
Chapter 3

Benchmarking Task Scheduling

Algorithms and a Possible

Framework

Many task scheduling algorithms for distributed computing on multiprocessors have

been proposed in the past. These algorithms show their performance in various

forms depending on the platform, applications, and assumptions. It indicates that

such an available algorithm is good in one situation and may perform poorly in

some other situation. It is interesting to go for significant performance assessment

and comparison among these scheduling algorithms. In this chapter, we first carry

out performance evaluation and comparison of task scheduling algorithms, that be-

long to the group of list scheduling, for randomly generated graphs and the graphs

generated from real-world applications. Further, we explore possibility of a frame-

work for benchmarking of task scheduling algorithms for distributed computing on

multiprocessors. The proposed approach provides for generation of graphs through

a Directed Acyclic Graph generator, then produces schedules through a scheduler

which makes use of scheduling algorithms and finally analyses the results obtained

by using various performance metrics. The proposed framework is general in nature.
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3.1 Benchmarking

Many benchmarking studies for task scheduling algorithms are proposed in liter-

ature. Kwok and Ahmad [72] presented a taxonomy of algorithms and a set of

benchmarks for the comparative study of 15 scheduling algorithms. In [73], the au-

thors compared 11 scheduling algorithms for mapping a class of independent tasks

onto heterogeneous distributed computing systems. A standard task graph set is

proposed and four different scheduling algorithms are compared in [74]. Mishra et

al. [75] presented a comparison of six clustering-based scheduling algorithms based

on static and dynamic priorities. In [76], the authors presented a comparison of

six very old list scheduling algorithms on homogeneous multiprocessors. The earlier

benchmarking studies reported in the literature consider mostly the independent

tasks, whereas this chapter considers dependence among tasks as depicted by the

task graphs. We have used, for the purpose of comparison, the representative task

graphs such as randomly generated task graphs and real-world application graphs

that have been used by other researchers.

In the literature, many list scheduling algorithms are proposed with completely dif-

ferent assumptions. We consider six of them that are well-known and frequently

cited algorithms with a common number of assumptions to provide comparison

and benchmarking results. The list scheduling algorithms used in this chapter

are HEFT (Heterogeneous Earliest Finish Time) [10], PETS (Performance Effec-

tive Task Scheduling) [15], LDCP (Longest Dynamic Critical Path) [9], Lookahead

[50], CEFT (Constrained Earliest Finish Time) [51] and PEFT (Predict Earliest Fin-

ish Time) [7]. The results are presented using various performance metrics for two

types of graphs: (1) the graphs that are generated randomly and (2) the graphs that

are generated from real-world applications such as Fast Fourier Transform (FFT),

Gaussian Elimination (GE), Montage workflow and Epigenomics workflow.

The following are certain assumptions that are used by the scheduling system model

of list scheduling algorithms used in this chapter:

• Target computing environment is made of a set of heterogeneous processors.

• The processors are fully connected with each other.
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• A processor can execute a single task at any time.

• Each task is computed by a single processor.

• The tasks used in this model are dependent tasks and can′t be preempted,

once a processor starts executing them.

• After finishing the execution, the task transmits output data to all immediate

children concurrently.

• The computation and communication operations can be performed concur-

rently by a node in the system.

3.2 Metrics

The comparison metrics used in this chapter are Schedule Length Ratio (SLR),

speedup, efficiency, slack and ”frequency of best schedules”.

3.2.1 Schedule Length Ratio

The Schedule Length Ratio (SLR) is a commonly used metric to compare scheduling

algorithms, and it is defined as the fraction of the makespan to the sum of the

smallest execution cost of all tasks on the critical path of the DAG [10].

SLR =
makespan

∑

Ti∈CPMIN
minpj∈P ET (Ti, pj)

(3.1)

where ET (Ti, pj) denotes the execution cost of task Ti on processor pj. In Eq. 3.1,

the denominator gives the lower bound on the schedule length. Thus, the algorithm

having the lowest value of SLR than the other algorithms is the best algorithm.
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3.2.2 Speedup

The speedup is defined as the fraction of the sequential computation time to the

parallel computation time or the makespan of the schedule.

Speedup =
Sequential computation time

makespan
(3.2)

In Eq. 3.2, the numerator can be calculated by allocating all tasks to one processor

which gives the minimum sum of the computation cost of the DAG.

3.2.3 Efficiency

Efficiency is defined as the speedup divided by the quantity of processors used in

each run.

Efficiency =
Speedup

Number of processors used
(3.3)

3.2.4 Frequency of best schedules

This metric is used to show that how many schedules produced by an algorithm are

better, worse and equal when compared to other algorithms used in the experimen-

tation. The results of algorithms for this metric are represented by a comparison

table.

3.2.5 Slack

This metric is used to determine the robustness of the schedules generated by an

algorithm when compared with the uncertainty in the tasks processing time [77, 78].

It can be expressed as follows:

Slack =

[

∑

Ti∈V makespan− BL(Ti)− TL(Ti)
]

n
(3.4)
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where n is the number of tasks in the task graph, BL(Ti) is the length of the largest

path from task Ti to the exit task, and TL(Ti) is the length of the largest path from

the entry task to the task Ti. It signifies the ability of the schedule to consume

delays in task computation. The slack of a task denotes the time slot where the task

can be deferred without enhancing the schedule length. Schedule length and slack

are contradictory metrics such that higher schedule lengths give large slack.

