CHAPTER 2

2. LITERATURE REVIEW

2.1 Burn Rate Modifiers:

Burn rate modifiers are one of the important additives being added into the solid composite propellants (SCPs). The function of added additives such as plasticizer, bonding agents and catalyst are to modify the performance of SCPs except the specific impulse [Maycock *et al.* 1969]. **B**eing the low energy content material, these additives reduce the specific impulse of the SCPs. Burn rate modifiers are always of great interest in order to improve the ballistic properties of the solid rocket motor design [Jacobs *et al.* 1969]; Boldyrev, 1968]. The best additives are those which are used in small quantity in order to improve the burn rate, and modify the sensitivity of burn rate on pressure as well as temperature in a controlled way. The burn rate modifiers enhance the catalysis in gaseous phase of the combustion. Burn rate of the propellant can be enhanced through burn rate modifiers, which are normally added to the basic composition of propellants without affecting its processing, mechanical and energetic properties. The most commonly used additives are p-type transition metal oxides such as Fe₂O₃, CuO, MnO₂, Nd₂O₃ and CuCr₂O₄.

2.2 The role of Additives on Thermal Decomposition of Ammonium Perchlorate:

Ammonium perchlorate (AP) decomposes in two steps namely low temperature decomposition (LTD) and high temperature decomposition (HTD). The specific feature of thermal decomposition of AP is extremely sensitive to the action of various additives. The actions of additives takes place in two way, one way is homo-phase in which the catalyst enters

into the AP lattice and second is hetero-phase in which catalysts retain their own phase independently [Boldyrev *et al.* 2006].

2.2.1 Homo-Phase Additives:

The homo-phase additives are introduced into the lattice of AP during the synthesis process and significantly affect its thermal decomposition pattern. These additives are grouped into three groups.

- 1. Additives responsible for a change in the conditions of proton, ion or electron transfer process
- 2. Additives that decomposes below the decomposition temperature of AP and acts as the precursors for catalytically active products
- 3. Additives that cause the above mentioned action in a combined way.

Foreign ion addition into the lattice of AP changes its physiochemical and thermal stability. Maycock *et al.* (1969) has introduced Ca^{2+} , SO_4^{-} and $C_2O_4^{-2-}$ ions into the AP lattice, and observed that the divalent cation introduction increased the number of cation vacancies as per the electro-neutrality principal, and accordingly decreased the number of interstitial NH_4^+ ions. The electron theory of decomposition of AP states that NH_4^+ ions are responsible for accepting the released electron during the decomposition process. The decrease in the number of NH_4^+ ions is the reason for inhibition of thermal decomposition of AP. According to same electro-neutrality principle, the introduction of divalent anions into the lattice increases the anions vacancies. The interaction of anions with the cation decreases their concentration into the lattice. It prevents the recombination of interstitial NH_4^+ with cation vacancies, which causes the acceleration of thermal decomposition of AP. Jacobs *et al.* (1974) ; Boldyrev *et al.* (1968, 1970) ; Solymosi et al. (1969) investigated the effect of doping of divalent cation of calcium, strontium, zinc and barium into the lattice of AP and concluded that decomposition process got accelerated in presence of these dopants. These results were in contrast to the observations of by Maycock *et al.* (1969).

2.2.2 Hetero-Phase Additives:

The high temperature decomposition (HTD) of AP is strategically important as it happens in the combustion zone of SCPs. Bircomshaw and Newman (1955) were among the first researchers who studied the action of various additives on the thermal decomposition of AP above 350°C. It was observed that the most effective additive that accelerated the thermal decomposition for AP was MnO_2 and Fe_2O_3 was the least. The Al₂O₃ had no effect on thermal decomposition rate of AP. Thermal decomposition of AP in the temperature range of 170-200°C was investigated by Hermony and Salmon (1962). The study concluded that cobalt and nickel oxides, exhibited the maximum catalytic activity, whereas, MnO₂ showed intermediate activity. However, oxides of chromium and magnesium affected the later stage of decomposition process. MnO₂ catalyst was been investigated in detailed by Galwey and Jacobs (1959). It was observed that thermal decomposition of AP reached 100% in presence of MnO_2 against the 30% for pure AP. It was also stated that the MnO₂ catalyzed only the HTD of AP. Thermal decomposition of AP in presence of copper (II) starts at 180°C against the temperature of 200°C. Jacobs and Kureishy (1962) observed that the Cu₂O decreased the deflagration delay time of AP due to its catalytic action and heat evolution during the oxidation to copper oxide. The doping of copper oxide with lithium increased its catalytic activity, whereas chromium doping with copper oxide reduced the catalytic activity.

2.3 Transition Metals and Metal Oxides:

Numerous studies have been carried out to observe the impact of transition metals and metal oxides on the thermal decomposition of AP. Liu et al. (2004) studied the effect of Ni, Cu, Al, NiCu of nanometer size on the thermal decomposition of AP. It was observed that in presence of nanometric Cu, Ni, Al, and NiCu powder, second exothermic peaks lowered by 130.2, 112.9, 51.8 and 140.4°C, respectively, with a small change in the first exothermic peak. Weifan et al. (2006) studied the effect of nano sized yittria on thermal decomposition of AP. The best composition of catalyst with AP was observed at 5%. Also, both LTD and HTD peaks merged together and appeared at 337.7°C, with the heat release of 1240 J/g. However, pure AP decomposed at 326.5 and 452.6°C, with the heat release of 515J/g. Chen et al. (2015) synthesized MnO₂ nanorods of different phases (α , β , γ and mixed phase) with the similar average diameter of 9.5nm and studied their effect they concluded that the catalytic activity of MnO_2 was size dependent not phase dependent. Moreover, mixed phase MnO_2 has exhibited the best catalytic activity and this phase lowered the HTD peak by 132.4°C. Chandru et al. (2012) studied the effect of β - MnO₂ on thermal decomposition behavior of AP. Addition of 2% w/w micron-sized β -MnO₂ to AP lowered the HTD peak temperature from 426.3 to 341.2°C (i.e by 85.1°C). However, the addition of merely 0.25% w/w mesoporous β -MnO₂ brought it down to 301.0°C. Comparatively, the mesoporous α -Fe₂O₃ at 2% w/w conc. reduced the HTD peak temperature to 317.3°C. The DSC analysis revealed an enhancement in the apparent heat released during the decomposition of AP in the presence of the prepared MnO₂ catalysts. Li et al. (2014) synthesized the hybrid material of Mn_3O_4 and carbonated bacterial cellulose (Mn_3O_4/CBC) by hydrothermal method and studied the effect of synthesized hybrid material on thermal decomposition of ammonium perchlorate. The author observed a remarkable decrease of

