CONTENTS		PAGE NO.			
List o	of Figures		xiv-xvii		
List of Tables			xviii-xix		
List of Abbreviations			xx-xxi		
Prefe	ace		xxii-xxviii		
CHA	PTER 1		01-35		
INT	RODUCI	ION AND LITERATURE REVIEW			
1.1	Brief H	listory of DRAs	01		
1.2	Importa	ant DRA parameters	02		
	1.2.1	Return loss	02		
	1.2.2	Frequency bandwidth	03		
	1.2.3	Bandwidth enhancement techniques for DRAs	04		
	1.2.4	Radiation pattern	07		
	1.2.5	Gain	11		
	1.2.6	Gain enhancement techniques for DRAs	11		
1.3	Excitat	ion of DRAs	12		
	1.3.1	Coaxial probe feed	12		
	1.3.2	Microstrip line feed	13		
	1.3.3	Aperture coupled feed	13		
	1.3.4	Coplanar waveguide feed	14		
	1.3.5	Dielectric image guide coupling feed	14		
1.4	.4 Modes of Excitation		14		
1.5	Dielectric Materials and their Properties		16		
	1.5.1	Parameters of ceramic dielectric materials affecting the	16		
		performance of DRAs			
	1.5.2	Parameters affecting the dielectric constant of the resonator	18		
	1.5.3	Effect of interaction of radio-frequency field with dielectric	19		
		materials			
	1.5.4	Laboratory synthesized and commercially available dielectric	22		
		materials			
1.6	Recent	Developments Pertaining to DRAs	24		
1.7	Perovs	kite Ceramics	28		
1.8	Liquid	Phase Sintering	33		
CHA	APTER 2		37-41		
OBJ	OBJECTIVES OF THE WORK				
2.1 Motivation and Problem Definition 37			37		

2.2	Objective	of Proposed Research Work	39
	2.2.1	Material preparation and characterization	40
	2.2.2	Design, simulation and experimental studies	40
CHA	APTER 3		43-57
EXP	ERIMENT	TAL METHODS	
3.1	Material S	Synthesis	43
	3.1.1	Raw materials	43
	3.1.2	Preparation of BST ceramics	43
	3.1.3	Preparation of different glasses	44
	3.1.4	Liquid phase sintering of barium strontium titanate	45
3.2	Material C	Characterisation	47
	3.2.1	Thermo-gravimetric (TG) and Differential thermal analysis (DTA)	47
	3.2.2	Phase analysis and rietveld refinement	48
	3.2.3	Microstructure analysis	49
	3.2.4	Density	49
	3.2.5	Dielectric measurements	50
3.3	Design an	d Simulation of DRAs	51
3.4	4 DRA Fabrication		53
	3.4.1	Requirement	53
	3.4.2	Fabrication steps	53
3.5	Antenna N	Aeasurement	57
CHAPTER 4			59-80
STU	DY OF 7	THE EFFECTS OF PBO-B2O3-BaO-SiO2 (PBBS) GLASS A	DDITIVE ON
STR	UCTURAI	L AND DIELECTRIC BEHAVIOURS OF Ba _{0.5} Sr _{0.5} TIO ₃ CERAM	IICS
4.1	Introducti	on	59
4.2	Results an	d Discussion	60
	4.2.1	Thermo-gravimetric and differential thermal analysis	61
	4.2.2	Sintering and densification behaviour	63
	4.2.3	Phase analysis	65
	4.2.4	Microstructure	68
	4.2.5	Analysis of dielectric property	70
4.3	Summary		80
CHA	APTER 5		81-97
DES	IGN AN	D DEVELOPMENT OF FILLETED RECTANGULAR	DIELECTRIC
RES	ONATOR	ANTENNA USING PBBS GLASS ADDED BST (BST-3P)	
5.1	5.1 Introduction 81		

xi

5.2	Antenna D	Design and Discussion	83
	5.2.1	Feeding mechanism	83
	5.2.2	Stacking of resonating elements	84
	5.2.3	Structural novelty in DRA	84
	5.2.4	Theoretical analysis of antenna design	85
5.3	5.3 Results and Discussion		87
	5.3.1	Reflection coefficient-frequency characteristics	87
	5.3.2	Mode analysis	90
	5.3.3	Radiation patterns and gain of the proposed antenna	93
5.4	Summary		96
CHAPTER 6			99-118

STUDY OF THE EFFECTS OF B_2O_3 - Bi_2O_3 (BB) GLASS ADDITIVE ON STRUCTURAL AND DIELECTRIC BEHAVIOURS OF $Ba_{0.5}Sr_{0.5}TiO_3$ CERAMICS

