PHYSIO-MECHANICAL CHARACTERIZATION OF Ti—SiO₂ AND HAp-SiO₂ COMPOSITE WITH TAILORED MICROSTRUCTURE FABRICATED USING RICE HUSK AS SPACE HOLDER FOR TISSUE ENGINEERING APPLICATION

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE AWARD OF DEGREE

DOCTOR OF PHILOSOPHY

By

Mayank Kumar Yadav

Department of Ceramic Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi- 221005

Roll No. 18031504

CERTIFICATE

It is certified that the work contained in the thesis titled "Physico-Mechanical Characterization of porous Ti-SiO₂ and HAp-SiO₂ Composites with Tailored Microstructure Fabricated Using Rice Husk as Space Holder for Tissue Engineering Application" by "Mayank Kumar Yadav" has been carried out under my supervision and this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

Prof. Vinay Kumar Sing (Supervisor)

Department of Ceramic Engineering, Indian Institute of Technology (B.H.U), Varanasi–221005

DECLARATION BY THE CANDIDATE

I, "Mayank Kumar Yadav", certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of "Prof. Vinay Kumar Singh" from "January 2019" to "June 2022", at the "Department of Ceramic Engineering", Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 15/06/2022 Place: IIT (BHU) Varanasi

Mayank Kumar Yadav

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Prof. Vinay Kumar Singh (Supervisor) Department of Ceramic Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi- 221005 Prof. Vinay Kumar Singh Head of Department Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi- 221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Physico-Mechanical Characterization of porous Ti-SiO₂ and HAp-SiO₂ Composites with Tailored Microstructure Fabricated Using Rice Husk as Space Holder for Tissue Engineering Application

Name of the Student: Mr. Mayank Kumar Yadav

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi, all rights under copyright that may exist in and for the above thesis submitted for the award of the *"Doctor of Philosophy."*

Date: 15/06/2022

Place: Varanasi

Mayank Kumar Yadav

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to My Beloved PARENTS

It is indeed my proud privilege to express my deep sense of gratitude and indebtedness to my supervisor, **Dr. Vinay Kumar Singh**, Professor & Head of the Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi for his enormous help, co-operation and valuable supervision that he has extended to me for the successful completion of this investigation. I am indebted to him for his consistent encouragement, sustained interest and parental care throughout the research period.

I am obliged very much to express my sincere thanks to my former supervisor **Prof.** *Kalyani Mohanta*, School of Mechanical Engineering, Kalinga Institute of Industrial Technology for providing necessary support and constant motivation throughout my research work.

It is my pleasure to express my cheers to all RPEC members **Dr. Akhilesh Kumar Singh**, School of Material Science and Technology, IIT (BHU) and **Dr. Manas Ranjan Majhi**, Department of Ceramic Engineering, IIT (BHU). Their numerous insight and generous assistance helped me significantly in improving my research work. They always came forward to assist me whenever I needed. My passionate thanks go to all the faculty members, Department of Ceramic Engineering IIT (BHU) for their support and encouragement.

I constraint special thanks for all the non-teaching staff of the Department of Ceramic Engineering, IIT(BHU) as this work would have never been completed without their technical support. nI also gratefully acknowledge to the Ministry of Human Resource and Development (MHRD), Govt. of India, New Delhi, and Director, IIT (BHU) for the financial support in the form of teaching assistantship.

I am gratified to express my sincere thanks to my lab seniors Mr. Vaibhav Pandey, and Mr. Ashutosh Kumar Gupta, Department of Ceramic Engineering, IIT (BHU) for their encouragement and valuable suggestions during my research period.

I am blessed to have very supportive and caring lab mate Ms. Jyoti, Mr. Ashwani Gautam Department of Ceramic Engineering, IIT (BHU) and colleagues Mr. Deepak Sachan, *Mr.* Manish Tiwari Department of Metallurgy IIT (BHU) for their valuable support and encouragement towards the successful completion of my research work.

I would like to thank my friends and seniors Dr. Ajay Kumar, Dr. Shaili Pal, Dr. Darksha Bano, Dr. Jyoti Kuntail, Dr. Alok Singh Verma and Dr. Angaraj Singh for helping me during my research and thesis writing throughout my research journey.

I am also grateful to my Juniors Mr. Uttam Kumar, Department of Chemistry, IIT (BHU) and Mr. Sujeet Pimple Departmet of Metallurgy IIT (BHU) for their valuable support throughout my PhD work.

