Appendix A

List of Publications

- Ashish Kumar Maurya and Anil Kumar Tripathi, "On Benchmarking Task Scheduling Algorithms for Heterogeneous Computing Systems," *The Journal* of Supercomputing, Springer, vol. 74, no. 7, pp. 3039-3070, 2018 [SCI].
- Ashish Kumar Maurya and Anil Kumar Tripathi, "An Edge Prioritybased Clustering Algorithm for Multiprocessor Environments," *Concurrency* and Computation: Practice and Experience, Wiley, 2018 (in press) [SCIE].
- Ashish Kumar Maurya and Anil Kumar Tripathi, "ECP: A Novel Clusteringbased Technique to Schedule Precedence Constrained Tasks on Multiprocessor Computing Systems," *Computing*, Springer, pp. 1-25, 2018 (available as Online First article), [SCI].
- Ashish Kumar Maurya and Anil Kumar Tripathi, "An Energy Aware Edge Priority-based Scheduling Algorithm for Multiprocessor Environments," in Proceedings of the 24th International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'18), pp. 42-46, 2018, USA.
- Ashish Kumar Maurya and Anil Kumar Tripathi, "Performance Comparison of HEFT, Lookahead, CEFT and PEFT Scheduling Algorithms for Heterogeneous Computing Systems," in Proceedings of the 7th International Conference on Computer and Communication Technology (ICCCT-2017), ACM, pp. 128–132, 2017, India.

Bibliography

- Y.-K. Kwok and I. Ahmad, "Static scheduling algorithms for allocating directed task graphs to multiprocessors," ACM Computing Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999. https://doi.org/10.1145/344588.344618.
- [2] C. H. Papadimitriou and M. Yannakakis, "Towards an architecture-independent analysis of parallel algorithms," *SIAM journal on computing*, vol. 19, no. 2, pp. 322–328, 1990.
- [3] V. Sarkar, "Partitioning and scheduling parallel programs for execution on multiprocessors," tech. rep., Stanford Univ., CA (USA), 1987.
- [4] E. G. Coffman and R. L. Graham, "Optimal scheduling for two-processor systems," Acta informatica, vol. 1, no. 3, pp. 200–213, 1972.
- [5] J. D. Ullman, "Np-complete scheduling problems," Journal of Computer and System sciences, vol. 10, no. 3, pp. 384–393, 1975.
- [6] M. R. Garey and D. S. Johnson, *Computers and intractability*, vol. 29. wh freeman New York, 2002.
- H. Arabnejad and J. Barbosa, "List scheduling algorithm for heterogeneous systems by an optimistic cost table," *IEEE Transactions on Parallel and Distributed Systems*, vol. 25, no. 3, pp. 682–694, 2014. https://doi.org/10. 1109/TPDS.2013.57.
- [8] O. Sinnen, Task Scheduling for Parallel Systems, vol. 60. John Wiley & Sons, 2007. ISBN 978-0-471-73576-2.

- [9] M. Daoud and N. Kharma, "A high performance algorithm for static task scheduling in heterogeneous distributed computing systems," *Journal of Parallel and Distributed Computing*, vol. 68, no. 4, pp. 399–409, 2008. https: //doi.org/10.1016/j.jpdc.2007.05.015.
- [10] H. Topcuoglu, S. Hariri, and M.-y. Wu, "Performance-effective and lowcomplexity task scheduling for heterogeneous computing," *IEEE Transactions on Parallel and Distributed Systems*, vol. 13, no. 3, pp. 260–274, 2002. https://doi.org/10.1109/71.993206.
- [11] M.-Y. Wu and D. Gajski, "Hypertool: A programming aid for message-passing systems," *IEEE Transactions on Parallel and Distributed Systems*, vol. 1, no. 3, pp. 330–343, 1990. https://doi.org/10.1109/71.80160.
- [12] H. El-Rewini and T. G. Lewis, "Scheduling parallel program tasks onto arbitrary target machines," *Journal of parallel and Distributed Computing*, vol. 9, no. 2, pp. 138–153, 1990.
- [13] G. C. Sih and E. A. Lee, "A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures," *IEEE Transactions on Parallel and Distributed systems*, vol. 4, no. 2, pp. 175–187, 1993.
- [14] Y.-K. Kwok and I. Ahmad, "Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors," *IEEE Transactions* on Parallel and Distributed Systems, vol. 7, no. 5, pp. 506–521, 1996. https: //doi.org/10.1109/71.503776.
- [15] E. Ilavarasan and P. Thambidurai, "Low complexity performance effective task scheduling algorithm for heterogeneous computing environments," *Journal of Computer Sciences*, vol. 3, no. 2, pp. 94–103, 2007.
- [16] C. Gogos, C. Valouxis, P. Alefragis, G. Goulas, N. Voros, and E. Housos, "Scheduling independent tasks on heterogeneous processors using heuristics and column pricing," *Future Generation Computer Systems*, vol. 60, pp. 48– 66, 2016.

