
Chapter 6

An Energy-aware Task Scheduling

Algorithm

In this chapter, we propose an energy aware task scheduling algorithm called Energy

Aware Edge Priority Scheduling (EAEPS) for multiprocessor environments which

aims to reduce power consumption by exploiting DVFS technique. The EAEPS algo-

rithm is an energy aware version of our EPS (Edge Priority Scheduling) algorithm.

The proposed algorithm reduces the energy consumption by zeroing the edges of

high priorities. The idea presented here leads to the following useful contributions:

• The concept of determining priority of edges and choosing that edge which

connects clusters involving high communication costs when perform clustering.

This method of prioritization results in obtaining meaningful clustering that

can consequently help in minimizing the energy consumption.

• The presented work fruitfully achieves minimization of energy consumption,

as shown by the results in comparison to results obtained by such similar ap-

proaches. Energy consumption is a significant optimization criterion for the

problem of energy aware task scheduling of a parallel application in multipro-

cessor environments.

• A simulation study is performed on the proposed algorithm and the results are

presented for benchmark task graphs which show that the proposed algorithm

outperforms the other algorithms.

147

Chapter 6. An Energy-aware Task Scheduling Algorithm 148

6.1 Related Work

In this section, we discuss related work of power aware scheduling algorithms for par-

allel and distributed systems. This work proposes the EAEPS algorithm which is a

clustering-based scheduling algorithm with the aim of reducing power consumption.

A lot of work has been done for task scheduling focusing on power optimization. For

example, Terzopoulos and Karatza [81] discussed scheduling of independent tasks,

and proposed power aware versions of Min-Min and Max-Min algorithms by using

DFVS technique.

Zong et al. [82] proposed two energy efficient duplication-based scheduling algo-

rithms such as EAD (Energy-Aware Duplication) and PEBD (Performance-Energy

Balanced Duplication) algorithms for parallel tasks on homogeneous clusters that

leverage DVFS to conserve energy dissipation in processors.

Lee and Zomaya [83] addressed the problem of scheduling precedence constrained

parallel tasks on heterogeneous computing systems and proposed an ECS (Energy-

Conscious scheduling) heuristic that uses DVS (Dynamic Voltage Scaling) to mini-

mize energy consumption.

Hu et al. [84] presented an energy aware scheduling algorithm named EASLA for

dependent tasks in the context of SLA (Service Level Agreement) on DVFS enabled

cluster systems. The algorithm minimizes energy consumption by scaling frequencies

down and distributing each slack to a set of tasks.

Aupy et al. [85] proposed several algorithms to solve the problem of scheduling

precedence constrained tasks on homogenous computing systems that aim to mini-

mize energy consumption while thinking about a given bound on the makespan and

a reliability threshold.

Kimura et al. [86] proposed an algorithm which reduces energy consumption by

using DVFS and reclaiming slack times for non critical tasks in parallel programs

executed on real power-scalable PC clusters. The algorithm reclaims slack time by

controlling the voltages and frequencies.

Chapter 6. An Energy-aware Task Scheduling Algorithm 149

Kaur et al. [87] proposed a duplication controlled static energy efficient scheduling

algorithm called C-SEED for scheduling of dependent tasks on heterogeneous com-

puting systems. The algorithm controls duplications by using a threshold value with

DPM (Dynamic Power Management) technique.

Mei et al. [88] proposed an Energy Aware scheduling by Minimizing Duplication

(EAMD) algorithm which reduces energy consumption without degrading makespan.

The authors claim that the algorithm not only is easier to operate than both DPM

and DVFS, but also produces no overhead of time and energy.

Tang and Tan [89] proposed a reliability and energy aware task scheduling algorithm

for precedence constrained parallel applications on heterogeneous systems. The al-

gorithm uses a single processor failure rate model based on DVFS and maintains

better tradeoff among reliability, performance, and energy consumption with lower

complexity.