I wish to express my vivid thanks to my friends Mr. Tribhuwan Prashad Bind, Ms. Shalini Yadav, Lekhraj, Sk. Riyaz Ali, Er. Shashi Prakash and Pradeep Kumar for always encouraging and motivating me during my research work. I wish to acknowledge all those, who helped me in any form during the entire period of my research work.

Last but not least I am grateful to my sister Neelam Yadav (Research scholar Faculty of Education, BHU) and my brother Neelesh Kumar Yadav (Research scholar, Department of Electronics and Communication NIT, Patna) for their blessings, cooperation, sacrifices, encouragement and patience. It's been possible with the blessings of my father, Mr. Ram Palat Yadav and untiring efforts and prayers of my mother, Mrs. Manju Yadav that provided me all the wisdom, strength and guidance to carry on this journey which at times became very harsh and monotonous.

Date: 15/06/2022 Place: IIT (BHU), Varanasi

Mayank Kumar Yadav

Title	Page No.	
Title of Thesis	i	
Certificate	ii	
Declaration by the Candidate & Certificate by the Supervisor and Head	of the	
Department	iii	
Copyright Transfer Certificate	iv	
Acknowledgement	v-vi	
Dedication	vii	
Contents	viii	
List of Figures	xiii	
List of Tables	xvi	
Preface	xvii	
Chapter 1 Introduction		
1.1. Introduction	1	
1.2. Characteristics of Biomaterials used for Implant applications	4	
1.2.1. Mechanical Properties	5	
1.2.2. Corrosion and Wear Resistance	8	
1.2.3. Effect of Porosity	9	
1.2.4. Biocompatibility	10	
1.2.5. Osseointegration	11	
1.3. Bone Metabolism	11	
1.3.1. Bone Physiology	12	
1.3.1.1. Woven Bone	13	
1.3.1.2. Lamellar Bone	14	
1.3.1.3. Chemical Composition of bone	15	
1.3.1.4. Types of Cells in Bone	15	

1.

	1.4. Types of Material Used for Orthopedic Implant Applications: Advantages and			
	Disadv	rantages	16	
	1.5. Titaniu	m and Its Alloy: Material of Ultimate choice for Implant Application	21	
	1.5.1. Methods of Preparing Titanium based foams Using Powder Metallu			
		Technique	24	
	1.6. Hydrox	xyapatite: Ideal Material for Biomedical Application	24	
	1.6.1.	Advantages and Disadvantages of HAp	25	
	1.6.2.	Examples of applications of HAp	25	
	1.7. Biocompatibility of Materials			
	1.8. Thesis	Outline	27	
	Refere	nces	29	
2.	Chapter 2	Literature Review	41-76	
	2.1. Introdu	2.1. Introduction		
	2.2. Titanium and its Alloy			
	2.3. Methods of Preparing Titanium Based Foam Using Powder Metallurgy Tech			
	2.3.1.	Space Holder Technique	42	
	2.3.2.	Replication Technique	47	
	2.3.3.	Entangled Metal Wire Technique	48	
	2.3.4.	Spark Plasma Sintering (SPS) and Hot Pressing (HP)	52	
	2.3.5.	Microwave Sintering	54	
	2.3.6.	Casting Technique	56	
	2.3.7.	Metal Injection Moulding	58	
	2.3.8.	Rapid Prototyping	60	
	Refere	nces	62	
3.	Chapter 3	Objective of the Work	77-79	
4.	4. Chapter 4 Material and Methods			
	4.1. Introduction			

	4.2. Raw M	81	
	4.3. Synthe	Phosphate	
	scaffo	83	
	4.4. Instru	nentations	83
	4.4.1.	X-ray Diffraction (XRD)	83
	4.4.2.	Scanning Electron Microscopy (SEM)	85
	4.4.3.	Fourier Transform Infrared Spectroscopy (FTIR)	87
	4.4.4.	Transmission Electron Microscopy (TEM)	89
	4.4.5.	Physical and Mechanical Characterization	90
5.	Chapter :	5 -Mechanical and Biological Behaviour of Porous Ti-SiO ₂ S	Scaffold for
	Tissue En	92-127	
	5.1. Introc	92	
	5.2. Experimental Procedure		95
	5.2.1. Processing and Characterization of RH		95
	5.2.2.	Composition Formulation and Sample Preparation	96
	5.2.3.	Physical and mechanical behaviour of composite samples	98
	5.2.4.	Biofilm Formation	99
	5.2.5.	Cell Culture Study	100
	5.2.5.1. MTT Assay		100
	5.2.6.	Evaluation of Bioactivity	101
	5.3. Result and Discussion		102
	5.3.1.	Thermal Analysis of RH and Sucrose	102
	5.3.2.	Processing and fabrication of porous Ti-SiO ₂ composite	105
	5.3.3.	Phase analysis of Ti-SiO ₂ composite scaffold	108
	5.3.4.	Porosity and Microstructure	108