163°C in high temperature decomposition peak that appeared at 293.6 from 457.2°C. Zhang et al. (2014) studied the effect of ultra-long V_2O_5 nanowires on thermal decomposition of AP. It was observed that the decomposition temperature of AP decreased with the increasing catalyst loading, and the maximum decrease was found with 10% loading. It was stated that synthesized V_2O_5 nanowire had higher catalytic activity than the bulk V_2O_5 . Various studies have been done on the effect of CuO, Co_2O_3 and $CuCo_2O_4$ on the thermal decomposition of AP. Lijuan *et al.* (2008) found that decomposition of AP in the presence of CuO nano-rods catalyst occurred at 349°C, where the pure AP decomposed at 366°C. Thus, the decomposition of AP was improved significantly in the presence of CuO nanorods, having different surface area. Alizadeh-Gheshlaghi et al. (2012) observed that addition of nano size particles of CuO, Co₂O₃ and CuCo₂O₄ decreased the LTD to 325.72, 316, 308°C respectively as compared to 331.14°C for pure AP, whereas HTD was brought down to 353.14, 351.54 and 340.83°C respectively from 443.61°C. Moreover, $CuCo_2O_4$ showed better catalytic activity than others, which shifted the thermal decomposition temperature of AP down to about 103°C. Said et al. (1996) studied the role of cobaltite spinel, $CuCo_{3-x}O_4$, on the thermal decomposition of AP. It was observed that in presence of Co_3O_4 and CuO, AP decomposed in a single step at 96°C and 151°C lower temperatures w.r.t pure AP, respectively. The author lightened the effect of oxide composition on the thermal decomposition of ammonium perchlorate and emphasized that due to the addition of CuO into Co_3O_4 with x=0.1 and 0.3, increased the LTD. However, decomposition appeared more quickly at 264°C and became exothermic in just after the phase transition at 267°C. Further increase in CuO content up to x = 2.5, decreased the enhancement of decomposition to the maximum temperature range of 280-300°C. Wang et al. (2009) observed that addition of claw like CuO nanostructures in AP led to a significant reduction of the ending decomposition

temperature i.e. 350 and 353°C, respectively. Zhang *et al.* (2014) observed that the high temperature decomposition peak of AP decomposition decreased to 250°C from 450°C (i.e. by 200°C) in presence of synthesized nanoparticles of Al(OH)₃.Cr(OH)₃.

Effects of nanocomposites on AP thermal decomposition have also been widely studied. Eslami et al. (2016) studied the effect of AP/copper-chromium oxides core-shell nanocomposites on thermal decomposition of AP. This nanocomposite exhibited an excellent catalytic activity, and decreased the decomposition temperature by $74^{\circ}C$ (from 420 to 346°C), with the heat release of 1510 J/g. Zhaoxia et al. (2012) studied the effect of MOX (M = Zn, Co, Fe)/AP shell-core nanocomposites for self-catalytically decomposition of AP. Owing to the existence of the shell of MOX nanocatalysts, ZnO/AP, Co₃O₄/AP and Fe₂O₃/AP nanocomposites showed excellent self-catalytic performances for the thermal decomposition of AP. These nanocatalysts have lowered the AP decomposition temperature to 272, 285, 337°C from 398°C, and increased the heat release to 1137, 1237, 1010 J g⁻¹ from 584 J g⁻¹, respectively. Moreover, ZnO/AP nanocomposites with the mass ratio of ZnO:AP = 4:100 exhibited the best self-catalytic performance in decreasing the activation energy from 154.0 kJ/mol to 96.5 kJ/mol. Nickel oxides showed the same pattern of catalytic decomposition, as observed with copper oxide. The catalytic activity of NiO can be enhanced by thermal treatment. The catalytic activity of these additives decreases significantly above 500°C. Wang et al. (2005) studied the effect of nanoparticles of NiO and stated that the addition of 2% by wt NiO with AP decreased the decomposition temperature by 93°C and increased the heat of decomposition from 580 to 1490 J/g. Sharma et al.(2015) studied the effect of biosynthesized nickel oxide (NiO) and concluded that AP decomposition with 1% of NiO nano particles, the significant shift in LTD and HTD

which appeared at 35°C and 93°C prior to the pure AP decomposition temperature with no effect on crystallographic change temperature.

Iron (III) oxides are one of the prominent catalysts which are extensively studied for the use as burn rate modifier in rocketry. Joshi et al. (2008) synthesized ferric oxide in two different sizes of particles i.e. 30nm and 3.5nm by electrochemical method. The catalytic activity of the catalyst on the AP using DSC analysis showed that the overlapping of low and high temperature decomposition peaks appeared at 427 °C with the increasing concentration of catalyst. They concluded that α -Fe₂O₃ particles of 3.5 nm showed pronounced effect in lowering the HTD, and found the maximum shift of 77°C in presence of 5 % by wt. of as synthesized α -Fe₂O₃ compared to pure AP. Moreover, high heat release of 4.574 kJ/g at optimum 2 % by wt of Fe₂O₃ (3.5 nm) composition was also observed as compared to that of pure AP as 0.834 kJ/g. Song et al. (2010) studied the effect of as synthesized nanotubes of α -Fe₂O₃ on thermal decomposition of AP and observed the merging of both LTD and HTD together at 347°C. Xu et al. (2008) conducted the study of effect of Fe₂O₃ nanorods synthesized by hydrothermal method and observed no shift in low-temperature exothermic peak, where as shifts for high temperature exothermic peaks of AP appeared at 48.9, 16.8, 10 °C respectively. Zhang et al. (2011) studied the effect of carbon coating on the catalytic activity of nanoparticles of α -Fe₂O₃ of spherical and pod-like shape. It was observed that there was no significant effect on the shift of LTD in the presence of any kind of Fe₂O₃, whereas significant shift in HTD peak was observed that shifted to 380, 371 and 343°C from 452°C in presence of pod-like α -Fe₂O₃, sphere-like α -Fe₂O₃ and α -Fe₂O₃@C coreshell structure materials, respectively. It was concluded that α -Fe₂O₃@C exhibited higher catalytic activity towards the thermal decomposition of AP than α -Fe₂O₃. Singh *et al.* (2008) studied the effect of nanocrystalline transition metal oxides of Cr_2O_3 and Fe_2O_3 synthesized by

co-precipitation method & CuO synthesized by surfactant mediated method and Mn_2O_3 by reduction of metal complexes with hydrazine as the reducing agent with size of 54.3, 35.0, 46, 42 nm respectively. The catalytic effect on thermal decomposition of ammonium perchlorate was observed with shift of decomposition temperature downward by 150, 125, 100 and 75°C in the presence of Mn_2O_3 , CuO, Fe₂O₃ and Cr₂O₃ respectively. Lu *et al.* (2014) studied the effect of ZnO/Ag nanocomposites on thermal decomposition of ammonium perchlorate and concluded that catalyst compositions containing of 4% by wt. of Ag reduced the final decomposition temperature of AP to 290°C from 453°C for pure AP (163°C).