3.3 Algorithms considered for Benchmarking

Here, we describe six well-known and frequently cited list-based scheduling algo-

rithms such as HEFT, PETS, LDCP, Lookahead, CEFT and PEFT to schedule

tasks of an application for distributed computing on heterogeneous multiprocessors.

3.3.1 HEFT Algorithm

Topcuoglu et al. [10] proposed two algorithms named HEFT and CPOP (Critical

Path on a Processor) for heterogeneous computing systems. Here, only HEFT is

discussed. The authors defined two types of ranks, one is upward rank and the

other is downward rank. HEFT uses upward rank while CPOP uses both the ranks.

The upward rank for a task Ti is calculated as follows:

ranku(Ti) = ET (Ti) + max
Tj∈succ(Ti)

{

CT (ei,j) + ranku(Tj)
}

(3.5)

where ET (Ti) represents the average execution time of task Ti, CT (ei,j) denotes the

average communication time between tasks Ti and Tj and succ(Ti) gives all direct

successors of task Ti. The upward rank for the exit task is calculated as follows:

ranku(Ti) = ET (Texit) (3.6)

The HEFT algorithm executes in 2 phases: (i) task prioritizing and (ii) processor

selection. The first phase determines the priorities of all tasks through equations

(1) and (2) and maintains a list of tasks arranged in non-increasing order of their

priorities. When tasks have same upward ranks, the priority among tasks is decided
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randomly. The second phase of the algorithm selects the topmost task from the

sorted list say, Ti and computes EFT (Earliest Finish Time) of that task on each

processor. The task Ti is allocated to the processor that provides smallest value of

EFT of task Ti. To compute EFT, it uses insertion-based scheduling policy that

attempts to include a task in the free time window between two tasks that are

previously assigned to a processor, if the window is capable of scheduling that task

and preserves the precedence constraints.

3.3.2 PETS Algorithm

The PETS (low complexity Performance Effective Task Scheduling) algorithm is

given by Ilavarasan and Thambidurai [15] and executes in 3 phases: (i) level sorting,

(ii) task prioritization and (iii) processor selection. The algorithm traverses the input

DAG from start task(s) to end task(s) and sorts the tasks at each level in the first

phase. The tasks of a level may execute concurrently. In the second phase, authors

defined three attributes ACC, DTC and RPT, to compute the priority of each task.

The ACC (Average Computation Cost) value of a task Ti can be calculated as

follows:

ACC(Ti) =

∑p

j=1 ET (Ti, pj)

p
(3.7)

where p denotes the number of processors and ET (Ti, pj) indicates the execution

time of task Ti on processor pj. The DTC (Data Transfer Cost) of a task Ti is

defined as the quantity of communication time acquired to transmit the data and it

is computed at each level as follows:

DTC(Ti) =
t

∑

j=1

CT (ei,j), i < j (3.8)

DTC(Texit) = 0 (3.9)

where t denotes the number of tasks in the next level of DAG and CT (ei,j) indicates

the communication cost between task Ti and its successor. The RPT (Rank of

Predecessor Task) of a task Ti gives a value which denotes the maximum rank of its
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immediate predecessors and it is determined as follows:

RPT (Ti) = Max
{

rank(T1), rank(T2), ...rank(Tm)
}

(3.10)

RPT (Tentry) = 0 (3.11)

where T1, T2,...,Tm are the immediate predecessors of Ti. Now, the rank of a task Ti

can be calculated as follows:

rank(Ti) = round
{

ACC(Ti) +DTC(Ti) +RPT (Ti)
}

(3.12)

After computing the rank of all tasks, a priority value is given to each task at every

level based on their ranks. At every level, the task which has maximum rank is

given the highest priority among all tasks that is followed by the task having second

highest value of rank and so on. When more than one task has same rank, the

priority is decided on the basis of ACC value. Higher priority is given to the task

which has minimum value of ACC. The algorithm uses the BFS (Breadth First

Search) for level sorting and implements priority queue by using binary heap. The

third phase will calculate the EFT of each task on all processors and allocate the

tasks to the processors which provide smallest value of EFT for that task. As like

HEFT, this algorithm also uses insertion-based scheduling policy when computing

EFT for each task.

3.3.3 LDCP Algorithm

The LDCP (Longest Dynamic Critical Path) algorithm is proposed by Daoud and

Kharma [9] and executes in 3 phases: (i) task selection, (ii) processor selection and

(iii) status update. In the first phase, DAGPs (DAGP is a Directed Acyclic Graph

that corresponds to a Processor) for all processors are constructed, and selected task

is identified using the key node or the parent key node. A key node is an unscheduled

node having highest upward rank among the nodes of the selected LDCP, while a

parent key node is an unscheduled parent of a key node which has maximum upward

rank. The upward rank of node Ti in DAGP j is computed as follows:

Urankj(Ti) = ETj(Ti) + max
Tk∈succj(Ti)

{

CTj(ei,k) + Urankj(Tk)
}

(3.13)



Chapter 3. Benchmarking Task Scheduling Algorithms and Possible Framework 44

where ETj(Ti) represents the size of task Ti in DAGP j; CTj(ei,k) denotes the com-

munication time between Ti and its successors in DAGP j and succj(Ti) indicates

the set of direct successors of task Ti in DAGP j. The second phase calculates the

completion time of the selected task on all processors and allocates the tasks to the

processors which provide smallest value of the completion time for that task. As like

HEFT, this algorithm also uses insertion-based scheduling policy when completion

time is calculated for each task. The third phase updates the status of the system

such as size of nodes which discover the selected task on all DAGPs, communication

costs on all DAGPs, computation constraints on all DAGPs, temporary zero weight

edges on the DAGP associated with the selected processor and URank values of the

nodes which are used in the identification of the scheduled tasks on all DAGPs.