5.3.5. Mechanical Properties	112
5.3.6. Evaluation of Bioactivity	113
5.3.7. Biofilm Formation	116
5.3.8. Cellular Response	119
5.4. Conclusion	121
References	122

6. Chapter 6 A Low-cost approach to develop HAp-SiO2 based composite scaffold by valorizing animal bone waste and rice husk for tissue engineering applications

			128-163
6.	1. Introd	uction	128
6.2. Experimental			131
	6.2.1.	Raw material Synthesis and Characterization	132
	6.2.2.	Synthesis of the Porous Scaffold	131
	6.2.3.	Characterization	134
	6.2.4.	Evaluation of Bioactivity	135
6.3.Results and Discussion			135
	6.3.1.	Thermal degradation behavior of BP, RH, and Sucrose	135
	6.3.2.	Phase analysis of porous HAp-SiO ₂ composite	137
	6.3.3.	Mechanism of Transformation of HAp to TCP	138
	6.3.4.	FTIR analysis	141
	6.3.5.	Morphological analysis of scaffold by SEM and TEM imaging	143
	6.3.6.	Porosity and Mechanical properties	143
	6.3.7.	Evaluation of Bioactivity	150
6.4. Conclusion			152
References			153

7. Conclusion

List of Publications

List of Figures

Figure Caption

Fig.1.1 The structural levels of bone. Cortical bone is made up of longitudinally oriented osteons, and the trabecular bone within the metaphyses is made up of connected struts and plates. In both bone types, the bone is laid down in layers (lamellae). Both tissue types contain identical components, and their properties are dependent on the amount, morphology, and interaction of these components at each level 12

Fig.1.2 Micro-architecture and structural classifications of physiological bone. (a) Schematic of microscopic and structural classifications of bone, (b) Schematic of the micro-architecture of the femur, 13

Fig.2.1 Representation of the replication process for preparing porous Titanium	48
Fig.2.2 Mechanism behind working of entangled metal wire technique	50
Fig.2.3 Porous Ti samples prepared by entangled metal wire technique	51
Fig.2.4 Schematic diagram showing the creation of large interconnected pores using dyn freeze casting	amic 58
Fig. 4.1 Flow chart describing sequence of raw material used and their order of processing	1g 80
Fig. 4.2 Process flow chart describing the processing of RH-to-RH powder	82
Fig. 4.3 Titanium (Ti) metal powder of 100 mesh particle size	82
Fig. 4.4 (a) Thoroughly washed RH and (b) processed RH powder	83
Fig. 4.5 (a) unsintered bone powder and (b) sintered bone powder	83
Fig. 4.6 Schematic representation of principle of X-Ray diffraction spectroscopy (XRD) Photograph of XRD machine) and 85
Fig. 4.7 Scanning Electron machine setup	87

Fig. 4.8 Schematic representation of working of Fourier transforms infrared (FTIR)spectrophotometer and its photograph88

Fig. 4.9 Schematic representation of principle of Transmission electron microscopy (TEM)
and Photograph of TEM90

Fig. 4.10 UTM machine for measurement of compressive strength91

Fig.5.1 Standard process flow chart of (a) Processing of RH powder and (b) Fabrication of Porous Ti-SiO2 scaffold 96

Page No

Fig.5.2 F	Representative	Green samples	prepared using	Ti powder, RH	and sucrose	98
------------------	----------------	---------------	----------------	---------------	-------------	----

Fig.5.3 TG analysis of RH powder and sucrose in air103

Fig.5.4 X-ray diffraction pattern of residue (RHA) left after heat treatment of RH powder at 480°C 104

Fig.5.5 X-ray diffraction pattern of residue (RHA) left after heat treatment of RH powder at 1450°C 105

Fig. 5.6. XRD pattern of porous Ti-SiO2 composites with different RH content sintered at 1450°C 108

Fig. 5.7. Effect of RH content and RH size on (a) apparent porosity, (b) compressive strength and (c) elastic modulus of porous Ti-SiO2composites 110

Fig. 5.8. SEM micrograph of porous Ti-SiO2 composites fabricated using 10 wt% (a-c) and 20 wt% (d-f) RH powder of sizes $< 180 \mu m$, $180-355 \mu m$, and $355-600 \mu m$ respectively 111