6.1	Introduction		99
6.2	Results and Discussion		
	6.2.1.	Thermo-gravimetric and differential thermal analysis	101
	6.2.2.	Sintering and densification behaviour	103
	6.2.3.	Phase analysis	104
	6.2.4.	Microstructure	106
	6.2.5.	Analysis of dielectric property	108
6.3	Summary		118
CHAPTER 7			119-135

DESIGN AND DEVELOPMENT OF CYLINDRICAL DIELECTRIC RESONATOR ANTENNA USING BB GLASS ADDED BST (BST-3B) EXCITED BY NOVEL COMPOSITE FEED

Introduction		119		
Antenna Design and Discussion				
Results and Discussion				
7.3.1	Reflection coefficient – frequency characteristic	126		
7.3.2	Mode analysis	127		
7.3.3	Radiation patterns and gain of the proposed antenna	130		
Summary		134		
CHAPTER 8 137-14				
CLUSION	NAND FUTURE SCOPE			
Summary	and Conclusion	137		
Future Scope		142		
	Introduction Antenna E Results and 7.3.1 7.3.2 7.3.3 Summary PTER 8 ICLUSION Summary Future Sco	Introduction Antenna Design and Discussion Results and Discussion 7.3.1 Reflection coefficient – frequency characteristic 7.3.2 Mode analysis 7.3.3 Radiation patterns and gain of the proposed antenna Summary PTER 8 CLUSION FUTURE SCOPE Summary and Conclusion Future Scope		

References	143-158
List of Publications	159

LIST OF FIGURES

Figure 1.1	Different types of DRA configurations providing improved bandwidth	6
Figure 1.2	Different complex multi-element DRAs generating monopole like radiation pattern	9-10
Figure 1.3	Perovskite structure	29
Figure 1.4	Polyhedra model of perovskite structure	29
Figure 2.1	Layout of present investigation	38
Figure 2.2	The objective of the work (Flow chart)	39
Figure 3.1	Flow chart showing liquid phase sintering of BST ceramic using PBBS glass	46
Figure 3.2	Flow chart showing liquid phase sintering of BST ceramic using BB glass	47
Figure 3.3	Microwave dielectric measurement of the sample using Network Analyser	50
Figure 3.4	Depiction of mesh on the FR4 substrate of the composite feed CDRA using HFSS software	51
Figure 3.5	Design procedure used for antenna simulation using HFSS software	52
Figure 3.6	3D geometry of (a) Fillet RDRA and (b) composite feed CDRA	55
Figure 3.7	Measurement of reflection coefficient (S_{11}) – frequency characteristic of the fabricated prototype of DRA through Network Analyser	56
Figure 3.8	Experimental setup for measurement of radiation characteristics of the fabricated prototype of DRA.	56
Figure 4.1	(a) DTA/TGA of $Ba_{0.5}Sr_{0.5}TiO_3$ and (b) DTA of PBBS glass.	62
Figure 4.2	Variation of density with sintering temperature of samples BST, BST-3P, BST-5P, BST-8P and BST-10P.	64
Figure 4.3(a)	XRD pattern of calcined Ba _{0.5} Sr _{0.5} TiO ₃ powder sample.	65