3.3.4 Lookahead Algorithm

The Lookahead algorithm is given by Bittencourt et al. [50] which improves the

scheduling process of the HEFT algorithm by using the information of the task and

its successors. It takes decisions for scheduling that should be beneficial for both the

task and its children. Like HEFT, the Lookahead algorithm executes in 2 phases:

(i) task prioritizing and (ii) processor selection. Like HEFT, each task is prioritized

by computing the upward rank using equation (1) and (2) and a sorted list of task

is maintained in the first phase. This algorithm modifies the second phase of the

HEFT algorithm by integrating the idea of Lookahead. According to this concept,

the processor chosen for a particular task is the one that reduces the maximum value

of EFT from all its successors on every processor. In other words, the task will be

allocated to a processor that provides the minimum finish time for all its children

that were assigned using HEFT. When EFT of the children of an unscheduled task

with the highest rank is computed, it may be possible that some children tasks

may not become ready due to dependence on other unscheduled parents. Thus, for

calculating the EFT of the children tasks, the unscheduled parents are ignored.
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3.3.5 CEFT Algorithm

The CEFT (Constrained Earliest Finish Time) algorithm [51] utilizes the idea of the

Constrained Critical Path (CCP). A CCP is defined as a critical path having only

ready tasks such that the tasks whose predecessors have finished their execution

where a Critical Path (CP) denotes the largest path between the starting task(s)

and the end task(s) in the DAG. The CEFT algorithm operates in 2 phases: (i)

CCPs identification and (ii) processor selection. Initially, the first phase determines

all critical paths in the graph and identifies ready tasks by traversing all the critical

paths. Then, CCP queues are formed by inserting the ready tasks of critical paths

into it. The CCP queue uses round-robin traversal to insert tasks from the next

CP if there are no more ready tasks in a CP. In the second phase, finish time of

constrained critical path queues is calculated, and the tasks of CCP are allocated to

the processor that yields smallest value of the completion time of constrained critical

path queue. The start time of task w concerning its predecessor task k when task

w is allocated to the processor Pr, is calculated as follows:

SPr
(w, k) = max

{

(Fk +M(w, Pr, k, Px)), APr

}

(3.14)

where Fk denotes the actual completion time of task k, APr
represents the time upon

which the processor Pr is available for computation using insertion-based scheduling

policy and M(w, Pr, k, Px) presents the communication cost between tasks w and

k when w is allocated to processor Pr and k is allocated to the processor Px. The

finish time for task w on processor Pr can be calculated as follows:

ZPr
(w) = max

{

(SPr
(w, k))∀k∈pred(w)

}

+ TPr
(w) (3.15)

Thus, the completion time of the CCP queue Qj on processor Pr is computed as

follows:

EPr
(Qj) = max

{

(ZPr
(w))∀w∈Qj

}

(3.16)

All tasks of a CCP are allocated to a processor which provides minimum comple-

tion time. Consequently, the completion time of all the tasks is updated and this

process is repeated for all other CCPs which were discovered in the first phase. The
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granularity of a DAG being used for assignment is greater than other scheduling

algorithms.

3.3.6 PEFT Algorithm

The PEFT (Predict Earliest Finish Time) algorithm is proposed by Arabnejad and

Barbosa [7], which has the low time complexity and gives remarkable improvements

in makespan and efficiency. It maintains an Optimistic Cost Table (OCT) which

uses a Lookahead feature without adding the complexity of the OCT computation.

The OCT is denoted by a matrix and in this matrix, rows represent tasks and

columns denote processors. The OCT (Ti, pk) denotes the maximum of the smallest

paths from the children tasks of a task Ti to the exit task, assuming that task Ti is

executed on processor pk. The OCT (Ti, pk) value can be defined as follows:

OCT (Ti, pk) = max
Tj∈succ(Ti)

[

min
pw∈P

{

OCT (Tj, pw) + ET (Tj, pw) + CT (ei,j)
}

]

(3.17)

CT (ei,j) = 0, ifpw = pk

For the exit task,

OCT (Ti, pk) = 0, for all processors pk ∈ P (3.18)

where ET (Tj, pw) denotes the execution cost of task Tj on processor pw and CT (ei,j)

indicates the average communication time between tasks Ti and Tj, that is, zero when

both tasks reside on a same processor. Like HEFT, PEFT executes in 2 phases: (i)

task prioritizing and (ii) processor selection. The first phase of the PEFT algorithm

computes the priority of each task by calculating the mean OCT value for each task

as follows:

rankOCT (Ti) =

∑p

k=1 OCT (Ti, pk)

P
(3.19)

In the second phase, the suitable processor is chosen for the computation of the

current task by calculating optimistic EFT (OEFT ) that is the summation of the

EFT value to the execution time of the largest path to the end task and is evaluated

as follows:

OEFT = EFT (Ti, pj) +OCT (Ti, pj) (3.20)
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where the EFT (Ti, pj) value is computed through insertion based scheduling policy.