2.4 Ferrites:

Ferrites are the chemical compounds having the general formula AFe_2O_4 , where A is another metal Due to their advance electric and magnetic properties. Cobalt ferrites have been widely studied using various methods of synthesis in different applications in modern electronic technologies, microwave absorbers, catalysis and in biomedical applications. Cobalt ferrite is a cubic spinel structured ferrite, which has been synthesized through different methods in the past. Singh *et al.* (2008) studied the effect of mixed ternary metal ferrite on thermal decomposition of ammonium perchlorate and found that the catalytic activity increased with the increase of catalyst amount and cobalt zinc ferrite exhibited the highest catalytic activity over their metal ferrites. Zhao *et al.* (2010) studied the effect of synthesized CoFe₂O₄ nanoparticles on the thermal decomposition of ammonium perchlorate. Differential scanning calorimetry (DSC) analysis was carried out in the presence of varying concentrations (from 1, 2, and 5 by wt %) of this catalyst. It was observed that irrespective of the catalyst concentration, the second event of thermal decomposition which occurred at 326.2°C disappeared in the presence of CoFe₂O₄

nanoparticles. HTD of AP declined from 433.2 to 307.5°C with 5 wt% of the catalyst, with a concomitant change in the heating rate (when reduced from 20° C.min⁻¹ to 5°C.min⁻¹). Liu *et al.* (2010) stated that thermal decomposition of AP in presence of nano-CuFe₂O₄ particles comprise of two processes: endothermic and exothermic, which occured at 250 and 445°C, respectively. Nanometer copper ferrite showed high catalytic activity in thermal decomposition of AP. However, maximum catalytic activity i.e. reduction of decomposition temperature of 105° C was observed with 5% of CuFe₂O₄ content.

2.5 Chromites:

Chromites are mixed-metal oxides, having the spinel formula of AB₂O₄, where A and B are transition metals of A^{2+} and B^{3+} . The spinel structure has attracted the attention of researchers due to their high mechanical resistance and high thermal and chemical stability. There are two types of spinel structures. (1) normal spinel, characterized by cation A^{2+} and B^{3+} occupying tetrahedral and octahedral sites respectively and (2) inverse spinel, in which cation A^{2+} fill one half of the octahedral sites and cation B^{3+} take up the other half of the octahedral positions and all tetrahedral coordination sites . Li et al. (2007) studied the effect of Cu-Cr-O nanocomposites on solid composite propellant and concluded the study with the outcome of higher burn rate and lower pressure exponent. The authors found that the molar ratio of Cu/Cr of 0.7 has exhibited the most stable combustion at all operating pressure. Patil et al. (2008) observed that the nanocopper chromite (CuCr₂O₄) showed best catalytic effects as compared to nano-cupric oxide (CuO) in lowering the high temperature decomposition of AP by 118°C at 2 wt.%. with high heat releases of 5.430 and 3.921 kJg⁻¹in presence of nano-CuO and CuCr₂O₄, respectively. Snoop et al. (2015) studied the effect of rod shaped copper chromite nanoparticles, having diameter of

20-30 nm and 200-300 nm length, on thermal decomposition of AP. It was observed that decomposition of AP got reduced by 60°C in presence of three phases of oxides, viz., CuO, $CuCr_2O_4$ and $CuCrO_2$. Grossman *et al.* (2016) observed that amine modified boron nitride accelerated the thermal decomposition, which occurred at 325°C against the 430°C for pure AP. The effect of the catalyst was also observed on the burn rate of SCPs, which revealed a 30% increase against the baseline of propellant burn rate.

2.6 Graphene Based Transition Metal Oxides:

Graphene, an isolated planar sheet of carbon hexagons consisting of sp² hybridized C–C bond with a π -electroncloud, has attracted the attention of scientists, technologist and engineers from different backgrounds. Thin flakes consisting of few layers of carbonatoms, including monolayer graphene, could be very important because of their interesting physical and structural characteristics. Also, its promising potential application in technological fields have been reported, such as components in microelectronic devices, transparent conductive films, gas sensors, gasstorage, heat dissipation, energy storage, solar cells, reinforcement for polymer and support for catalyst nanoparticles.

Graphene is chemically inert, however, graphite oxide (GO, the starting material utilized to prepare graphene) is active and readily exfoliated into GO in solutions due to the présence of oxygen containing functional groups (such as hydroxyl, epoxy, carboxyl and carbonyl groups). Due to the ease of its manipulation in solutions, large surface area and numerous nucleation centres created by the oxygen containing functional groups, GO could be an excellent supporting material to load nanoparticles. The combination of rGO and nanoparticles could exhibit extraordinary properties that can not provided with their individual components [Zhao et al. 2014]. One significant advantage of graphene supported metal oxides burn rate modifier is that, it provides the high catalytic activity due to the large no of active site on the surface as well as enhances the uniform distribution of the burn rate modifier throughout the propellant mixture Ping et al. (2006) conducted the experimental study to investigate the effect of as synthesized Cu/CNT composite on thermal decomposition of ammonium perchlorate. They concluded the study that the AP decomposition appeared in a single stage and single peak of decomposition decreased by 126.3°C in presence of Cu/CNT. Zhang et al. (2014) studied the effect of nitrated graphene oxide on thermal decomposition of AP. It was observed that monolayer of NGO with 1.45 wt. % nitrogen content displayed a better catalytic property on AP decomposition in contrast to GO. It was attributed to more active sites in NGO, which increase the rate of heterogeneous decomposition of deprotonized HClO₄ gas on the surface of particles. Li et al. (2012) stated that the addition of Ni/graphene nano-composites (1%) could slightly decrease the lower temperature of decomposition of AP from 315.1°C for pure AP to 300.1°C and decrease the higher decomposition temperature from 427.8 to 330.5°C. It suggests that nano-Ni particles reduce the activation energy of decomposition of AP and graphene facilitated better flow of electrons which further increased the rate of decomposition of deprotonization of HClO₄ gas on the surfaces of catalyst particles. Li *et al.* (2013) synthesized ultrafine Mn_3O_4 nano-particles loaded on graphene sheets and studied its effect on thermal decomposition of AP. Only graphene oxide exhibited no significant effect on thermal decomposition of AP and decomposition of AP occurred at 362.7°C in presence of 5% of nano MnO₄ particles. However, a tremendous effect of synthesized and dispersed particles of Mn_3O_4 with graphene sheet was observed on thermal decomposition of AP. It was observed that 5% of Mn_3O_4 with graphene sheet reduced the AP decomposition temperature by 141.9°C and it occurred at 291.8°C in a single stage. Li et al.

(2012) studied the effect of mixed metal oxides of NiAl-layered double hydroxide/carbon (LDH/C) nano-composites on thermal decomposition of AP. The peak temperature of AP decomposition decreased significantly from 460 to 301°C whereas activation energy of AP decomposition with mixed metal additives was observed to be 74.6 and 80.4 KJ mol⁻¹ by two different methods Kissinger correlation and Ozawa-Flynn-Wall, respectively [Vyazovkin and Wight, 1999]. Ling *et al.* (2017) observed that rice-shaped nano-structured MnO₂ (5~10 nm in width and 10~30 nm in the length) on carbon nano-tube (CNT) exhibited superior catalytic performance during AP thermal decomposition at 120°C. With an addition of 3 wt% of composite to AP, the second exothermic peak temperature decreased by 160.2°C, with a heat release, four times that of pure AP. Dey *et al.* (2015) observed that 5 % weight Fe₂O₃ concentration was considerably more effective as compared to other compositions. Moreover, the burn rate of propellant was observed to increase from micron-sized Fe₂O₃ (30% increases) to nanosized Fe₂O₃ (37% increase). However, the burn rate increased to about 50% as compared to nanoand micron-sized Fe₂O₃ in presence of nano-composite of graphene and iron oxide.

