LIST OF FIGURES

Fig 1.1(a):	Intel logic transistor density.	2
Fig 1.1(b):	Intel logic area scaling.	3
Fig 1.2(a):	Planar Double-Gate MOS structure.	9
Fig 1.2(b):	FinFET (Double-Gate) MOS structure.	9
Fig 1.2(c):	Tri-gate MOS structure.	10
Fig 1.2(d):	Π-gate MOS structure.	10
Fig 1.2(e):	Ω -gate MOS structure.	11
Fig 1.2(f):	Gate-All-Around (GAA) MOS structure.	11
Fig 1.2(g):	Cylindrical Gate MOS structure.	12
Fig 1.3:	Graded Channel Double Gate MOSFET.	15
Fig 1.4:	Gaussian function versus Gaussian-like function [Dasgupta et al.	18
Fig 1.5:	Strained silicon layer process [Ong (2010)].	21
Fig 1.6:	Change in band structure of Si due to strain.	23
Fig 1.7:	Strain induced shift in conduction and valence bands [Numata <i>et al.</i> (2005)].	23
Fig 2.1:	Schematic Diagram of GCDMDG MOSFET.	45
Fig 2.2:	Variation of surface potential along the channel for the three different structures with $L = 60nm$.	53
Fig 2.3:	Variation of surface potential along the channel for GCDMDG MOSFET for different values of $L_1 : L_2$ with $L = 60nm$.	54
Fig 2.4:	Variation of surface potential along the channel for GCDMDG MOSFET for different values of V_{gs} and V_{ds} with $L = 60nm$.	55
Fig 2.5:	Variation of threshold voltage with channel length for the three different structures.	56
Fig 2.6:	Variation of threshold voltage with channel length for GCDMDG MOSFET for different values of $L_1 : L_2$.	57

Fig 2.7:	Variation of threshold voltage with channel length for GCDMDG MOSFET for different values of t_{si} and N_{a1} keeping N_{a2} fixed.	58
Fig 2.8:	Variation of threshold voltage with channel length for GCDMDG MOSFET for different values of V_{ds} .	59
Fig 2.9:	Variation of threshold voltage roll-off and DIBL with control-gate length for the three different structures.	60
Fig 2.10:	Variation of longitudinal electric field along the position of the channel.	60
Fig 3.1:	Cross-sectional view of GCDMDG MOSFET.	65
Fig 3.2:	Variation of SC against V_{th} for the three different structures.	71
Fig 3.3:	Variation of SC against V_{th} for GCDMDG MOSFET for different values of channel length.	72
Fig 3.4:	Variation of SC against V_{th} for GCDMDG MOSFET for different values of $L_1/L_{2.}$	73
Fig 3.5:	Variation of SC against V_{th} for GCDMDG MOSFET for different	73
	values of t_{si} and N_{a1} .	
Fig 3.6:	Variation of SS with the channel length for the three different structures.	74
Fig 3.7:	Variation of SS with the channel length for GCDMDG MOSFET for different values of $L_{1}\!/\!L_{2.}$	74
Fig 4.1:	Schematic structure of Strained Silicon Double-Material Double-Gate (DMDG) MOSFET.	80
Fig 4.2:	Variation of surface potential along the position of the channel for different values of $L_1 : L_2$.	91
Fig 4.3:	Variation of surface potential along the position of the channel for different values of Ge mole fraction.	91
Fig 4.4:	Variation of threshold voltage with channel length for different values of $L_1: L_2$.	92
Fig 4.5:	Variation of threshold voltage with channel length for different values of peak doping concentration.	92
Fig 4.6:	Variation of threshold voltage with Ge mole fraction for different values of projected range.	95
Fig 4.7:	Variation of threshold voltage with Ge mole fraction for different	95

values of straggle parameter.

- Fig 4.8:Variation of lateral electric field along the position of the channel for96SMG and DMG structures.
- Fig 5.1: Cross-sectional view of strained-Si double-material double-gate 100 (DMDG) MOSFET.
- **Fig 5.2:** Variation of subthreshold current against V_{gs} for different values of **108** channel length.
- **Fig 5.3:** Variation of subthreshold current against V_{gs} for different values of **108** peak doping concentration.
- **Fig 5.4:** Variation of subthreshold current against V_{gs} for different values of **109** $L_1:L_2$.
- **Fig 5.5:** Variation of subthreshold current against V_{gs} for different values of **109** Ge mole fraction.
- **Fig 5.6:** Variation of subthreshold current against V_{gs} for different values of **110** projected range.
- Fig 5.7:Variation of subthreshold swing along the device channel length for111different values of s-Si channel thickness and gate oxide thickness.
- Fig 5.8: Variation of subthreshold swing against Ge mole fraction for 112 different values of peak doping concentration.
- **Fig 5.9:** Variation of subthreshold swing against Ge mole fraction for **113** different values of $L_1:L_2$.