the range of 900°C to 1100°C, the effect of RH 

content on open porosity is directly related. The open porosity increases from 54-61% with 

the increase of RH wt% from 5-20 wt%. However, an inverse relation is detected for the 
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samples sintered in between 1200°C to 1400°C. The open porosity value decreases up to 

34% for the same wt% of RH when sintered above 1200°C. This is due to the phenomenon of 

the formation of the Ca-Si-P-O glassy phase which has been discussed earlier. Figure 6.11 

shows the statistical analysis of the pores formed throughout the composites sintered at 

different temperatures. SEM images were analyzed with the help of ImageJ software to 

measure the average diameter of the pores. Pure BP samples sintered at 1000°C and 1300°C 

have average pore size of 0.328 and 8.19 μm respectively. However number of pores 

decreases with the increase in temperature making scaffold overall less porous. Similarly 

samples added with 15% RH and sintered at 1000°C and 1300°C shows average pore size of 

2.828 and 15.97 μm respectively.  The compressive strength of the samples was in the range 

of 0.78 to 4.1 MPa. The compressive data are in line with the open porosity results. The 

obtained physical and mechanical properties of the developed scaffolds are analyzed and 

compared with that of natural human bones and previously reported work (as shown in Table 

6.3) and concluded that the developed porous composite has the potential to be used for 

tissue engineering application. 

 

Fig. 6.10. Effect of sintering temperature and RH content on the (a) apparent porosity 

and (b) compressive strength of the silica doped TCP scaffold 
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Waste 

Material 

Method/ Space 

Holder (SH) 

Material 

Binder/ 

Solvent 

 

Sintering 

Condition 

Porosity 

(%) 

Compressive 

Strength (MPa) 

Refer

ences 

Bovine 

Bone 

Commercial 

Sugar 

NA 900°C 76.7±0.6 1.3±0.09 [61] 

 

Fish Bone High-density 

polyethylene 

sponge 

PVA Initial Sintering 

at 600°C 

Final Sintering 

1200°C 

85±0.4 0.13±0.007 MPa [28] 

 

Fish Scale Sponge 

Replication 

Starch 1000-1400°C, 

2hr 

35 0.8GPa=800MPa [62] 

Pig Bone 

Waste 

Ammonium 

Bicarbonate 

NA 600-1000°C 65 NA [29] 

 

Fish Scale solvent casting 

particulate 

leaching 

technique/ NaCl 

(SH) 

 

Ethanol (as 

solvent) 

1200°C, 3 hr 75±0.8 7.26±0.45 [20] 

Bovine 

Bone 

3D Printing Glycerine 

(solvent) 

900°C NA 3.22±0.13 to 

5.71±0.43  

[63] 

General 

Bone Waste 

Rice Husk Sucrose 

Solution 

1000-1400°C, 2 

hr 

34-61 0.22 - 4.1 Presen

-t 

Work 
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Fig. 6.11. Effect of RH content and sintering temperature on pore size of silica doped 

TCP scaffold 

Table 6.3 Property Comparison of developed silica doped TCP scaffold with previously 

reported work 

 

 

6.3.7.  Evaluation of Bioactivity 
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SEM images of porous scaffold immersed in SBF for 7 and 14 days show in-vitro bioactivity 

i.e., ability of the scaffold to form a bone-like apatite layer on its surface when introduced in 

a biological environment. It can be visualized from SEM images that as the wt% of RH 

increases from 5% to 20%, the ability of the samples to form an apatite layer on their 

surfaces increases. It is evident from the images that this apatite layer is covering the HAp-

SiO2 surface uniformly. Under higher magnification, these layers appear like a continuous 

array of petals-like structures spread over the surface of HAp-SiO2 scaffold, as shown in Fig. 

6.12 (d). This phenomenon can be easily understood by the fact that the formation of an 

apatite layer on the artificial body is supported by the presence of Silanol (Si-OH) functional 

group, the only site where nucleation of apatite crystal initiates. As soon as the apatite nuclei 

forms, they start propagating throughout the surface by consuming Ca2+ and P5+ ions from 

the surrounding biological environment i.e., SBF. It is also worth mentioning that due to the 

addition of SiO2 the transformation of HAp to TCP increases. TCP is well known for its 

biocompatibility and osteoconductivity because of its higher solubility w.r.t HAp [60]. Thus, 

from the above analysis, it can be concluded that the addition of silica in the HAp matrix is 

beneficial. It promotes HAp to TCP transformation along with the increase in apatite 

nucleation site by providing a silanol group. Fig. 6.12 (e) shows the EDS analysis of 

85BP15RH sintered at 1300°C and immersed in SBF for 14 days. EDX spectra shows the 

presence of Ca and P and the Ca/P ratio of the sample was 1.43 and 2.53 for 7 and 14 days of 

immersion respectively. It can be suggested that the P ions were released immensely on day 7 

and formed apatite layer on day 14, as the Ca/P ratio was close to bone like apatite.  
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Fig. 6.12. SEM micrographs of (a) 100BP0RH, (b) 85BP15RH sintered at 1300°C and 

immersed in SBF for 7 days, and (c) 100BP0RH, (d) 85BP15RH sintered at 1300°C and 

immersed in SBF for 14 days, (e) EDS analysis of 85BP15RH sintered at 1300°C and 

immersed in SBF for 14 days. 
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6.4.Conclusion 

The present research work is a low-cost novel approach to develop silica doped TCP scaffold 

by utilizing agricultural and animal wastes. High-temperature sintering and addition of silica 

(by-product burnt RH) results in the transformation of pure HAp to TCP, and as the sintering 

temperature and wt% of RH increases the crystallinity of the TCP phase increases. The main 

reason behind the phase transformation of HAP to TCP is attributed to high temperature 

sintering and addition of silica. Due to high temperature sintering decomposition and 

dehydroxylation takes place along with this an interfacial reaction between HAp and SiO2 

also takes place, which leads to phase transformation. TGA analysis of raw bone shows 

complete removal of organic constituents at 1200°C and about 65% of burn out residue is 

produced. During initial stages of firing, RH powder acted as a space holder and at later 

stages of sintering SiO2 from RH acts as a reinforcement phase in the HAp matrix. The HAp 

combines with SiO2 (burnt-out residue of RH) to form silica doped TCP composite at an 

elevated sintering temperature and enhances the compressive strength of the porous scaffold. 

Due to the incorporation of SiO2, major changes are observed in the microstructural and 

biological properties of HAp. A bioactive glassy network of Ca-Si-P-O amorphous phase is 

observed across the matrix which is also responsible for the enhancement of bioactivity of 

the scaffold. The physical and mechanical properties of the porous scaffold are similar to that 

of natural bone. Thus, the above study shows the possibility of valorizing animal and 

agricultural waste for the development of TCP based scaffold potentially suitable for tissue 

engineering applications. 
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