2.7 Methods of Catalyst Preparation:

2.7.1 Co-Precipitation Method:

The co-precipitation is one of the simplest and most widely used methods for the preparation of hopcalite catalyst. The synthesis of hopcalite by co-precipitation of soluble salts of the constituent metals in a suitable solvent and then co-precipitated by adding an acid/base or another reagent to cause the precipitation [Jones *et al.* 2009]. The precipitation of the catalyst has three stages: super saturation, nucleation, and growth. After ageing, filtration, thorough washing with deionized water, a precipitate is obtained in an amorphous phase or crystalline phase. This is followed by drying, calcinations, and activation [Makwana *et al.* 2013]. These precursors can Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India

be readily converted into the catalyst by thermal treatment. The various characterization techniques confirm that the co-precipitation method produces lower crystalline and higher surface area than other methods [Njagi *et al.* 2011].

The chemical phases dispersed surface area, porous structure and particle size and shape are created in a single step in co-precipitation method. It can be reached by very high metal loading up to 80% and low solubility in hydroxides, alkaline media [Severino *et al.* 1998]. The pH, temperature, stirring, precursor's recovery and thermal treatment are the key features in the final material morphology, structure, and performance [Feaviour *et al.* 2007]. In the coprecipitation method, the phase association contains two elements, if one of them contained in an anion and the second one are cation, the precipitate would have a fixed or at least very inflexible composition [Li *et al.* 2007].

2.7.2 Sol-Gel Method:

The hopcalite catalysts are prepared by the sol-gel method. The reagents (nitrate, acetate salts of desired oxides) are first dissolved in distilled water in stochiometric amounts. A given amount of complexing agents dissolved in deionized water is added to this solution as a ligand. The solution is adjusted to pH (7.5-8.0) with propionic acid or ammonia or acetic acid, stirred and heated to a temperature of 60-80°C for 4h. Syrup thus obtained is heated to 100°C for 24h in air, followed by calcination at 450°C for 2h or at 600°C for 2h. After calcination, the catalyst with high surface area is obtained [Jones *et al.* 2008].

2.7.3 Impregnation Method:

The impregnation is related to an ion exchange or adsorption process. It consists of contacting a solid with liquid components to be deposited on the surface. During impregnation, many different processes take places at different rates. The type of product depends upon the nature of reactants (liquid and solid surfaces) and the reaction conditions. The main parameters affecting the liquid are pH, nature of solvent and concentrations of dissolved substances. The impregnation is one of the simplest methods of preparing the supported catalysts.

The water solution containing the metal precursor is contacted with a porous support [Raub *et al.* 2000]. The electrostatic forces monitor the adsorption mechanism and process conditions of different profile of active phases [Wojciechowska *et al.* 2007]. The calculated amount of Cu-nitrate is added into the distilled water, and then MnO_2 support is added under stirring conditions. The solution is dried overnight at 80°C, and then calcined at 400°C for 2h. A series of CuO/MnO₂ catalyst with different CuO loading are synthesized by the incipient wetness impregnation method [Prockop *et al.* 2007].

2.7.4 Reactive Grinding Method:

The reactive grinding is an essential preliminary operation and is sometimes use for producing particular catalysts. The crushing and grinding operation is aimed at producing particles of desired size [Clarke *et al.* 2015]. The crushing and grinding process is used with the material of natural origin or with products of action category. The grinding may take place in the absence (dry) or presence (wet) of a liquid, usually water. This is a unique and valuable process to make CuMnOx catalyst. The fused mass is crushed into the irregular lumps and sieved to the proper size [Chhatwal *et al.* 1975].

The powder, obtained after reactive grinding, has a broad particle size distribution. A typical example of CuMnOx catalysts prepared by the reactive grinding method is given by Clarke *et al.* (2015). In this preparation method, 10 cm zirconia grinding vessel with six 15 mm zirconia grinding balls was used. All grinding is performed at 25°C temperature in the presence of $Cu_2(OH)_2CO_3$ and MnCO₃, mixed in 1:2 copper to manganese molar ratio. A mixture of precursor is ground for varying periods of time (0.5-72h) at 400 rpm. The resulting dry solid powders is recovered and calcined in static air 415°C for 2h, with a ramp rate of 2°C/min from ambient temperatures [Fang *et al.* 2013].

2.7.5 Hydrothermal Method:

The hydrothermal method is considered for the modification of precipitates gels induced by temperature under ageing in the presence of water. These transformations are usually carried out at low temperatures (100-300 $^{\circ}$ C). This method involves textural or structural modifications of solid as summarized below:

I. The small crystals converted into large crystals.

- II. The small amorphous particles turned into large amorphous particles.
- III. The amorphous solids into crystalline solids.
- IV. The high porous gel into a lower porous gel.

The hydrothermal transformations usually occur within liquid phases. The variables of these types of operations for a given solid are pH, temperature, pressure, time and concentration. In other instance, the hydrothermal transformations are carried out during the operations, such as precipitation, washing, drying and extrusion. The manganese doped CuO-CeO₂ catalyst with Mn/Cu molar ratio of 1:5 at variable calcination temperature are prepared by hydrothermal method [Fuzhen *et al.* 2015]. The optimum calcination temperature of CuMnOx catalyst is

 300° C for 2h. The appropriate calcination temperatures can promote the formation of the Cu-Mn-Ce-O ternary oxide solid solution, adjust the degree of crystallinity of CeO₂ and enhance the formation of oxygen vacancies [Fortunato *et al.* 2000].

2.7.6 Pyrolysis Method:

The pyrolysis is a thermo chemical decomposition of organic materials at elevated temperature in the absence of oxygen. Pyrolysis is a type of thermolysis, most commonly observed in organic materials exposed to high temperatures. The flame spray pyrolysis is used to produce a broad range of high purity nanopowders ranging from single metal oxides to more complex mixed oxides [Liu *et al.* 2012]. The flame spray pyrolysis is a one-step process, in which a liquid feed – a metal precursor dissolved in a solvent – is sprayed with an oxidizing gas into a flame zone. The spray is combusted, and the precursors are converted into nanosized metal or metal oxide particles. The flame spray pyrolysis techniques allows for the preparation of a vast range of materials, including meta-stable phases due to the rapid quenching process [Benjamin *et al.* 2016].

The mixture of different precursors like Mn-nitrate and Cu-nitrate are added into the deionized water, and fed through a commercial nozzle with liquid feed rates ranging from 2.5 to 5 mL/min. It is ignited by a surrounding supporting flame to prevent the main flame from selfextinguishing. The supporting flame gas flow consisted of 1.5 L/min CH₄ and 3L/min O₂ [Liu *et al.* (2012)]. Thermal mass flow controller regulates all gas flows. The synthesized black voluminous powders are collected by a binder less glass fiber filter, with the help of a rotary vane pump. The synthesized hopcalite catalyst gave mixtures of Cu_{1.5}Mn_{1.5}O₄ and Mn₃O₄ with different mass fractions depending on the initial Cu : Mn ratio [Hu *et al.* (2000)].