Figure 4.3(b)	XRD pattern of Ba _{0.5} Sr _{0.5} TiO ₃ sintered at 1523K	66
Figure 4.3(c)	Comparative XRD analysis of different sample BST, BST-3P, BST-5P, BST-8P and BST-10P sintered at 1523K, 1223K, 1198K 1173K and 11/48K respectively	67
Figure 4.4	SEM microstructure of (a) BST, (b) BST-3P, (c) BST-5P, (d) BST-8P and (e) BST-10P	69
Figure 4.5	Variation of dielectric constant and loss tangent with temperature within the temperature range of 20K to 293K at different frequencies for the ceramic samples: (a) BST, (b) BST-3P, (c) BST-5P, (d) BST-8P and (e) BST-10P	71-73
Figure 4.6	Variation of dielectric constant and loss tangent with temperature within the temperature range of 293K to 450K at different frequencies for the ceramic samples: (a) BST, (b) BST-3P, (c) BST-5P, (d) BST-8P and (e) BST-10P	74-76
Figure 4.7	Variation of dielectric constant with temperature of different ceramic samples at 1 MHz at (a) 20 to 293K and (b) 293K to 450K.	77
Figure 4.8	Variation of (a) dielectric constant and (b) Loss tangent of different examples with frequencies in CHz range	79
Figure 5.1	Geometry of DS-RDRA (a) 3-D view, (b) bottom view	86
Figure 5.2	Geometry of F-RDRA (a) 3-D view, (b) Fabricated F-RDRA	86
Figure 5.3	(a) Simulated variations of reflection coefficient of SS-RDRA, DS-RDRA and the proposed F-RDRA versus frequency; (b) Effect of variation in fillet radius over the range 4.5 - 6.5 mm on the reflection coefficient of F-RDRA and (c) Simulated and measured variations of reflection coefficient of F-RDRA with frequency.	88
Figure 5.4	E-field distribution of SS-RDRA at 11.32 GHz	91
Figure 5.5	E–field distributions in DS-RDRA of (a) upper segment, and (b) lower segment at 8.68 GHz	92
Figure 5.6	E–field distributions in F-RDRA of (a) upper segment, and (b) lower segment at 9.4 GHz.	92
Figure 5.7	Simulated 3D radiation pattern of (a) Conventional DS-RDRA at 9.42 GHz; (b) Conventional DS-RDRA at 11.99 GHz; (c) F-RDRA at 9.42 GHz and (d) F-RDRA at 11.99 GHz.	94
Figure 5.8	Simulated far field radiation pattern of conventional DS-RDRA and F-RDRA in H–plane at: (a) 9.42 GHz; (b) 11.99 GHz	94

Figure 5.9	Far field radiation patterns of F-RDRA in :(a) E-plane at 7.62 GHz; (b) H-plane at 7.62 GHz; (c) E-plane at 12.3 GHz, and (d) H-plane at 12.3 GHz	95
Figure 5.10	Simulated and measured gain values of F-RDRA over its operating frequency range.	95
Figure 6.1	DTA/TGA of BB glass	102
Figure 6.2	Variations of density of BST, BST-3B, BST-5B, BST-8B and BST-10B samples with sintering temperature	104
Figure 6.3	Comparative XRD analysis of BST, BST-3B, BST-5B, BST-8B and BST-10B samples sintered at 1223K.	105
Figure 6.4	SEM microstructure of (a) BST, (b) BST-3B, (c) BST-5B, (d) BST-8B and (e) BST-10B	107
Figure 6.5	Variation of dielectric constant and loss tangent with temperature within the temperature range of 20K to 293K at different frequencies for the ceramic samples: (a) BST, (b) BST-3B, (c) BST-5B, (d) BST-8B and (e) BST-10B	110-112
Figure 6.6	Variation of dielectric constant and loss tangent with temperature within the temperature range of 293K to 500K at different frequencies for the ceramic samples: : (a) BST, (b) BST-3B, (c) BST-5B, (d) BST-8B and (e) BST-10B	113-115
Figure 6.7	Variations of dielectric constant for different ceramic samples at 1 MHz in the temperature range (a) 20 - 293K and (b) 293K - 450K.	116
Figure 6.8	Variations of (a) Dielectric constant, and (b) Loss tangent of different ceramic samples with frequency in GHz range	117
Figure 7.1	Geometry of proposed antenna (a) 3-D view (b) Side view	121
Figure 7.2	Different feed configurations for CDRA (a) Feed 1 (PPP), (b) Feed 2 (PSP), and (c) Feed 3 (PXP)	121
Figure 7.3	Simulated reflection coefficient-frequency characteristics of CDRA excited by three different feed configurations	123
Figure 7.4	Simulated reflection coefficient-frequency characteristics of the proposed CDRA excited by feed 3 (a) for different ' r_d ' values by keeping $w_f = 0.7$ mm and (b) for different ' w_f ' values by keeping $r_d = 4.7$ mm.	123
Figure 7.5	Image of fabricated antenna (a) Front side showing XOR patch	126