Thus, the algorithm aims to select the processor that gives a smaller finish time

instead of the EFT for the current task.

3.4 Experimental Results and Discussion

Here we provide the evaluation results of the HEFT, PETS, LDCP, Lookahead,

CEFT and PEFT algorithms and discuss the results using various performance

metrics on various graphs. For this purpose, two sets of task graphs are taken

into consideration: randomly generated task graphs and the task graphs derived

from real-world applications. The experiments are performed on a Dell PowerEdge

R420 server with CentOS (version 7.3-1611), Intel(R) Xeon(R) CPU E5-2420 v2 @

2.20 GHz processor, 2 processor sockets having 6 execution cores per processor and

192 GB of memory.

3.4.1 Randomly Generated Application Graphs

The random application graphs are produced with a Random DAG generator [7]

to benchmark and estimate the performance of the well-known list scheduling algo-

rithms on various parameters. The DAGs generated here possess different charac-

teristics which rely on some input parameters as mentioned below.

• n: It represents the DAG size.

• shape (α): It helps in determining the height and width of the graph. The

height and width of the graph are maintained according to a uniform distribu-

tion by using
√
n

α
and α×

√
n as a mean value for height and width, respectively.

The numbers obtained from the uniform distribution are rounding up to the

nearest value. The height represents the levels and width represents the num-

ber of tasks that may execute concurrently in the graph.

• density (δ): It provides the quantity of edges exist between 2 levels of the

graph. The lower density value produces a small number of edges, whereas the

higher density value generates more number of edges.
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Table 3.1: Parameters and their corresponding values used in the generation of

random graphs

Parameters Values

n 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500

α 0.1, 0.4, 0.8

δ 0.2, 0.8

r 0.2, 0.8

j 1, 2, 4

β 0.1, 0.2, 0.5, 1, 2

CCR 0.1, 0.5, 1, 5, 10

P 4, 8, 16, 32

• regularity (r): It represents the consistency of the quantity of tasks at every

level of the DAG. The smaller value of regularity indicates that each level of

the DAG contains unlike quantity of tasks, whereas a higher value of regularity

shows that each level has alike quantity of tasks.

• jump (j): It shows that an edge exist between the level l and level l + j. A

jump of 1 represents a direct link between two successive levels.

• CCR: It represents the Communication to Computation Ratio such that the

summation of the communication costs of all edges is divided by the summation

of the execution costs on all nodes in a DAG.

• heterogeneity (β): It gives the range of percentage of execution costs on pro-

cessors. This is a factor for processor speeds. When β has a higher value,

there is a considerable difference in the execution costs of a task on various

processors, whereas when β has a lower value, the computation costs assigned

to a task on all processors have similar value. Uniform distribution with the

range [0, 2×ETDAG] is used to select the average value of execution cost for a

task in that range, where ETDAG is the randomly generated average execution

cost of a graph. The execution cost of task Ti for each processor pj is randomly

set in the following range:

ET (Ti)×
(

1− β

2

)

≤ ET (Ti, pj) ≤ ET (Ti)×
(

1 + β

2

)
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Figure 3.1: Average SLR results for random graphs with respect to the DAG

size.

In the experiments, we used parameters given in Table 3.1 to generate random

graphs. In Table 3.1, P represents the number of processors used in the experiment.

Using these parameters′ combinations, 50,400 DAGs are generated. For each DAG,

five different random graphs are created with the same arrangement but with differ-

ent computation and communication costs on nodes and edges, respectively. Thus,

totally 252,000 random DAGs are utilized in this work.

Fig. 3.1 presents the average SLR for all scheduling algorithms with respect to the

various DAG sizes. For DAG sizes up to 40 tasks, the Lookahead algorithm gives

the best results. For DAG size 50 and 60 tasks, PEFT and Lookahead algorithms

provide similar results. For DAG sizes bigger than 60 tasks, the PEFT algorithm

gives best results as it outperforms the other scheduling algorithms. The Lookahead

algorithm takes scheduling decisions for a particular task by analyzing the impact

of assignment of its children. When a number of children tasks of a current task

increase, the load of the processor changed significantly, and the algorithm takes

more time for making decisions which result in the reduction in performance for

randomly generated DAGs. The PEFT algorithm uses the concept of OCT which

is computed before starting the scheduling process and assumes that children tasks

of a current task are computed on a processor that provides the smallest finish

time of the task without considering processor availability. This reduces the total
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Figure 3.2: Average slack results for random graphs with respect to the DAG

size.

time taken by PEFT to make scheduling decisions as the optimistic cost of children

tasks of a current task is already known in advance. The PETS algorithm performs

worst for all DAG sizes except for the DAG size 10 and 20 tasks in which CEFT

gives worst results. The mean of average SLR results for HEFT, PETS, LDCP,

Lookahead, CEFT and PEFT algorithms is 2.513, 2.669, 2.440, 2.393, 2.504 and

2.338 respectively. Thus, the order of algorithms for average SLR results with respect

to DAG sizes is: PEFT < Lookahead < LDCP < CEFT < HEFT < PETS.