2.8 Burn Rate Modifier and Their Role:

Solid composite propellants are the vital fuel systems used in modern rocketry. Solid rocket motors (SRMs) and space vehicles (SVs) derive energy through solid composite propellants [Shutton et al. 2000]. The key ingredients of these solid propellants are hydroxyl terminated polybutadiene (HTPB), aluminium (aluminum) powder (Al) and ammonium perchlorate (AP). The role of HTPB is to provide the structural integrity to the propellant, Al acts as the metallic fuel and AP is the most popular oxidizer used worldwide in the propellant formulation [Huang et al. (2015), Chandru et al. 2012, Reid et al. 2014, Grossman et al. 2016, Reid et al. 2007, Stephens et al. 2010 and Li et al. 2012]. The burn rate of a conventional propellant is governed by the combustion behavior of the solid composite propellant and is a function of the thermal decomposition of AP [Davenas, 1992; Jacob et al. 1969; Boldyrev, 2006; Huang et al. 2015; Grossman et al. 2016]. Transition metals and metal oxides are used as catalysts to enhance the rate of thermal decomposition of AP, eventually modifying the burn rate. The oxides of iron, manganese, copper, nickel and chromium copper chromites are widely used as the burn rate modifiers in the solid composite propellant [Reid et al. 2007]. Activated copper chromite (ACR), with chemical formula $CuCr_2O_4$ (Cu–Cr–O), is the industrial catalyst used extensively in solid composite propellants. Solid composite propellants with high burn rate and thereby reduced ignition delay and operational time are needed for modern space vehicles. Thermal decomposition of AP is greatly dependent on the composition (presence of any catalyst), particle size and shape of AP which ultimately determine the burn rate of SCP. Higher the burn rate with the lower pressure exponent is the desirable requirement. Thus, thermal decomposition of AP is the most deciding key factor to get desired burn rate of SCP. It provides a control to play with burn rate of solid composite propellant for achievement of remarkable burn

rate of SCP. Thermal decomposition of AP is highly affected by the additives of transition metals, transition metal oxides and their mixtures. The decomposition mechanism has been understood by the concept of electron and proton exchange at the elevated temperatures as reported by Boldrev et al. (2006). They studied the governed mechanism of thermal decomposition of AP and proposed electron and proton transfer process. AP is decomposed in two stages; low temperature decomposition governed by the electron transfer process and high temperature decomposition initiated by proton transfer process. The transition metals, transition metal oxides, and composites of ternary materials such as MnO₂, CuO, NiO, CoFe₂O₄, Fe₂O₄ CuCr₂O₄ etc. are common catalysts being used to enhance the thermal decomposition of AP [Boldyrev, 2006; Dedgaonkar et al. 1990; Kishore et al. 1979; Liu et al. 2004; Song et al. 2010 ; Gheshlaghi et al. 2012; Zhang et al. 2011 ; Xu et al. 2008 ; Chandru et al. 2012 ; Liu et al. 2008; Zhao et al. 2010; Chen et al. 2008]. In previous researches copper chromite (CuO, CuCr₂O₄) [Said *et al.* 1996; Dubey *et al.* 2012], ACR and titanium oxide (TiO₂) [Fitzgeral *et al.* 2004; Song et al. 2010] have been used as the metal oxide catalysts which have considerably decreased the onset temperature of AP decomposition when used individually as additives. Recent developments in the area of carbon based materials such as carbon nanotubes (CNT), graphene oxide (GO) and reduced graphene oxide (rGO) promised better catalysts and catalyst support due to their high specific surface area, high thermal and electrical conductivity. Dispersion difficulty of CNT leads to its restricted applications whereas due to hydrophilic nature of GO/rGO and ease of synthesis provides the potential precursor material for synthesis of graphene. Graphene is a two dimensional sheet of carbon owing the honeycomb structure which provides the high specific surface area with superior electrical and thermal conductivity [Hummers et al. 1958; Pei et al. 2012]. The rGO has tremendous electron transfer properties.

These inheriting properties of graphene have created the tremendous scope of its potential application in catalytic era especially in the field of thermal decomposition of AP promoted with the effect of electron and proton transfer process.

It is interesting to exploit the catalytic properties of transition metal oxide based materials and graphene based materials both in single system. Recently, graphene based transition metal oxides composites (Fe₂O₃, TiO₂, Co₃O₄ and MnO₂ etc.) have been prepared and their effect on thermal decomposition of AP has been studied [Yuan *et al.* 2014 ; Li *et al.* 2013 ; Lei *et al.* 2012 ; Wang *et al.* 2011 ; Zhang *et al.* 2014 ; Guan *et al.* 2011]. Li *et al.* (2012) has synthesized the Ni/Graphene based nanocomposites using the simple one-spot method and observed the single step decomposition of AP. However in 2013, the same group observed the negligible effect of pure graphene on modification in thermal decomposition of AP, whereas, nano particles of Mn₃O₄ dispersed on GO have shown tremendous effect [Li *et al.* 2013]. Yuan *et al.* (2014) studied the thermal decomposition of AP in presence of Fe₂O₃/GO and observed a single step decomposition of AP at much lower temperature with high energy release against the individual effects of Fe₂O₃ and GO [Yuan *et al.* 2014].

According to the previous literature, copper chromites (CuO.CuCr₂O₄) [Liu *et al.* 2008, Zhao *et al.* 2010 and Chen *et al.* 2008] and titanium oxide (TiO₂) [Hummers *et al.* 1958 ; Pei *et al.* 2012 ; Park *et al.* 2009] are the most efficient metal oxide catalysts which considerably decreased the onset temperature of AP decomposition when they used individually as additives in the AP. Despite the extensive and individual utilization of copper chromites and titanium oxide to affect the burn rate of AP, the physics and chemistry of their catalytic roles are not fully known. The lack of adequate information on the use of copper chromites and TiO₂ indicates a tremendous gap requiring further study.

Table 2.1 gives a summary of the available experimental work on the development, characterization and application of burn rate modifiers.

Table 2.1: Summary of Reported Work on Burn Rate Modifiers.