(b) Bottom side (c) Image of the fabricated CDRA

Figure 7.6	Reflection coefficient – frequency characteristics of the proposed antenna	127
Figure 7.7	The E field distributions in the printed patches at their resonant frequencies for (a) Feed 1 (b) Feed 2 (c) Feed 3	128
Figure 7.8	The E field distributions in the printed patch of proposed antenna at (a) 7.78 GHz (b) 9.5 GHz (c) 10.5 GHz	128
Figure 7.9	The E field distributions in the CDRA at corresponding resonant frequency for (a) Feed 1 (b) Feed 2 (c) Feed 3	129
Figure 7.10	Radiation patterns of the proposed CDRA at (a) 7.44 GHz (in x-z plane); (b) 7.44 GHz (in y-z plane); (c) 7.44 GHz (in x-y plane); (d) 7.78 GHz (in x-z plane); (e) 7.78 GHz (in y-z plane); (f) 7.78 GHz (in x-y plane); (g) 8.30 GHz (in x-z plane); (h) 8.30 GHz (in y-z plane) and (i) 8.30 GHz (in x-y plane).	131
Figure 7.11	Radiation patterns of the proposed CDRA at (a) 9.50 GHz (in x-z plane); (b) 9.50 GHz (in y-z plane); (c) 9.50 GHz (in x-y plane); (d) 10.50 GHz (in x-z plane); (e) 10.50 GHz (in y-z plane); (f) 10.50 GHz (in x-y plane); (g) 11.25 GHz (in x-z plane); (h) 11.25 GHz (in y-z plane) and (i) 11.25 GHz (in x-y plane).	132
Figure 7.12	3D gain plots at different frequencies within the operating frequency range of the proposed CDRA.	133

Table 1.1	Modes of excitation in different shapes of DRA	15
Table 1.2	Commercially available dielectric materials for DRA applications	23
Table 1.3	Recently designed DRAs with commercially available and synthesized ceramic materials.	25
Table 3.1	The list of raw materials with percentage purity and names of manufacturers.	43
Table 3.2	Calculation of batch composition for BST ($Ba_{0.5}Sr_{0.5}TiO_3$)	44
Table 3.3	Calculation of batch composition for PBBS glass	44
Table 3.4	Calculation of batch composition for BB glass	45
Table 3.5	Different BST-PBBS batch compositions.	45
Table 3.6	Different BST-BB batch compositions	46
Table 4.1	Nomenclature of different BST-PBBS batch compositions	60
Table 4.2	The maximum relative percentage densities for different compositions	64
Table 4.3	Wyckoff position and crystallographic details of BST	66
Table 4.4	Dielectric properties of BST ceramic compositions and PBBS glass (8.5 – 11GHz)	78
Table 5.1	Parameters of SS-RDRA, DS-RDRA and proposed F-RDRA	87
Table 5.2	Reflection coefficient–frequency characteristics of SS-RDRA, conventional DS-RDRA and F-RDRA	88
Table 5.3	Simulation results of the conventional DS-RDRA and the proposed F-RDRA	89
Table 5.4	Parameters of DS-RDRA and proposed F-RDRA for theoretical analysis of antenna design	89
Table 5.5	Performance comparison of proposed antenna with other antennas reported in literature.	90
Table 6.1	Nomenclature of different BST-BB batch compositions	101
Table 6.2	The maximum relative percentage densities for different compositions	104
Table 6.3	Dielectric properties of BST ceramic and BB glass added BST	116