Fig. 3.2 presents the average slack for all scheduling algorithms with respect to the

various DAG sizes. For DAG sizes featuring up to 100 tasks, all algorithms except

PETS provide similar results. For DAG sizes larger than 100 tasks, slack level of

all algorithms except HEFT and PEFT continuously increases. For all DAG sizes,

PETS performs worst than the other algorithms. It is observed from results that

PEFT keeps equal slack level as HEFT for all DAG sizes even it generates smaller

schedules with equal robustness as generated by HEFT. The mean of average slack

results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 553,

727, 626, 610, 642 and 553 (the fractional part of the numbers are converted to their

nearest integer values), respectively. Thus, the order of algorithms for average slack

results with respect to DAG sizes is: PEFT = HEFT < Lookahead < LDCP <

CEFT < PETS.
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Figure 3.3: Average SLR results for random graphs with respect to the CCR.

Figure 3.4: Average SLR results for random graphs with respect to the hetero-

geneity.

Fig. 3.3 presents the average SLR for all algorithms with respect to the CCR. For

CCR value 0.1 and 0.5, all algorithms except CEFT algorithm give similar results.

For CCR value 0.1, 0.5 and 1, CEFT provides worst results, whereas for CCR value

5 and 10, PETS gives worst results. For all CCR values, the PEFT algorithm

performs better than other algorithms. The Lookahead algorithm presents similar

results to that of PEFT algorithm for all CCR values. The mean of average SLR

results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 2.714,

2.870, 2.639, 2.566, 2.948 and 2.536, respectively. Thus, the order of algorithms for

average SLR results with respect to CCR is: PEFT < Lookahead < LDCP <

HEFT < PETS < CEFT .
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Figure 3.5: Efficiency of algorithms for random graphs with respect to the

number of processors.

Fig. 3.4 presents the average SLR for all algorithms with respect to the heterogeneity

factor. For smaller values of heterogeneity or when the computation costs for a par-

ticular task are approximately same on all processors, all algorithms perform nearly

similar. The performance of the algorithms varies when the value of heterogeneity

becomes larger. From results, it is clear that PEFT has smallest average SLR for all

heterogeneity values and after PEFT, Lookahead offers better results than the other

algorithms in terms of SLR. The mean of average SLR results for HEFT, PETS,

LDCP, Lookahead, CEFT and PEFT algorithms is 2.534, 2.690, 2.586, 2.410, 2.628

and 2.360, respectively. Thus, the order of algorithms for average SLR results with

respect to heterogeneity is: PEFT < Lookahead < HEFT < LDCP < CEFT <

PETS.

Fig. 3.5 presents the efficiency of all algorithms with respect to the various numbers

of processors. From results, it is clear that Lookahead has the highest value of ef-

ficiency among all algorithms for all processor quantities. After Lookahead, PEFT

presents better solutions than the other algorithms in terms of efficiency. For a lower

number of processors, HEFT, LDCP, Lookahead and PEFT algorithms give nearly

similar results. For processor quantity 4, 8 and 16, PETS gives worst results, while

for processor quantity 32, CEFT gives the worst result. The average value of effi-

ciencies for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 0.417,

0.394, 0.423, 0.440, 0.399 and 0.432, respectively. Thus, the order of algorithms for

efficiency is: PETS < CEFT < HEFT < LDCP < PEFT < Lookahead.
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Table 3.2: Pair-wise Schedule Length Comparison of the Scheduling Algorithms.

Algorithms Schedules
Algorithms

HEFT PETS LDCP Lookahead CEFT PEFT

HEFT
better 90% 20% 29% 32% 24%
equal * 0% 9% 6% 16% 3%
worse 10% 71% 65% 52% 73%

PETS
better 10% 9% 12% 24% 8%
equal 0 * 0% 0% 8% 0%
worse 90% 91% 88% 68% 92%

LDCP
better 71% 91% 34% 46% 31%
equal 9% 0% * 9% 21% 4%
worse 20% 9% 57% 33% 65%

Lookahead
better 65% 88% 57% 74% 29%
equal 6% 0% 9% * 12% 7%
worse 29% 12% 34% 14% 64%

CEFT
better 52% 68% 33% 14% 18%
equal 16% 8% 21% 12% * 0%
worse 32% 24% 46% 74% 82%

PEFT
better 73% 92% 65% 64% 82%
equal 3% 0% 4% 7% 0% *
worse 24% 8% 31% 29% 18%

Table 3.2 shows the pair-wise comparison of schedule lengths in the percentage of

better, equal, and worse results generated by all scheduling algorithms. For instance,

when Lookahead is compared with PETS, it accomplishes better scheduling in 88%

of runs, equivalent schedules in 0% of runs and worse schedules in 12% of runs.

3.4.2 Real-world Application Graphs

Besides the randomly generated DAGs, the performance of the algorithms is eval-

uated for the real-world applications, specifically Gaussian Elimination [10, 11, 39],

Fast Fourier Transform [10, 40], Montage workflow [42–44] and Epigenomics work-

flow [44, 45]. All of these applications are well known and used in real-world prob-

lems.
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Table 3.3: Configuration parameters for Gaussian Elimination

Parameters Values

Matrix size 5, 10, 15, 20, 25, 30

CCR 0.1, 0.5, 1, 5, 10

Number of processors 2, 4, 8, 16, 32

Figure 3.6: Average SLR for Gaussian Elimination graphs with respect to the

matrix size.