S /	Burn rate	Material & Methods	Characteri	Results &	References
Ν	modifier		zation	Comments	
			techniques		
Tra	nsition Metals and	Fransition Metal Oxides	:		I
	Single crystalline	Nickle rod;	XRD, TEM,	Addition of Ni	Duan <i>et al</i> .
	Ni nanoparticales	DC hydrogen plasma	BET,	nanoparticles	(2008)
		method	selected area	of metal oxide	
			electron	by 2-5wt% in	
			diffraction	AP decreases	
			(SAED), TG-	its thermal	
			DTA	decomposition	
				temperature by	
				92-105°C and	
				increases its	
				apparent	
				decomposition	
				heat by 787.1 –	
				796.1 J/g.	
	Cu nanoparticles	CuSO ₄ .5H ₂ O,	XRD, FE-	Decrease in the	Dubey et al.
		ethylene glycol	SEM, HR-	activation	(2012)
		NaOH, N ₂ H ₄ .H ₂ O;	TEM TG,	energy of	
		Reduction of CuSO4	DSC	thermal	
		with hydrazine in		decomposition	
		ethylene glycol under		of AP as well	
		microwave irridation		as composite	

			propellant &	
			Reduction with	
			final	
			decomposition	
			temperature of	
			AP along with	
			the enhanced	
			burning rate of	
			composite	
			propellant	
Ni, Cu, Al and	H ₂ O,	TEM &	Decrease in the	Liu <i>et al</i> .
NiCu nanometric	N ₂ H ₄ .H ₂ O,HCHO	SEM- for	activation	(2004)
size of powders	NiSO ₄ . 6H ₂ O,	measuring	energy of AP	
	CuSO ₄ .4H ₂ O	the average	for both LTD	
	ethanol nanometer Al	particles size,	& HTD	
	powder, micrometer	XRD,		
	Al, Ni, Cu powders	Energy		
	and AP(30 μ m);	dispersive		
	Precipitation method	spectroscopy		
		(EDS)		
Bimetallic	Metal chloride,	XRD, EDX,	Nano-particles	Srivastava et
nanocrystals Cu-	ethylene glycol,	HR-TEM,	of size of 10-	al. (2010)
Co, Cu-Fe, Cu-Zn	hydrazine , NaOH;	SAED	38nm.In	
	Reduction of		presence of	
	hydrazine in ethylene		Cu-Co, LTD	
	glycol		decreased to	
			278 from	
			310°C and	
			HTD to 318	

			from 414°C.	
			Cu-Fe LTD	
			came down to	
			285°C and	
			HTD to 325°C.	
			Cu-Zn HTD	
			decreased to	
			300°C with	
			disappearance	
			of LTD peak.	
Nano size Yitteria				Weifan <i>et al</i> .
				(2006)
Different phases	$(\mathrm{NH}_4)_2\mathrm{S}_2\mathrm{O}_8,$	XRD, TEM,		Chen et al.
of MnO ₂	MnSO ₄ .H ₂ O;	HRTEM		(2015)
	Hydrothermal Method			
Mesoporous β-	$Mn(NO_3)_2$ and	XRD, DSC	HTD peak of	R.ArunChan
MnO ₂	mesoporous silica;		AP changed	dru et al.
	Impregnation method		into sharp	(2012)
			exothermic	
			peak & pure	
			Co ₃ O ₄ lowered	
			the TD of AP	
			by 96°C, pure	
			CuO reduced it	
			CuO reduced it by	
			CuO reduced it by 151°C.Compos	
			CuO reduced it by 151°C.Compos ite of CuO and	
			CuO reduced it by 151° C.Compos ite of CuO and $Co_{3}O_{4}$	
			CuO reduced it by 151° C.Compos ite of CuO and $Co_{3}O_{4}$ increased the	

			LTD with	
			quick sharp	
			exothermic	
			peak	
$Mn_3O_4/$	Glconacetobacter &	XRD,	Decomposition	Li. et al.
Carbonated	Xylinum, Hestrin-	HRTEM,	temperature of	(2014)
Bacterial	Schramm: for bacterial	Raman	AP reduced to	
Cellulose	cellulose,	spectroscopy,	293.6 from	
	$Mn(CH_3COO)_2.4H_2O$	XPS	457.2°C with	
	and anhydrous		the appearance	
	alcohol;		of single	
	Hydrothermal Method		exothermic	
			peak.	
Ultra long V ₂ O ₅	V ₂ O ₅ & H ₂ O ₂ ;	XRD, SEM,	Thermal	Zhang <i>et al</i> .
nanowires	Hydrothermal method	TEM	decomposition	(2014)
			temperatures of	
			AP in the	
			presence of	
			1,3,5 and	
			10wt% of	
			V_2O_5	
			nanowires	
			decreased by	
			42, 66,73 and	
			88.1°C ,	
			respectively.	
CuO nanorods	Cu(NO ₃) ₂ .3H ₂ O	XRD, TG-	Decrease in	Chen et al.
	(99.5%) and NaOH	DTA, TEM,	HTD of AP by	(2008)
	(96%);	BET, FT-IR	126.3°C (478.1	
	Conventional wet			

	chemical method		to 351.8°C).	
			LTD peak of	
			AP	
			disappeared.	
Nano sized CuO,	Metal nitrates, NaOH,	TG-DSC,	HTD of AP	Gheshlaghi
Co_3O_4 and	H_2O_2 , deionized	DSC, FT-IR,	shifted	<i>et al.</i> (2012)
$CuCo_2O_4$	water, ethanol, oxalic	XRD, SEM,	downward by	
powders	acid,	TEM, and	103°C	
	cetyltriethylammnoniu	BET		
	m bromide (CTAB);			
	Co-precipitation,			
	oxalate decomposition			
	method, Sol – gel			
	method			
Copper cobaltite	Pure cobalt and copper	TG-DTA,	AC increased	said <i>et al</i> .
spinel Cu _x Co ₃₋	oxides, NH ₄ ClO ₄ ;		the burn rate to	(1996)
$_{\rm x}{\rm O}_4$	Basic metal carbonates		25mm/s at	
	decomposition		70bar.	
			combination of	
			AC &IO burn	
			rate was	
			further	
			increased to	
			50mm/s at 70	
			bar with	
			Pressure Index	
			(n) of 0.65	
Claw-like CuO	$Cu(NO_3)_2$.3H ₂ O and	XRD, SEM	Nano-tetrapods	Wang <i>et al</i> .
	hexamethylenetetrami	and TEM	of CuO	(2009)
	$ne(C_6H_{12}N_4);$		nanostructures	

	Solution process			
	method		in AP	
			decomposition	
			temperature	
			changed to	
			350°C from	
			412°C	
Al(OH) ₃ .Cr(OH) ₃	$Al_2(SO_4)_3$, $Cr(NO_3)_3$,	XRD, TG-	Final	Zhang <i>et al</i> .
nanoparticles	Na ₂ SO ₄ , urea, PVP,	DSC, XPS,	decomposition	(2014)
	deionized water;	TG-MS,	temperature of	
	Precipitation method	TEM, SAED,	AP decreased	
		FT-IR	to the 245°C	
			from 450°C	
NiO nanoparticles	Bulk NiO, NiO	XRD, TEM,	2% of NiO	Wang et al.
	nanoparticle size,	FTIR	nanoparticles	(2005)
	nickle acetate and		to AP	
	sodium hydroxide;		decreased the	
	Solid state reaction		decomposition	
			temperature by	
			93°C with the	
			increase heat	
			of	
			decomposition	
			from 590 to	
			1490 J g-1.	
Biosynthesized	Gigantea leaves,	SEM,	The sift of	Sharma et al.
NiO nanoparticles	nickel nitrate;	EDAX,	93°C in HTD	(2015)
	biosynthetic method	TEM, XRD,	& 35°C in	
		FTIR	LTD was	
			observed	