- [17] B. Kruatrachue and T. Lewis, "Grain size determination for parallel processing," *IEEE Software*, vol. 5, no. 1, pp. 23–32, 1988. https://doi.org/10. 1109/52.1991.
- [18] S. Bansal, P. Kumar, and K. Singh, "An improved duplication strategy for scheduling precedence constrained graphs in multiprocessor systems," *IEEE Transactions on Parallel and Distributed Systems*, vol. 14, no. 6, pp. 533–544, 2003. https://doi.org/10.1109/TPDS.2003.1206502.
- [19] R. Bajaj and D. Agrawal, "Improving scheduling of tasks in a heterogeneous environment," *IEEE Transactions on Parallel and Distributed Systems*, vol. 15, no. 2, pp. 107–118, 2004. https://doi.org/10.1109/TPDS.2004.1264795.
- [20] T. Hagras and J. Janeček, "A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems," *Parallel Computing*, vol. 31, no. 7, pp. 653–670, 2005. https://doi.org/10.1016/j.parco.2005.04.002.
- [21] X. Tang, K. Li, G. Liao, and R. Li, "List scheduling with duplication for heterogeneous computing systems," *Journal of Parallel and Distributed Computing*, vol. 70, no. 4, pp. 323–329, 2010. https://doi.org/10.1016/j.jpdc.2010. 01.003.
- [22] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, "Adaptive scheduling of task graphs with dynamic resilience," *IEEE Transactions on Computers*, vol. 66, no. 1, pp. 17–23, 2017. https://doi.org/10.1109/TC.2016.2574349.
- [23] S. Kim and J. Browne, "A general approach to mapping of parallel computation upon multiprocessor architectures," *Proceedings of the International Conference* on Parallel Processing, vol. 3, no. 1, p. 8, 1988.
- [24] T. Yang and A. Gerasoulis, "Dsc: Scheduling parallel tasks on an unbounded number of processors," *IEEE Transactions on Parallel and Distributed Systems*, vol. 5, no. 9, pp. 951–967, 1994. https://doi.org/10.1109/71.308533.
- [25] J.-C. Liou and M. Palis, "An efficient task clustering heuristic for scheduling dags on multiprocessors," in *Proceedings of the Workshop on Resource Management, Symposium on Parallel and Distributed Processing*, pp. 152–156, 1996.

- [26] D. Kadamuddi and J. Tsai, "Clustering algorithm for parallelizing software systems in multiprocessors environment," *IEEE Transactions on Software En*gineering, vol. 26, no. 4, pp. 340–361, 2000. https://doi.org/10.1109/32. 844493.
- [27] A. Mishra and A. Tripathi, "An extention of edge zeroing heuristic for scheduling precedence constrained task graphs on parallel systems using cluster dependent priority scheme," in *Proceedings of the International Conference on Computer and Communication Technology (ICCCT)*, pp. 647–651, IEEE, 2010. https://doi.org/10.1109/ICCCT.2010.5640450.
- [28] Y.-C. Lee, "Distributed computing: principles and applications," Scalable Computing: Practice and Experience, vol. 8, no. 2, 2007.
- [29] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and paradigms. Prentice-Hall, 2007.
- [30] G. F. Coulouris, J. Dollimore, and T. Kindberg, *Distributed systems: concepts* and design. pearson education, 2005.
- [31] M. J. Quinn and M. J. Quinn, Parallel computing: theory and practice, vol. 2. McGraw-Hill New York, 1994.
- [32] P. Brucker and P. Brucker, *Scheduling algorithms*, vol. 3. Springer, 2007.
- [33] T. L. Casavant and J. G. Kuhl, "A taxonomy of scheduling in general-purpose distributed computing systems," *IEEE Transactions on software engineering*, vol. 14, no. 2, pp. 141–154, 1988.
- [34] X. He, X. Sun, and G. Von Laszewski, "Qos guided min-min heuristic for grid task scheduling," *Journal of Computer Science and Technology*, vol. 18, no. 4, pp. 442–451, 2003.
- [35] J. Yu, R. Buyya, and K. Ramamohanarao, "Workflow scheduling algorithms for grid computing," in *Metaheuristics for scheduling in distributed computing environments*, pp. 173–214, Springer, 2008.
- [36] S. K. Baruah, L. E. Rosier, and R. R. Howell, "Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor," *Real-time systems*, vol. 2, no. 4, pp. 301–324, 1990.