Table 7.1Optimized design parameters of proposed CDRA122Table 7.2-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different feed configurations123Table 7.3-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different r_d values124Table 7.4-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different r_d values124Table 7.4-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different ' w_f ' values by keeping $r_d = 4.7$ mm133Table 7.5I33Comparison of the performance of the proposed antenna with other antennas reported in literature.138Table 8.1Performance comparison of proposed F-RDRA with other antennas reported in literature.140Table 8.3Performance comparison of the proposed CDRA with other antennas reported in literature140Table 8.4Comparison of results for various parameters of proposed DRAs141		compositions within the frequency range $(8.5 - 12 \text{ GHz})$	
 Table 7.2 -10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different feed configurations Table 7.3 -10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different r_d values Table 7.4 -10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different 'w_f' values by keeping r_d = 4.7 mm Table 7.5 133 Comparison of the performance of the proposed antenna with other antennas reported in literature. Comparison of properties of BST ceramic, PBBS and BB glass added BST ceramics Table 8.2 Performance comparison of proposed F-RDRA with other antennas reported in literature. Table 8.3 Performance comparison of the proposed CDRA with other antennas reported in literature Table 8.4 Comparison of results for various parameters of proposed DRAs 	Table 7.1	Optimized design parameters of proposed CDRA	122
Table 7.3-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different r_d values124Table 7.4-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different ' w_f ' values by keeping $r_d = 4.7$ mm124Table 7.5133Comparison of the performance of the proposed antenna with other antennas reported in literature.138Table 8.1Comparison of properties of BST ceramic, PBBS and BB glass added BST ceramics138Table 8.2Performance comparison of proposed F-RDRA with other antennas reported in literature.140Table 8.3Performance comparison of the proposed CDRA with other antennas reported in literature140Table 8.4Comparison of results for various parameters of proposed DRAs141	Table 7.2	-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different feed configurations	123
Table 7.4-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different 'w _f ' values by keeping $r_d = 4.7 \text{ mm}$ 124Table 7.5133Comparison of the performance of the proposed antenna with other antennas reported in literature. Comparison of properties of BST ceramic, PBBS and BB glass added BST ceramics138Table 8.1Performance comparison of proposed F-RDRA with other antennas reported in literature.140Table 8.3Performance comparison of the proposed CDRA with other antennas reported in literature140Table 8.4Comparison of results for various parameters of proposed DRAs141	Table 7.3	-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different r_d values	124
Table 7.5133Table 8.1Comparison of the performance of the proposed antenna with other antennas reported in literature. Comparison of properties of BST ceramic, PBBS and BB glass added BST ceramics138Table 8.2Performance comparison of proposed F-RDRA with other antennas reported in literature.140Table 8.3Performance comparison of the proposed CDRA with other antennas reported in literature140Table 8.4Comparison of results for various parameters of proposed DRAs141	Table 7.4	-10 dB reflection coefficient bandwidth and resonating frequency of the antenna for different ' w_f ' values by keeping $r_d = 4.7$ mm	124
 Table 8.1 Comparison of the performance of the proposed antenna with other antennas reported in literature. Comparison of properties of BST ceramic, PBBS and BB glass 138 added BST ceramics Table 8.2 Performance comparison of proposed F-RDRA with other antennas 140 reported in literature. Table 8.3 Performance comparison of the proposed CDRA with other 140 antennas reported in literature Table 8.4 Comparison of results for various parameters of proposed DRAs 141 	Table 7.5		133
Table 8.2Performance comparison of proposed F-RDRA with other antennas140Table 8.3Performance comparison of the proposed CDRA with other140Table 8.3Comparison of results for various parameters of proposed DRAs141	Table 8.1	Comparison of the performance of the proposed antenna with other antennas reported in literature. Comparison of properties of BST ceramic, PBBS and BB glass added BST ceramics	138
Table 8.3 Performance comparison of the proposed CDRA with other140 Table 8.4 Comparison of results for various parameters of proposed DRAs141	Table 8.2	Performance comparison of proposed F-RDRA with other antennas reported in literature.	140
Table 8.4 Comparison of results for various parameters of proposed DRAs141	Table 8.3	Performance comparison of the proposed CDRA with other antennas reported in literature	140
	Table 8.4	Comparison of results for various parameters of proposed DRAs	141

LIST OF ABBREVIATIONS

AUT	Antenna Under Test
BSG	Borosilicate glass
BW	Bandwidth
BST	$Ba_{0.5}Sr_{0.5}TiO_3$
BB	B_2O_3 - Bi_2O_3
CBS	CaO–B ₂ O ₃ –SiO ₂
CDR	Cylindrical Dielectric Resonator
CDRA	Cylindrical Dielectric Resonator Antenna
CTE	Coefficient of Thermal Expansion
CZN	$Cu_2ZnNb_2O_8$
DR	Dielectric Resonator
DRA	Dielectric Resonator Antenna
DSCDRA	Dual Segment Cylindrical Dielectric Resonator Antenna
DS–RDRA	Dual Segment Rectangular Dielectric Resonator Antenna
DTA	Differential Thermal Analysis
FDTD	Finite Difference Time Domain
FRDRA	Filleted Rectangular Dielectric Resonator Antenna
FEM	Finite Element Method
FR-4	Flame Retardant (fiberglass reinforced epoxy laminates)
GPS	Global Positioning System
HEM	Hybrid Electric and Magnetic
HFSS	High Frequency Structure Simulator
IoT	Internet of Things
IEEE	Institute of Electrical and Electronics Engineers
JCPDS	Joint Committee on Powder Diffraction Standards
MIMO	Multi–Input Multi Output
MLMP	Multi–Layer Multi–Permittivity
MPA	Microstrip Patch Antenna
PCB	Printed Circuit Board
PBBS	PbO-B ₂ O ₃ -BaO-SiO ₂
PPP	Probe with Plus Patch

PSP	Probe with Swastik Patch
PXP	Probe with XOR Patch
PVA	Polyvinyl Alcohol
Q×f	Quality Factor multiplied by frequency
RDRA	Rectangular Dielectric Resonator Antenna
SCS	SrCuSi ₄ O ₁₀
SEM	Scanning Electron Microscopy
SMA	Sub-miniature version A
TA	Thermal Analyser
TE	Transverse Electric
TEM	Transverse Electromagnetic
TM	Transverse Magnetic
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	Wireless Local Area Network
XRD	X–Ray Diffraction
3D	Three dimensional