
Chapter 7

Conclusions and Future Directions

In distributed computing, a big application is solved by dividing it into many tasks

and executing them onto different processors. The multiprocessor environments

for distributed computing may be homogeneous in which all processors have same

processing capabilities, or it may be heterogeneous in which all processors are com-

prised of different processing capabilities. It involves potentially a great deal of

communication overhead which restricts the performance of applications if tasks are

not scheduled efficiently. The scheduling of tasks, with precedence constraints, on to

different processors is one of the core concerns for distributed computing in multipro-

cessor environments and significantly relies on the techniques employed to schedule

the tasks with the aim of optimizing makespan and energy consumption. The task

scheduling problem is known to be NP-complete. Therefore, many task scheduling

algorithms are proposed in literature to solve this problem and new methods keep

coming in. It is always useful to look for a fresh approach, towards understanding

and interpretation of the existing algorithms and such an effort may lead to some

possible newer ways of solving the problem. The thesis benchmarks some exist-

ing task scheduling algorithms and proposes a possible framework for this purpose.

The work also attempts to propose some new approaches for working out possible

scheduling, of tasks that optimize makespan. Further, a scheduling algorithm that

minimizes energy consumption has also been proposed. Performance of the proposed

algorithms are evaluated and compared with some existing algorithms for various

types of applications.

157



Chapter 7. Conclusions and Future Directions 158

Chapter 1 introduces distributed computing and task scheduling in multiprocessor

environment. It presents some background concepts, motivation, and summarized

the contributions made. To provide a comprehensive understanding of the existing

body of knowledge, Chapter 2 provides the preliminary concepts and a survey of

related work regarding task scheduling algorithms for distributed computing in mul-

tiprocessor environments. Here, some existing algorithms are reviewed, compared,

and classified. This was done by studying the scheduling, application, and types of

computing systems considered by state-of-the-art algorithms.

Chapter 3 evaluated and compared the performance of six well-known list schedul-

ing algorithms for distributed computing systems. The algorithms used are HEFT,

PETS, LDCP, Lookahead, CEFT and PEFT. The analysis of results is performed

on different performance metrics like scheduling length ratio and efficiency for ran-

domly generated graphs and the graphs generated from real-world applications such

as FFT, Gaussian Elimination, Montage and Epigenomics workflows. This chapter

further explored possibility of a framework for benchmarking of task scheduling algo-

rithms for distributed computing systems. Such a framework ascribes a collection of

activities that need to be taken up for the benchmarking purpose, including random

graph generation and workflow generation as part of DAG generator, a scheduler and

an analyzer under the control of an environment provider. The proposed framework

is general in nature.

Chapter 4 presented our proposed Edge Priority Scheduling (EPS) algorithm for

scheduling of tasks, with precedence constraints, in multiprocessor environments.

This algorithm optimizes normalized schedule length and speedup. EPS extends

and enriches the idea of Sarkar’s algorithm, defining and using a concept of edge

priority. The idea of computing priority of edges by their associated computation

and communication costs gives preference to that edge which links communication-

intensive clusters when performing clustering. Our scheme of prioritization provides

an appropriate technique for obtaining meaningful clustering that can consequently

help in improving the execution characteristics. A comparison has been carried

out to obtain the possible performance improvement of the proposed EPS algorithm

over six well-known algorithms, namely EZ, LC, CPPS, DCCL, RDCC and LOCAL.

The results are presented for two types of task graphs - randomly generated bench-

mark task graphs and task graphs generated from real-world applications such as



Chapter 7. Conclusions and Future Directions 159

Gaussian Elimination and FFT. The results demonstrate that overall, EPS produces

considerably better results than the compared algorithms for randomly generated

graphs and Gaussian Elimination graphs. For FFT graphs, EPS gives performance

similar to that of EZ, CPPS and LOCAL whereas EPS gives better performance

than DCCL and RDCC.

Chapter 5 presented our proposed Effective Critical Path (ECP) algorithm for

scheduling of tasks with precedence constraints in multiprocessor environments.

ECP is a clustering-based task scheduling technique. It makes use of edge zeroing

concept on the critical path to reduce the communication cost among the tasks of

the task graph with the goal of optimizing normalized schedule length and speedup.

A comparison has been carried out to know the performance improvement of the

proposed ECP algorithm over four well-known algorithms, namely EZ, LC, CPPS,

and LOCAL and the algorithm proposed in the previous chapter 4. The results are

presented for two types of task graphs namely, randomly generated benchmark task

graphs and task graphs generated from real-world applications such as Gaussian

Elimination, FFT and Systolic array. The ECP algorithm proposed here signifi-

cantly outperforms the said algorithms in terms of normalized schedule length and

speedup for all types of task graphs.

Chapter 6 presented an Energy Aware Edge Priority Scheduling (EAEPS) algorithm

for scheduling of tasks with precedence constraints on multiprocessor environments

that aims to minimize power consumption by exploiting DVFS technique. EAEPS is

an energy aware version of our proposed EPS algorithm that is discussed in chapter

4. EAEPS uses the same priority function defined for EPS and reduces the energy

consumption by zeroing the edges with high priorities. Here, prioritization scheme

aims to obtain meaningful clustering that can consequently help in minimizing en-

ergy consumption. The simulation experiments conducted with four well-known en-

ergy aware scheduling algorithms for some selected benchmark random task graphs

demonstrated that the proposed algorithm achieved more energy saving than com-

pared energy aware algorithms.

For future work, the proposed framework in chapter 3 may be improved by working

on scheduling algorithms and evaluating them for different workflows like Cyber-

shake, LIGO and SIPHT. The proposed framework is general in nature and may be



Chapter 7. Conclusions and Future Directions 160

used for performance assessment and comparison of other groups of scheduling algo-

rithms like duplication-based and clustering-based algorithms. The framework may

also be extended for different computing system environments like cluster computing,

grid computing and cloud computing. The clustering-based algorithms proposed in

chapter 4 and 5 may be integrated with the existing list scheduling and duplication-

based scheduling techniques for different real-world applications. These algorithms

may also be implemented for bounded number of processors. The energy-aware

scheduling algorithm proposed in chapter 6 may be deployed in some real applica-

tions, for example, Montage workflow and Epigenomics workflow.