3.4.2.1 Gaussian Elimination

The configuration of Gaussian Elimination is known; hence, we use different values

for the matrix size, CCR and number of processors as given in Table 3.3 to perform

experiments.

Fig. 3.6 presents the average SLR for all algorithms with respect to the matrix size.

For lower matrix sizes, HEFT, LDCP and PEFT produce similar schedules, but

when matrix size increases, PEFT leads and gives better schedules than those two

algorithms. It is observed from the results that the Lookahead algorithm generates

best schedules and CEFT gives worst schedules among all algorithms for all matrix

sizes. The mean of average SLR results for HEFT, PETS, LDCP, Lookahead, CEFT

and PEFT algorithms is 2.408, 2.626, 2.356, 2.191, 2.760 and 2.257, respectively.

Thus, the order of algorithms for average SLR results with respect to the matrix

size is: Lookahead < PEFT < LDCP < HEFT < PETS < CEFT .
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Figure 3.7: Average SLR for Gaussian Elimination graphs with respect to the

CCR.

Figure 3.8: Efficiency of algorithms for Gaussian Elimination graphs with re-

spect to the number of processors.

Fig. 3.7 presents the average SLR for all algorithms with respect to the CCR. For

CCR up to 1, HEFT, LDCP, Lookahead and PEFT produce similar schedules, but

when CCR value goes beyond 1, Lookahead leads and provides best schedules among

all algorithms. It is observed from the results that the CEFT gives the worst results

in terms of SLR for all CCR values. The mean of average SLR results for HEFT,

PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 2.557, 2.759, 2.500, 2.331,

2.896 and 2.429, respectively. Thus, the order of algorithms for average SLR results

with respect to the CCR is: Lookahead < PEFT < LDCP < HEFT < PETS <

CEFT .
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Table 3.4: Configuration parameters for Fast Fourier Transform

Parameters Values

Input points 4, 8, 16, 32, 64

CCR 0.1, 0.5, 1, 5, 10

Number of processors 2, 4, 8, 16, 32

Figure 3.9: Average SLR for FFT graphs with respect to the input points.

Fig. 3.8 presents the efficiency of algorithms with respect to the numbers of pro-

cessors. For processor quantity 2, all algorithms perform similarly except CEFT.

For processor quantity 4-32, Lookahead and PEFT provide similar and better re-

sults among all algorithms where Lookahead algorithm has the highest efficiency

when the number of processors is 4 and 8, whereas PEFT has the highest efficiency

when the number of processors is 16 and 32. For all processor quantities, CEFT has

the lowest value of efficiency among all algorithms. The average value of efficien-

cies for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 0.648,

0.604, 0.656, 0.668, 0.524 and 0.667, respectively. Thus, the order of algorithms for

efficiency is: CEFT < PETS < HEFT < LDCP < Lookahead < PEFT .

3.4.2.2 Fast Fourier Transform

The configuration of FFT is known; hence, we use different values for input points,

CCR and number of processors as given in Table 3.4 to perform experiments.
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Figure 3.10: Average SLR for FFT graphs with respect to the CCR.

Fig. 3.9 presents the average SLR for all algorithms with respect to the input

points. For all input points, CEFT and PEFT yielded the worst schedules, though

all algorithms generate similar schedules. From experiments, it is observed that

when each path in the DAG is a critical path, HEFT and PETS produce better

and similar results than the other algorithms for all input points. The mean of

average SLR results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT al-

gorithms is 9.506, 9.506, 9.550, 9.720, 9.856 and 9.775, respectively. Thus, the

order of algorithms for average SLR results with respect to the input points is:

HEFT = PETS < LDCP < Lookahead < PEFT < CEFT .

Fig. 3.10 presents the average SLR for all algorithms with respect to the CCR. For

CCR up to 5, CEFT produces worst results, while HEFT and LDCP generate similar

and better schedules than the other algorithms. PEFT and Lookahead also yielded

similar schedules for CCR value up to 5. CEFT generates best schedules whereas

Lookahead gives worst schedules in terms of SLR for CCR value 10. The mean

of average SLR results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT

algorithms is 2.929, 2.996, 2.927, 3.032, 3.116 and 2.963, respectively. Thus, the

order of algorithms for average SLR results with respect to the CCR is: LDCP <

HEFT < PEFT < PETS < Lookahead < CEFT .

Fig. 3.11 presents the efficiency of algorithms with respect to the number of pro-

cessors. For a number of processors up to 8, HEFT, PETS, LDCP, Lookahead and
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Figure 3.11: Efficiency of algorithms for FFT graphs with respect to the number

of processors.

Table 3.5: Configuration parameters for Montage workflow

Parameters Values

Number of tasks 25, 50

CCR 0.1, 0.5, 1, 5, 10

Heterogeneity 0.1, 0.2, 0.5, 1, 2

Number of processors 2, 4, 8, 16, 32, 64

PEFT provide similar results in terms of efficiency, but when the number of proces-

sors increases, HEFT leads other algorithms and gives best results. For all processor

quantities, CEFT has the lowest efficiency among all algorithms. The average value

of efficiencies for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms

is 0.633, 0.629, 0.629, 0.625, 0.578 and 0.628, respectively. Thus, the order of al-

gorithms for efficiency is: CEFT < Lookahead < PEFT < PETS = LDCP <

HEFT .