- [37] E. S. Hou, N. Ansari, and H. Ren, "A genetic algorithm for multiprocessor scheduling," *IEEE Transactions on parallel and distributed systems*, vol. 5, no. 2, pp. 113–120, 1994.
- [38] M. Wieczorek, A. Hoheisel, and R. Prodan, "Towards a general model of the multi-criteria workflow scheduling on the grid," *Future Generation Computer Systems*, vol. 25, no. 3, pp. 237–256, 2009.
- [39] M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystram, "Parallel gaussian elimination on an mimd computer," *Parallel Computing*, vol. 6, no. 3, pp. 275– 296, 1988. https://doi.org/10.1016/0167-8191(88)90070-1.
- [40] Y.-C. Chung and S. Ranka, "Applications and performance analysis of a compile-time optimization approach for list scheduling algorithms on distributed memory multiprocessors," in *Proceedings of the 1992 ACM/IEEE Conference on Supercomputing*, pp. 512–521, IEEE Computer Society Press, 1992.
- [41] O. H. Ibarra and S. M. Sohn, "On mapping systolic algorithms onto the hypercube," *IEEE Transactions on Parallel and Distributed Systems*, vol. 1, no. 1, pp. 48–63, 1990.
- [42] G. Berriman, J. Good, A. Laity, A. Bergou, J. Jacob, D. Katz, E. Deelman, C. Kesselman, G. Singh, M.-H. Su, et al., "Montage: A grid enabled image mosaic service for the national virtual observatory," in Astronomical Data Analysis Software and Systems (ADASS) XIII, vol. 314, p. 593, 2004.
- [43] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, et al., "Pegasus: A framework for mapping complex scientific workflows onto distributed systems," *Scientific Programming*, vol. 13, no. 3, pp. 219–237, 2005.
- [44] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, "Characterizing and profiling scientific workflows," *Future Generation Computer Systems*, vol. 29, no. 3, pp. 682–692, 2013.
- [45] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb, "A case study on the use of workflow technologies for scientific analysis: Gravitational wave data analysis," *Workflows for e-Science*, pp. 39–59, 2007.

- [46] M. A. Iverson, F. Özgüner, and G. J. Follen, "Parallelizing existing applications in a distributed heterogeneous environment," in 4th Heterogeneous Computing Workshop (HCW'95, Citeseer, 1995.
- [47] T. Hagras and J. Janecek, "A simple scheduling heuristic for heterogeneous computing environments," in *null*, p. 104, IEEE, 2003.
- [48] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, "High performance task scheduling algorithm for heterogeneous computing system," in *International* conference on algorithms and architectures for parallel processing, pp. 193–203, Springer, 2005.
- [49] G. Liu, K.-L. Poh, and M. Xie, "Iterative list scheduling for heterogeneous computing," *Journal of Parallel and Distributed Computing*, vol. 65, no. 5, pp. 654–665, 2005.
- [50] L. Bittencourt, R. Sakellariou, and E. Madeira, "Dag scheduling using a lookahead variant of the heterogeneous earliest finish time algorithm," in Proceedings of the 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 27–34, IEEE, 2010. https: //doi.org/10.1109/PDP.2010.56.
- [51] M. Khan, "Scheduling for heterogeneous systems using constrained critical paths," *Parallel Computing*, vol. 38, no. 4, pp. 175–193, 2012. https://doi. org/10.1016/j.parco.2012.01.001.
- [52] G. Xie, R. Li, and K. Li, "Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems," *Journal of Parallel and Distributed Computing*, vol. 83, pp. 1–12, 2015.
- [53] N. Zhou, D. Qi, X. Wang, Z. Zheng, and W. Lin, "A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table," *Concurrency and Computation: Practice and Experience*, vol. 29, no. 5, 2017. https://doi.org/10.1002/cpe.3944.
- [54] A. Niyom, P. Sophatsathit, and C. Lursinsap, "A fast predictive algorithm with idle reduction for heterogeneous system scheduling," *Simulation Modelling Practice and Theory*, vol. 63, pp. 83–103, 2016.