Fig. 5.9 SEM micrograph of porous Ti-SiO2 composites fabricated using 5 wt% (a-c) and 15 wt% (d-f) RH powder of sizes $< 180 \mu m$, $180-355 \mu m$, and $355-600 \mu m$ respectively 111

Fig. 5.10. SEM and EDS micrograph of Ti-SiO2 scaffold after dipping in SBF for (a) 7 days and (b) 14 days 115

Fig. 5.11. Schematic diagram showing the mechanism of formation of apatite layer on the surface Ti-SiO2 scaffold when soaked in SBF solution on (a) 1st day, (b) 7th day and, (c) 14th day

Fig. 5.12. Biofilm quantification: The amount of biofilm formed on different composites was estimated using a crystal violet assay. 118

Fig. 5.13. Scanning electron micrograph of various compositions showing biofilm formation by *S.aureu* 119

Fig.5.14 Cell viability: The % viability of preosteoblast [cell line MC3T3-E1 subclone 4(ATCC)] on different composites was estimated using MTT assay. 120

Fig. 6.1. Representative Green and sintered samples prepared using BP, RH and sucrose (as the binder). The effect of sintering temperature can be visualized by volumetric contraction and change in color of the samples. 133

Fig. 6.2. Schematic representation for the fabrication process of HAp-SiO2 scaffold 134

Fig. 6.3. Thermogravimetric analysis (TGA) of BP, RH and Sucrose in air 136

Fig. 6.4. XRD diffraction pattern of BP samples sintered at different temperatures with different wt% of RH 138

Fig. 6.5. Mechanism of phase transformation of HAp to TCP by Si substitution 141

Fig. 6.6. FTIR analysis of (a) unsintered pure BP, (b, c) pure BP samples sintered at 1000°C and 1300°C, (d, e) samples sintered at 1000°C and 1300°C with 15 wt% of RH 142

Fig. 6.7. SEM of thoroughly washed (a) raw BP and (b) dried RH powder 144

Fig. 6.8. SEM and EDS analysis of (a) 100BP0RH sintered at 1000°C, (b) 100BP0RH sintered at 1300°C, (c) 85BP15RH sintered at 1000°C, (d) 85BP15RH sintered at 1300°C at different magnifications 145

Fig. 6.9. (a) TEM, (b) HRTEM and (c) EDS analysis of 85BP15RH sintered at 1300°C 146

Fig. 6.10. Effect of sintering temperature and RH content on the (a) apparent porosity and (b) compressive strength of the silica doped TCP scaffold 147

Fig. 6.11. Effect of RH content and sintering temperature on pore size of silica doped TCP scaffold 148

Fig. 6.12. SEM micrographs of (a) 100BP0RH, (b) 85BP15RH sintered at 1300°C and immersed in SBF for 7 days, and (c) 100BP0RH, (d) 85BP15RH sintered at 1300°C and immersed in SBF for 14 days, (e) EDS analysis of 85BP15RH sintered at 1300°C and immersed in SBF for 14 days.

List of Tables

Table Caption	Page No.
Table 1.1 Basic requirements of implants for orthopedic applications	5
Table 1.2 Physical and Mechanical Properties of Metallic, Ceramic and Polymeric	
Biomaterials	6
Table 1.3 Advantages, Disadvantages and Applications of Different Biomaterials	19
Table1.4 Mechanical Properties of Ti and Alloys	22
Table 2.1 Mechanical Properties of Ti scaffold prepared by space holder technique	46
Table 2.2 Mechanical Property of Porous Ti Prepared by Entangled Metal Wire Tec	chnique 51
Table 2.3 Processing Conditions and Mechanical Property of Porous Ti Prepared Microwave Sintering	d by SPS and 54
Table 2.4 Physical and Mechanical Property of Porous Ti Prepared by MIM Casting Techniques	and Different 59
Table 2.5 Physical and Mechanical Property of Porous Ti Prepared by Rapid Techniques	d Prototyping 61
Table 5.1 List of feasible compositions (wt% basis) which are fabricated successful Ti-SiO2 composite.	lly into porous 97
Table 5.2 Chemical compositions of SBF and their order of mixing	102
Table 5.3 Property comparison of porous Ti-SiO2composite with previously repo with human cortical bone	rted work and 113
Table 6.1 Semi- quantitative analysis of phases formed in silica doped TCP scaff different temperatures	old sintered at 137
Table 6.2 Elemental composition, Ca/P ratio, and physical properties of unsintered samples.	d and sintered 144
Table 6.3 Property Comparison of developed silica doped TCP scaffold with previous work	ously reported 148