Sharifi et al. [90] presented a two phase power aware algorithm called PASTA for

scheduling precedence constrained tasks on heterogeneous computing resources. The

algorithm doesn’t require any special hardware support to reduce power consumption

and it provides good tradeoff between makespan and power efficiency.

Wang et al. [91] studied the slack time for non-critical tasks to minimize the energy

consumption and considered the Green Service Level Agreement in their work. The

authors proposed two power aware scheduling heuristics called PALS (Power Aware

List Scheduling) and PATC (Power Aware Task Clustering) for parallel applications.

We propose a novel power aware task scheduling algorithm called Energy Aware

Edge Priority-based Scheduling (EAEPS) for multiprocessor environments which

aims to reduce power consumption by exploiting DVFS technique.

6.2 System Model and Problem Formulation

This section introduces the system models and formalizes the scheduling problem.

Chapter 6. An Energy-aware Task Scheduling Algorithm 150

6.2.1 Application Model

A parallel application having precedence constrained tasks is modeled as a Directed

Acyclic Graph (DAG), G = (T,E), where T represents a set of nodes in which each

node denotes a task and E represents a set of communication edges between tasks

which show precedence constraints on T :

T =
⋃

1≤i≤N

{Ti} (6.1)

where, Ti is i
th task and N is the number of tasks in a parallel application.

ei,j denotes an edge between Ti and Tj, i.e. task Ti must be finished before Tj can

start, where 1 ≤ i, j ≤ N and Ti, Tj ∈ T . Here Tj is called a successor of Ti and

Ti is called a predecessor of Tj. When two tasks are executed on a same processing

unit, their communication cost is ignored. It is assumed in this work that the DAG

has only one start task and one end task. Multiple start (multiple-end) tasks are

handled by connecting them with a start (end) task having no computation and

communication cost. Fig. 2.1 gives a sample DAG representing the application

model.

6.2.2 Processor Model

This work considers a multiprocessor system containing homogeneous processors

or processing units that are fully connected with the same communication links.

Each processing unit can simultaneously perform execution and communication of

tasks. The execution of tasks performed by processing units is non-preemptive. Each

processing unit is enabled with software controlled DVFS and can operate on a set

of operating frequencies f and a set of supply voltages V .

f =
⋃

1≤i≤K

{fi} (6.2)

V =
⋃

1≤i≤K

{Vi} (6.3)

Chapter 6. An Energy-aware Task Scheduling Algorithm 151

where, fi is the ith processor operating frequency; Vi is the ith processor supply

voltage;

fmin = f1 ≤ f2 ≤ ... ≤ fK = fmax

Vmin = V1 ≤ V2 ≤ ... ≤ VK = Vmax

and K represents the number of operating points for the processing unit.

6.2.3 Energy Model

The energy consumption of a processor is due to processing, leakage, and short-

circuits. According to Mei et al. [64], power is mostly consumed in the execution of

the instructions. Therefore, the energy model, adopted here, considers energy con-

sumption only due to execution ignoring other causes. The energy consumption of

processor for task execution, ξ, is the summation of static energy consumption ξstatic,

and dynamic energy consumption ξdynamic [91]. The dynamic power consumption

causes due to the charging and discharging process involved in the CMOS capac-

itances whereas the static power consumption is caused by the running, bias and

leakage currents.

ξ = ξdynamic + ξstatic (6.4)

According to [92], the dynamic power consumption Pdynamic is determined as follows:

Pdynamic = A× CL × V 2

dd × f (6.5)

where, A is the percentage of active logic gates; CL is the total capacitance load;

Vdd is supply voltage and f is the operating frequency.

Now, dynamic energy consumption ξdynamic can be computed as follows:

ξdynamic =
∑

∆t

Pdynamic ×∆t (6.6)

Chapter 6. An Energy-aware Task Scheduling Algorithm 152

where, ∆t is a time period.