α -Fe ₂ O ₃ - 30 &	Electrochemical	DSC, FT-IR,	Decreased	Joshi et al.
3.5 nm	method	DSC	HTD of AP to	(2008)
			460°C from	
			467°C with	
			heat release of	
			4.574 kJ/g	
			w.r.t. 0.834	
			kJ/g of pure AP	
 α-Fe ₂ O ₃	$K_4[Fe(CN)_6].3H_2O,$	XRD FT-IR,	Decreased the	Song <i>et al</i> .
nanotubes	distilled water, H ₂ O ₂ ;	TEM, DSC	HTD of AP to	(2010)
	Hydrothermal method		347°C from	
			454°C.	
			Disappeared	
			LTD in	
			presence of 2%	
			by wt.	
Nanorods and	FeCl ₃ .6H ₂ O aqueous	XRD, FE-	nanorods were	Xu et al.
micro-	formamide; One step	SEM, TEM,	of 10-25 nm in	(2008)
octahedrons of	hydrothermal	and FT-IR	diameter and	
Fe ₂ O ₃	treatment of iron (III)		50-100nm in	
	chloride		length &	
			Decreased	
			HTD of AP to	
			387.5°C form	
			436.4°C.	
			Octahedron	
			were 100-400	
			nm in size &	
			HTD of AP	

			occurred at	
			426.4°C.	
α -Fe ₂ O ₃ coated	FeCl ₃ , H ₂ C ₂ O ₄ .2H ₂ O,	XRD, Raman	Thermal	Zhang <i>et al</i> .
with amorphous	distilled water,	spectroscopy,	decomposition	(2011)
carbon	(CTAB), $NH_3.H_2O$,	SEM, EDX,	temperature of	
	HNO ₃ ;	TEM, FT-IR,	AP in presence	
	Solution method	TG-DTA	of pod-like α-	
			Fe ₂ O ₃ , sphere	
			like α -Fe ₂ O ₃	
			and α -Fe ₂ O ₃	
			@C are	
			reduced by 72,	
			81, and 109°C	
			respectively.	
Nanocrystalline	Metal acetates of Cr,	XRD, TG-	Mn_2O_3 , CuO,	Kapoor <i>et al</i> .
transition metal	Fe, glacial acetic acid,	DTA-DSC	Fe_2O_3 , Cr_2O_3	(2008)
transition metal oxides Cr ₂ O ₃ ,	Fe, glacial acetic acid, KMnO4,	DTA-DSC	Fe_2O_3 , Cr_2O_3 synthesized	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam	DTA-DSC	Fe_2O_3 , Cr_2O_3 synthesized with size of	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46,	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ;	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of AP shifted	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of AP shifted downward by	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of AP shifted downward by 150, 125, 100,	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of AP shifted downward by 150, 125, 100, 75°C by the	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of AP shifted downward by 150, 125, 100, 75°C by the addition of	(2008)
transition metal oxides Cr ₂ O ₃ , Fe ₂ O ₃	Fe, glacial acetic acid, KMnO ₄ , CuCl ₂ ,cetyltriethylam mnonium bromide (CTAB), NaOH ; Precipitation method	DTA-DSC	Fe ₂ O ₃ , Cr ₂ O ₃ synthesized with size of 54.3, 35.0, 46, 42nm.Final decomposition temperature of AP shifted downward by 150, 125, 100, 75°C by the addition of Mn ₂ O ₃ , CuO,	(2008)

				respectively.	
	N-doped ZnO/Ag	$Zn(CH_3COO)_2.2H_2O,$	XRD, XPS,	Catalyst	Lu et. al.,
	nanocomposites	AgNO ₃ , urea, citric	HR-TEM	samples	(2014)
		acid;		containing 4%	
		Deflagration method		by wt Ag	
				offered the best	
				catalytic	
				performance	
				and reduced	
				the final	
				decomposition	
				temperature of	
				AP to 290°C	
				from 453°C of	
				pure AP	
Ferr	rites:				
	Mixed Ternary	AP, Nitrates of Cu, Ni,	XRD, BET,	Catalytic	Singh <i>et al</i> .
	Transition Metal	Zn, Fe(III) and Co	FT-IR	activity	(2008)
	Ferrites	NaOH ; Co-		increases with	
	nanocrystallites	Precipitation Method		the increase of	
				catalyst amount	
				where as cobalt	
				zinc ferrite has	
				exhibited the	
				highest catalytic	
				activity	
	CoFe ₂ O ₄ Nanocry	FeCl ₃ .6H ₂ O	XRD,	Catalytic	Zhao <i>et al</i> .
	stallites	CoCl ₂ .6H ₂ O, sodium	TEM,	performance of	(2010)
		acetate, ethylene	SAED, TG-	CoFe ₂ O ₄	

		glycol polyethylene	DSC	nanocrystallites	
		glycol abs. ethanol ;		is significant	
		Solvothermal		and the	
		Process		decrease in the	
				activation	
				energy and the	
				increased in the	
				rate constant for	
				AP	
	Nanometer	Cupric nitrate, ferric	XRD,	Average particle	Tian Liu et.
	$CuFe_2O_4$	nitrate	TEM, DTA	size of	al., (2008)
		and malic acid ;		CuFe ₂ O ₄ is	
		Auto-combustion		26nm. Thermal	
				decomposition	
				temperature of	
				AP in presence	
				of 5% w/w of	
				CuFe ₂ O ₄	
				decreased by	
				105°C.	
Chr	omites:				
1.	Cu-Cr-O	$Cu(NO_3)_{2,}Cr(NO_3)_3$,	TG-DTA,	Cu/Cr molar	Li et al.
	nanocomposites	deionized water, citric	XRD,	ratio of 0.7 high	(2007)
		acid ; Citric acid	TEM, SEM	burning rate	
		complexing approach		with the lowest	
				pressure	
				exponent (n)	
				0.43	

Copper Chromite	$Cu(NO_3)_2.3H_2O$, citric	XRD, X-	Synthesized	Sathis kumar
	acid anhydrous,	ray	nanosize, pure	<i>et al.</i> (2012)
	glycine	photoelectr	phase of the	
	$Cr(NO_3)_3.9H_2O$,	on	spinel	
	distilled water ;	spectroscop	compound. The	
	Solution combustion	y (XPS),	comparison	
	method	BET, SEM,	between BET	
		TG-DTA	surface area and	
			the burn rate	
			depicted that	
			surface area	
			difference	
			caused the	
			variation in	
			burn rate	
			between the	
			samples	
Copper Chromite	Copper nitrate	TG-DSC,	The downward	Snoop et al.
	trihydrate, ammonium	TG-MS,	shift of 60°C of	(2015)
	dichromate,	SEM,	decomposition	
	ethylamine	XRD, FT-	temperature was	
	ammonia solution	IR	observed.	
	chromium trioxide			
	trihydrate and			
	ammonium perchlorate			
	;Thermal			
	decomposition			