- [55] M. A. Palis, J.-C. Liou, and D. S. L. Wei, "Task clustering and scheduling for distributed memory parallel architectures," *IEEE Transactions on Parallel and Distributed Systems*, vol. 7, no. 1, pp. 46–55, 1996.
- [56] I. Ahmad and Y.-K. K. Y.-K. Kwok, "A new approach to scheduling parallel programs using task duplication," in *International Conference on Parallel Processing*, *ICPP 1994 Volume 2.*, vol. 2, pp. 47–51, IEEE, 1994.
- [57] G.-L. Park, B. Shirazi, and J. Marquis, "Dfrn: A new approach for duplication based scheduling for distributed memory multiprocessor systems," in *Proceedings of the 11th International Parallel Processing Symposium*, pp. 157–166, IEEE, 1997.
- [58] S. Darbha and D. P. Agrawal, "Optimal scheduling algorithm for distributedmemory machines," *IEEE transactions on parallel and distributed systems*, vol. 9, no. 1, pp. 87–95, 1998.
- [59] A. Dogan and R. Ozguner, "Ldbs: A duplication based scheduling algorithm for heterogeneous computing systems," in *Parallel Processing*, 2002. Proceedings. International Conference on, pp. 352–359, IEEE, 2002.
- [60] T. Hagras and J. Janecek, "A high performance, low complexity algorithm for compile-time job scheduling in homogeneous computing environments," in *Parallel Processing Workshops, 2003. Proceedings. 2003 International Conference on*, pp. 149–155, IEEE, 2003.
- [61] S. Bansal, P. Kumar, and K. Singh, "Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs," *Journal of Parallel and Distributed Computing*, vol. 65, no. 4, pp. 479–491, 2005.
- [62] S. Baskiyar and C. Dickinson, "Scheduling directed a-cyclic task graphs on a bounded set of heterogeneous processors using task duplication," *Journal of Parallel and Distributed Computing*, vol. 65, no. 8, pp. 911–921, 2005.
- [63] D. Bozdag, U. Catalyurek, and F. Ozguner, "A task duplication based bottomup scheduling algorithm for heterogeneous environments," in — Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, p. 132, IEEE, 2006.

- [64] J. Mei, K. Li, and K. Li, "A resource-aware scheduling algorithm with reduced task duplication on heterogeneous computing systems," *The Journal of Supercomputing*, vol. 68, no. 3, pp. 1347–1377, 2014.
- [65] T. Yang and A. Gerasoulis, "A fast static scheduling algorithm for dags on an unbounded number of processors," in *Proceedings of the 1991 ACM/IEEE Conference on Supercomputing*, pp. 633–642, ACM, 1991. https://doi.org/ 10.1145/125826.126138.
- [66] M. Dikaiakos, K. Steiglitz, and A. Rogers, "A comparison of techniques used for mapping parallel algorithms to message-passing multiprocessors," in *Pro*ceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 434–442, IEEE, 1994. https://doi.org/10.1109/SPDP.1994.346137.
- [67] P. Mishra, K. Mishra, A. Mishra, and A. Tripathi, "A randomized scheduling algorithm for multiprocessor environments," *Parallel Processing Letters*, vol. 22, no. 04, p. 1250015, 2012.
- [68] P. Mishra, K. Mishra, and A. Mishra, "A clustering heuristic for multiprocessor environments using computation and communication loads of modules," *International Journal of Computer Science & Information Technology*, vol. 2, no. 5, pp. 170–182, 2010.
- [69] P. Mishra, K. Mishra, and A. Mishra, "A clustering algorithm for multiprocessor environments using dynamic priority of modules," Ann. Math. Inform, vol. 38, pp. 99–110, 2011.
- [70] D. Khaldi, P. Jouvelot, and C. Ancourt, "Parallelizing with bdsc, a resourceconstrained scheduling algorithm for shared and distributed memory systems," *Parallel Computing*, vol. 41, pp. 66–89, 2015. https://doi.org/10.1016/j. parco.2014.11.004.
- [71] A. Mishra and P. Mishra, "A randomized scheduling algorithm for multiprocessor environments using local search," *Parallel Processing Letters*, vol. 26, no. 01, p. 1650002, 2016.
- Y.-K. Kwok and I. Ahmad, "Benchmarking and comparison of the task graph scheduling algorithms," *Journal of Parallel and Distributed Computing*, vol. 59, no. 3, pp. 381–422, 1999. https://doi.org/10.1006/jpdc.1999.1578.