According to [93], ξstatic is directly proportional to ξdynamic:

ξstatic ∝ ξdynamic (6.7)

Hence, the total energy consumption will be directly proportional to the dynamic

energy consumption and can be computed as follows:

ξ =
∑

∆t

(η × V 2

dd × f ×∆t) (6.8)

where, η is a constant determined by processing unit, Vdd is the operating supply

voltage of processing unit during ∆t, f is the operating frequency during ∆t and ∆t

is the time period.

In our energy model, processors have several voltage and frequency levels, and a

scheduling algorithm may choose the appropriate voltage and frequency to save

energy. When a processor is idle or in a communication phase, it is assumed that

the processor will operate at its lowest frequency.

6.2.4 Problem Formulation

Given a parallel application G consists of n precedence-constrained tasks and a num-

ber of processing units, find a schedule which minimizes overall energy consumption

in multiprocessors.

6.3 The EAEPS Algorithm

This section presents an Energy Aware Edge Priority-based Scheduling (EAEPS)

algorithm for multiprocessor environments. The proposed algorithm is an energy

aware version of our EPS (Edge Priority Scheduling) algorithm which is a clustering-

based scheduling algorithm and focuses on makespan minimization only. The classi-

cal clustering-based scheduling algorithm executes the following steps: (1) clustering

Chapter 6. An Energy-aware Task Scheduling Algorithm 153

of tasks is performed by zeroing the edges; (2) mapping of clusters to appropriate pro-

cessing units; (3) scheduling of the tasks. The classical clustering-based scheduling

algorithm minimizes the makespan whereas our proposed algorithm reduces power

consumption by exploiting DVFS technique.

6.3.1 Priority Function for the Edges

In classical clustering-based algorithm and PATC algorithm, edges are selected for

zeroing on the basis of their communication costs while in this work we define a

priority function for the edges same as defined in EPS algorithm as follows:

p(ei,j) =
CT (ei,j)

ET (Ti) + ET (Tj)
(6.9)

6.3.2 Voltage Scaling for Non-critical Tasks

In this section, we discuss how to scale down voltages of non-critical tasks with

DVFS technique. This concept is the basis of the EAEPS algorithm given in the

next section. A non-critical task is a task which does not belong to the critical path

of a task graph. For scaling voltages on a non-critical task, say for Ti, we need to

compute slack of Ti and that is computed using Eq. 2.10. After finding slack for Ti,

we require to calculate execution time of task Ti which can be extended due to slack

without violating precedence constraints and is calculated as follows:

ETslack(Ti) = ET (Ti) + slack(Ti) (6.10)

where, ET (Ti) is the execution time of a task Ti on processor′s maximum frequency,

slack(Ti) is the slack for task Ti and ETslack(Ti) is the new execution time of Ti after

considering its slack.

For a task Ti executed at frequency fk, we denote the voltage as Vk(Ti), the fre-

quency as fk(Ti). When execution time of the task Ti is extended due to slack, the

corresponding operating frequency of processor for task Ti is calculated as follows:

Chapter 6. An Energy-aware Task Scheduling Algorithm 154

Algorithm 5 The EAEPS Algorithm

1: Initially one cluster for each of the tasks is formed
2: Calculate initial energy consumption
3: Compute priority of each edge as Eq. 6.9
4: Sort all edges in non-increasing order by their priorities and make a list
5: repeat
6: for all edges in the sorted list do
7: Zero an edge if energy consumption reduces
8: When two clusters are grouped, the order among tasks is decided by

comparing their bottom-levels with each other
9: if bottom-level of one task is equal to the bottom-level of other task then

10: Both tasks are ordered according to their topological-order in the clus-
ter

11: end if
12: Update energy consumption
13: break
14: end for
15: Remove an edge from sorted list by which energy consumption reduces.
16: until energy consumption decreases

fk(Ti) = fmaxET (Ti)/ETslack(Ti) (6.11)

where fmax is the maximum frequency at which processor is executing task Ti.