	Amine Modified	Melamine $(C_3N_6H_6)$,	DSC, TGA,	Burning rates of	Grossman et
	Boron Nitride	Boric acid (H ₃ BO ₃)	SEM, XPS,	propellants	al. (2016)
		and HNO ₃ ;	high	containing 0.5%	
		Hydrothermal Method	pressure	of the micron-	
			strand	and	
			burner	nano-sized BN	
				materials	
				increased by	
				about 30%	
				where as	
				Propellants	
				containing the	
				synthesized BN	
				material	
				decreased the	
				burning rate by	
				as much 25%.	
Gra	phene Based Transi	tion Metal Oxide Comp	osites:		
9.	Cu/CNT	Copper nano tubes,	SEM,	Decreased HTD	Ping <i>et al</i> .
		cupric sulfate, sodium	TEM, FT-	of AP to 265°C	(2006)
		hydroxide EDTA,	IR, XRD,	from 426.3°C in	
		PVP, AP ;	XPS, AAS,	the presence of	
		Chemical Reduction	DTA and	5% w/w at the	
		Method	EDS	heating rate of	
				5°C/min & LTD	
				peak disappeared	
	Ni/Graphene	Graphite oxide	XRD,	With 1%w/w of	Li et al.
	nanocomposites	prepared by expanded	Raman	Ni/graphene	(2012)
		graphite, NaNO ₃ ,	spectroscop	HTD of AP	

	H ₂ SO ₄ , KMnO ₄ ,	y, FT-IR,	decreased to	
	H ₂ O ₂ , NiCl ₂ .6H ₂ O ;	XPS, TEM,	330.5°C from	
	Modified Hummers	BET, FE-	427.8°C & Low	
	Method	SEM	temperature peak	
			disappeared	
NiAl- layered	$Ni(NO_3)_2 \cdot 6H_2O$,	XRD,	Decomposition	Li et al.
double	Al(NO ₃) ₃ ·9H ₂ O,	SEM,	temperature	(2012)
hydroxide/Carbon	NaOH, Na ₂ CO ₃ and	TEM, TG-	reduced by	
	C ₆ H ₁₂ O ₆ ;	DTA	159°C and	
	Hydrothermal Process		activation energy	
			were observed	
			74.6 and 80.4	
			KJmol ⁻¹	
Mn ₃ O ₄	Expanded graphite,	XRD,	The	Li et al.
nanoparticles on	$NaNO_3$, H_2SO_4 ,	Raman	decomposition	(2013)
graphene	$KMnO_4, H_2O_2,$	spectroscop	temperature was	
	$Mn(COOH)_2.4H_2O;$	y, FT-IR,	decreased by	
	Modified Hummers	XPS, TEM,	141.9°C (from	
	Method	BET	433.7 to	
			291.8°C).	
			graphene oxide	
			independently	
			not found good	
			burn rate	
			modifier but	
			transition metal	
			or transition	
			metal oxide's	
			hybrid with the	

				graphene oxide	
				became the most	
				promising burn	
				rate modifier.	
	Nitrated Graphene	Graphite powder,	FTIR,	10% of NGO	Zang et al.
	oxide	KMnO ₄ , NaNO ₃ ,	Raman	decreased	(2014)
		30% H ₂ O ₂ , H ₂ SO ₄ ,	spectroscop	decomposition	
		HNO3 HCl, absolute	y, CP/MAS	temperature of	
		ethyl alcohol and AP;	CNMR,	AP by 106°C	
		Modified Hummer	XPS, AFM,	and increases the	
		Method.	EA	apparent	
				decomposition	
				heat from 875 to	
				3236 J/g.	
12.	Activated		SEM, TGA,	Decreased HTD	Verma et al.
	Charcoal, Iron		DSC,	of AP by	(2010)
	oxide		strand	126.3°C (478.1	
			burner	to 351.8°C).	
				LTD peak of AP	
				disappeared.	
14.	Nitrated Graphene	Graphite powder,	Raman	Decreased the	Zhang et al.
	oxide	KMnO ₄ , NaNO ₃ ,	spectroscop	decomposition	(2014)
		H_2O_2 , H_2SO_4 , HNO_3 ,	y, FT-IR,	temperature of	
		HCl, absolute ethyl	XPS,	AP with 10%	
		alcohol ammonium	Atomic	Nitrated	
		perchlorate ;	force	graphene	
		Modified Hummers	microscopy	decreased the	
		Method	(AFM) for	TD by 106°C	
			thickness	(from 456 to	
			and		

			compositio	350°C) with	
			n of	Apparent	
			graphene	decomposition	
			oxide and	heat of 3236 J/g	
			nitrated	from 875 J/g	
			graphene		
			oxide, TG,		
			DSC		
26.	MgAl ₂ O ₄	$Mg(NO_3)_2.6H_2O$	XRD, BET,	HTD of AP	Guan et al.
	nanoparticles:	Al(NO ₃) ₃ .9H ₂ O and	SEM,	decreased by	(2011)
		citric acid	EDS, TEM	78.3 °C	
		$(C_6H_8O_7.H_2O)$ and			
		deionized water			
		Sol-gel Method			

From Table 2.1 it is evident that a wide range of burn rate modifier has been tested by earlier workers. These have ranged from single to binary metal powders (e.g. Al, Cu, Ni, Cu-Co, Cu-Fe, Cu-Zn), metal oxides (e.g. NiO, V_2O_5 , Fe_2O_3 , Cr_2O_3 , MnO_2 , CuO, Co_3O_4 , YO_2), hydroxide Al(OH)₃.Cr(OH)₃, mixed oxides CuCo₂O₄, CuCr₂O₄, CuFe₂O₄ and mixed hydroxide (Ni.Al(OH)₄, Ni.Al layered double hydroxide to amine modified boron nitride The best result have been shown by NiAl- layered double hydroxide/carbon by reduction in the decomposition temperature of AP by 159°C with the observed activation energy of 74.6 and 80.4 KJmol⁻¹. Recently carbon nano tube and graphene based burn rate modifiers like Cu/CNT, Ni/graphene nanocomposites, NiAl layered double hydroxide /carbon, Mn₃O₄ nanoparticles on graphene,

nitrated graphene oxide, activated charcoal, nitrated graphene oxide have also been used by few workers. The results, however, are inconclusive.

2.9 **Objective:**

In view of the above limitations of the available information on burn rate modifiers following goals have been set for this work.

- To synthesize and characterize of mixed oxides of Cu, Cr and Ti using sol-gel technique and optimize the concentration of TiO₂ for maximizing the catalytic action.
- To study the catalytic behavior of synthesized catalysts on thermal decomposition of ammonium perchlorate.
- To prepare reduced graphene oxide (rGO) using graphite oxide (GO) obtained through the modified Hummer method.
- ➢ To synthesize and characterize the rGO based mixed oxides of Cu, Cr with optimized concentration of TiO₂ using sol-gel technique.
- To study the effect of rGO based mixed metal oxides on thermal decomposition of ammonium perchlorate and burn rate of a solid composite propellant.