- [73] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, *et al.*, "A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems," *Journal of Parallel and Distributed computing*, vol. 61, no. 6, pp. 810–837, 2001.
- [74] T. Tobita and H. Kasahara, "A standard task graph set for fair evaluation of multiprocessor scheduling algorithms," *Journal of Scheduling*, vol. 5, no. 5, pp. 379–394, 2002.
- [75] P. K. Mishra, A. Mishra, K. S. Mishra, and A. K. Tripathi, "Benchmarking the clustering algorithms for multiprocessor environments using dynamic priority of modules," *Applied Mathematical Modelling*, vol. 36, no. 12, pp. 6243–6263, 2012.
- [76] J. Wang, X. Lv, and X. Chen, "Comparative analysis of list scheduling algorithms on homogeneous multi-processors," in 8th IEEE International Conference on Communication Software and Networks (ICCSN), pp. 708–713, IEEE, 2016.
- [77] L. Bölöni and D. C. Marinescu, "Robust scheduling of metaprograms," Journal of Scheduling, vol. 5, no. 5, pp. 395–412, 2002.
- [78] Z. Shi, E. Jeannot, and J. J. Dongarra, "Robust task scheduling in nondeterministic heterogeneous computing systems," in *IEEE International Conference on Cluster Computing*, pp. 1–10, IEEE, 2006.
- [79] T. Davidović and T. Crainic, "Benchmark-problem instances for static scheduling of task graphs with communication delays on homogeneous multiprocessor systems," *Computers & Operations Research*, vol. 33, no. 8, pp. 2155–2177, 2006. https://doi.org/10.1016/j.cor.2005.01.005.
- [80] T. Davidović, Benchmark random task graphs. http://www.mi.sanu.ac.rs/ ~tanjad/sched_results.htm.
- [81] G. Terzopoulos and H. D. Karatza, "Power-aware bag-of-tasks scheduling on heterogeneous platforms," *Cluster Computing*, vol. 19, no. 2, pp. 615–631, 2016.

- [82] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, "Ead and pebd: two energyaware duplication scheduling algorithms for parallel tasks on homogeneous clusters," *IEEE Transactions on Computers*, vol. 60, no. 3, pp. 360–374, 2011.
- [83] Y. C. Lee and A. Y. Zomaya, "Minimizing energy consumption for precedenceconstrained applications using dynamic voltage scaling," in *Proceedings of the* 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 92–99, IEEE Computer Society, 2009.
- [84] Y. Hu, C. Liu, K. Li, X. Chen, and K. Li, "Slack allocation algorithm for energy minimization in cluster systems," *Future Generation Computer Systems*, vol. 74, pp. 119–131, 2017.
- [85] G. Aupy, A. Benoit, and Y. Robert, "Energy-aware scheduling under reliability and makespan constraints," in *High Performance Computing (HiPC)*, 2012 19th International Conference on, pp. 1–10, IEEE, 2012.
- [86] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi, "Emprical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-scalable high performance cluster," in *IEEE International Conference on Cluster Computing*, pp. 1–10, IEEE, 2006.
- [87] N. Kaur, S. Bansal, and R. K. Bansal, "Duplication-controlled static energyefficient scheduling on multiprocessor computing system," *Concurrency and Computation: Practice and Experience*, vol. 29, no. 12, p. e4124, 2017.
- [88] J. Mei, K. Li, and K. Li, "Energy-aware task scheduling in heterogeneous computing environments," *Cluster Computing*, vol. 17, no. 2, pp. 537–550, 2014.
- [89] X. Tang and W. Tan, "Energy-efficient reliability-aware scheduling algorithm on heterogeneous systems," *Scientific Programming*, vol. 2016, p. 14, 2016.
- [90] M. Sharifi, S. Shahrivari, and H. Salimi, "Pasta: a power-aware solution to scheduling of precedence-constrained tasks on heterogeneous computing resources," *Computing*, vol. 95, no. 1, pp. 67–88, 2013.
- [91] L. Wang, S. U. Khan, D. Chen, J. KołOdziej, R. Ranjan, C.-Z. Xu, and A. Zomaya, "Energy-aware parallel task scheduling in a cluster," *Future Generation Computer Systems*, vol. 29, no. 7, pp. 1661–1670, 2013.

- [92] R. Ge, X. Feng, and K. W. Cameron, "Performance-constrained distributed dvs scheduling for scientific applications on power-aware clusters," in *Proceedings of* the ACM/IEEE Conference on Supercomputing (SC), pp. 34–34, IEEE, 2005.
- [93] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, "Adaptive, transparent frequency and voltage scaling of communication phases in mpi programs," in *Proceedings of the ACM/IEEE Conference on Supercomputing (SC)*, pp. 14–14, IEEE, 2006.
- [94] Z. Zong, A. Manzanares, B. Stinar, and X. Qin, "Energy-aware duplication strategies for scheduling precedence-constrained parallel tasks on clusters," in *IEEE International Conference on Cluster Computing*, pp. 1–8, IEEE, 2006.