When a processor executes a non-critical task, it first calculates its slack as Eq. 2.10

and then its new execution time as Eq. 6.10. After that it attempts to scale its

operating frequency as Eq. 6.11. Each processor has corresponding voltage level for

each frequency level.

6.3.3 The Algorithm

In this subsection, we formalize the proposed algorithm as Algorithm 5.

As shown in Algorithm 5, the EAEPS algorithm initially assigns each task to dis-

tinct cluster and determines initial energy consumption. After that, the algorithm

computes priority of each edge and sort edges in non-increasing order of their prior-

ities, the EAEPS algorithm repeatedly groups tasks by zeroing the edges with high

priority if total energy consumption is not increased. When two tasks or clusters

Chapter 6. An Energy-aware Task Scheduling Algorithm 155

Table 6.1: Frequency and supply voltages used in this work

Frequency (GHz) Supply Voltage (V)

0.8 0.90

1.0 1.00

1.2 1.05

1.4 1.10

1.6 1.15

1.8 1.20

are grouped, the order among tasks is decided by their bottom levels. The bottom

level of a task Ti is the longest path from Ti to the end task of the graph and is

computed as definition 2.6.

In EAEPS algorithm, the priority function tries to group two tasks from different

clusters that have heavy communication cost between them w.r.t their execution

costs.

6.4 Experimental Results

In this section, we provide a simulation study on the proposed EAEPS algorithm.

We considered some benchmark task graphs given by Davidovic and Crainic [79].

Table 6.1 shows the operating frequencies and supply voltages used in this work

that is taken from [91]. The experiments are carried out on a Dell PowerEdge R420

server with CentOS (version 7.3-1611), Intel(R) Xeon(R) CPU E5-2420 v2 @ 2.20

GHz processor, and 192 GB of memory. The performance is measured in terms of

percentage of energy saving that is defined as follows:

ξ =
ξmax − ξalgo

ξmax

(6.12)

where ξmax is the energy consumption when all tasks executed at the maximum

frequency, and ξalgo is the energy consumption when applying a particular algorithm.

Table 6.2 gives a comparison of our proposed algorithm with other energy aware

scheduling algorithms in terms of percentage of maximum energy saving. The

Chapter 6. An Energy-aware Task Scheduling Algorithm 156

Table 6.2: Energy saving comparison of EAEPS with other existing energy-

aware algorithms

Energy aware scheduling algorithms Minimum energy saving (%)

EADUS & TEBUS [94] 11.43

Energy reduction algorithm [86] 18.35

ECS [83] 29.47

PATC [91] 30.52

EAEPS 31.48

EAEPS can achieve up to 31.48 % energy saving for selected benchmark random task

graphs used in the simulation. Here, the algorithms EADUS and TEBUS give least

energy saving among all compared algorithms as these algorithms are duplication-

based and do not use DVFS to minimize energy consumption. The EAEPS gives

more energy saving as it minimizes energy consumption during the communica-

tion phase. It also reduces energy consumption when a processing unit is idle. The

EAEPS algorithm tries to choose edge for zeroing that involves more communication

cost and reduces energy consumption.

6.5 Summary

We have proposed a power aware clustering-based task scheduling algorithm that

makes use of priority function for edge zeroing, and we called it Energy Aware

Edge Priority-based Scheduling (EAEPS) algorithm, for the problem of scheduling

in multiprocessor environments. The proposed algorithm exploited DVFS technique

to reduce the power consumption. The performance of the EAEPS algorithm is

examined by performing a simulation study for some selected benchmark random

task graphs. The experimental results show that the EAEPS algorithm achieves

more energy saving that other compared energy aware scheduling algorithms. Future

work includes the study and deployment of the proposed algorithm in some real-

world applications like Gaussian Elimination, and Fast Fourier Transform.