3.4.2.3 Montage Workflow

The structure of Montage workflow application is known; thus, we use different

values of configuration parameters as given in Table 3.5, for experiments on this

workflow.
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Figure 3.12: Average SLR for Montage workflow graphs with respect to the

CCR.

Fig. 3.12 presents the average SLR for all algorithms with respect to the CCR.

For computation-intensive DAGs, all algorithms produce similar results, while for

communication-intensive DAGs, Lookahead gives best results in terms of SLR. When

CCR value is 1, Lookahead and PEFT give similar results where PEFT yielded the

smallest schedules followed by Lookahead. For all CCR values, HEFT and PETS

produce similar schedules and CEFT give worst schedules. The mean of average SLR

results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 16.707,

16.676, 16, 11.286, 17.151 and 13.703, respectively. Thus, the order of algorithms

for average SLR results with respect to CCR is: Lookahead < PEFT < LDCP <

PETS < HEFT < CEFT .

Fig. 3.13 presents the average SLR for all algorithms with respect to the number

of processors. For all processor quantities, HEFT, PETS, LDCP and CEFT pro-

duce similar results in which LDCP gives smaller schedules and CEFT provides

higher schedules than the other three algorithms. For a smaller number of pro-

cessors, Lookahead and PEFT produce similar and better results than the other

algorithms, but when the number of processors increases, Lookahead yielded the

smallest schedules among all algorithms, followed by PEFT. The mean of average

SLR results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algorithms

is 10.255, 10.255, 10.0123, 7.561, 10.449 and 8.637, respectively. Thus, the order

of algorithms for average SLR results with respect to the number of processors is:

Lookahead < PEFT < LDCP < HEFT = PETS < CEFT .
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Figure 3.13: Average SLR for Montage workflow graphs with respect to the

number of processors.

Figure 3.14: Average SLR for Montage workflow graphs with respect to the

heterogeneity.

Fig. 3.14 presents the average SLR for all algorithms with respect to the hetero-

geneity factor. For heterogeneity value up to 0.2, all algorithms except Lookahead

and PEFT give similar results in terms of SLR while for heterogeneity value greater

than 0.2, only HEFT and PETS maintain the same level. For all heterogeneity

factors, Lookahead produces smallest schedules and PEFT gives the second best re-

sult after Lookahead in terms of SLR. The mean of average SLR results for HEFT,

PETS, LDCP, Lookahead, CEFT and PEFT algorithms is 14.914, 14.903, 14.587,

10.914, 15.119 and 12.454, respectively. Thus, the order of algorithms for average

SLR results with respect to the heterogeneity is: Lookahead < PEFT < LDCP <
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Figure 3.15: Efficiency of algorithms for Montage workflow graphs with respect

to the number of processors.

PETS < HEFT < CEFT .

Fig. 3.15 presents the efficiency of algorithms with respect to the number of pro-

cessors. For processor quantity up to 4, all algorithms provide similar results in

terms of efficiency. HEFT, PETS and LDCP algorithms have similar efficiency for

processor quantity 8-64. For all processor quantities, Lookahead has higher val-

ues of efficiency whereas CEFT has lower values of efficiency among all algorithms.

The average value of efficiencies for HEFT, PETS, LDCP, Lookahead, CEFT and

PEFT algorithms is 0.585, 0.586, 0.593, 0.627, 0.547 and 0.609, respectively. Thus,

the order of algorithms for efficiency is: CEFT < HEFT < PETS < LDCP <

PEFT < Lookahead.

3.4.2.4 Epigenomics Workflow

The structure of Epigenomics workflow application is known; thus, we use different

values of configuration parameters as given in Table 3.6, for experiments on this

workflow.

Fig. 3.16 presents the average SLR for all algorithms with respect to the CCR. It

is observed from the results that HEFT, PETS and LDCP produce similar results

in terms of SLR for all CCR values and computation intensive DAGs, Lookahead,

CEFT and PEFT give results equivalent to the other three algorithms. For CCR
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Table 3.6: Configuration parameters for Epigenomics workflow

Parameters Values

Number of tasks 24, 46

CCR 0.1, 0.5, 1, 5, 10

Heterogeneity 0.1, 0.2, 0.5, 1, 2

Number of processors 2, 4, 8, 16, 32, 64

Figure 3.16: Average SLR for Epigenomics workflow graphs with respect to the

CCR.

value 1, Lookahead and PEFT produce similar and better results than the other

algorithms. When the DAGs are communication intensive, the PEFT leads other

algorithms and gives best schedules, while CEFT produces worst schedules. The

mean of average SLR results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT

algorithms is 13.836, 13.836, 13.836, 12.333, 14.256 and 11.347, respectively. Thus,

the order of algorithms for average SLR results with respect to CCR is: PEFT <

Lookahead < HEFT = PETS = LDCP < CEFT .

Fig. 3.17 presents the average SLR for all algorithms with respect to the number of

processors. For all processor quantities, HEFT, PETS, LDCP and CEFT produce

similar results in which CEFT gives higher schedules than the other three algorithms

and HEFT, PETS and LDCP produce same results in terms of average SLR. For the

number of processors up to 8, Lookahead and PEFT give same schedules, whereas for

the number of processors greater than 8, PEFT produces the best result among all

algorithms. The mean of average SLR results for HEFT, PETS, LDCP, Lookahead,
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Figure 3.17: Average SLR for Epigenomics workflow graphs with respect to the

number of processors.

Figure 3.18: Average SLR for Epigenomics workflow graphs with respect to the

heterogeneity.

CEFT and PEFT algorithms is 12.112, 12.112, 12.112, 10.744, 12.443 and 10.118,

respectively. Thus, the order of algorithms for average SLR results concerning the

number of processors is: PEFT < Lookahead < HEFT = PETS = LDCP <

CEFT .

Fig. 3.18 presents the average SLR for all algorithms with respect to the hetero-

geneity factor. It is evident from the results that HEFT, PETS and LDCP pro-

duce same results in terms of SLR and PEFT produces smallest schedules for each

heterogeneity value used in the experiments. CEFT is the worst algorithm, and
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Figure 3.19: Efficiency of algorithms for Epigenomics workflow graphs with

respect to the number of processors.

Lookahead is the second best algorithm in terms of average SLR. The mean of

average SLR results for HEFT, PETS, LDCP, Lookahead, CEFT and PEFT algo-

rithms is 12.845, 12.845, 12.845, 11.389, 13.009 and 10.703, respectively. Thus, the

order of algorithms for average SLR results with respect to the heterogeneity is:

PEFT < Lookahead < HEFT = PETS = LDCP < CEFT .

Fig. 3.19 presents the efficiency of algorithms with respect to the numbers of proces-

sors. It is observed from the results that for all processor quantities, HEFT, PETS

and LDCP present same results regarding efficiency and for processor quantity up

to 8, PEFT and Lookahead give similar results. CEFT gives the smallest value of

efficiency, while PEFT gives the highest value of efficiency for all number of pro-

cessors. The average value of efficiency of HEFT, PETS, LDCP, Lookahead, CEFT

and PEFT algorithms is 0.601, 0.601, 0.601, 0.630, 0.568 and 0.652, respectively.

Thus, the order of efficiency of algorithms with respect to the number of processors

is: CEFT < HEFT = PETS = LDCP < Lookahead < PEFT .

The above comparison of task scheduling algorithms can be formalized in the form

of a framework. We are proposing such a possible framework in the next section.
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Figure 3.20: Proposed framework for benchmarking of task scheduling algo-

rithms.

3.5 A Possible Framework for Benchmarking

Having carried out a comparison of task scheduling algorithms, it is plausible to ex-

plore possibility of a framework for benchmarking of task scheduling algorithms. The

word ”framework” ascribes a skeleton structure of the methodology being proposed

in this work for the purpose of benchmarking. This framework will be helpful for

people of the area to follow our method for benchmarking task scheduling algorithms

for heterogeneous computing systems. The architecture of framework contains four

modules as shown in Fig. 3.20: Environment Provider, DAG Generator, Scheduler

and Analyzer.

Environment Provider This module provides specification regarding the comput-

ing environment of the system to all other modules of framework and takes into
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consideration the communications among tasks. The specification involves:

• The number of available processors in the system.

• The type of processors used and their computing power.

• Topological information of the environment such as how the processors are

interconnected with each other and how the communications among processors

take place.

• Whether the capabilities of the hardware design of the processors can handle

computation and communication, concurrently.

DAG Generator This module takes the input describing the computing environ-

ment and generates input graphs for scheduler. It has two sub-modules: random

graph generator and workflow generator.

• The random graph generator produces random graphs which have character-

istics based on input parameters such as a number of nodes in the graph, a

factor which determines the height and width of the graph and a factor that

decides the density of the edges between levels. This sub-module assigns the

computation and communication costs according to the CCR and heterogene-

ity factors which reflect the behavior of target computing environment. These

parameters have already been discussed in subsection 3.4.1, in detail.

• The workflow generator produces graphs derived from real-world computa-

tional workloads such as Fast Fourier Transform, Gaussian Elimination, Mon-

tage workflow and Epigenomics workflow. These graphs have fixed structures.

Thus, this generator needs fewer parameters than random graph generator to

produce graphs.

Scheduler This module performs the role of receiving input graphs and allocates

tasks of the graph to available processors. The Scheduler produces different schedules

according to task scheduling algorithms used. The Scheduler module workflow is:

1. The Scheduler takes information about the computing environment and re-

ceives the input graphs from the DAG Generator.
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2. Next, the Scheduler extracts the information regarding tasks and their depen-

dencies from graphs.

3. Now, the Scheduler generates schedules by applying list scheduling algorithms

one by one. The module is expandable enough to add potential new algorithms.

The Scheduler uses Environment Provider module to handle communication

among tasks. In general, to produce schedules, the Scheduler,

(a) prioritizes the tasks first and

(b) then identifies processors to assign tasks according to their priorities.

4. Additionally, the Scheduler evaluates the performance of algorithms on dif-

ferent scheduling criteria such as makespan, schedule length ratio, speedup,

efficiency, the frequency of best schedules and slack.

5. Finally, the Scheduler transfers all the results and information about graphs

to the Analyzer.

Analyzer This module is used for the analysis of the results obtained from the

Scheduler. The functions performed by the Analyzer are:

• It receives information about the graphs along with their results regarding

schedules, makespan and schedule length ratio, and speedup of algorithms,

etc., from the Scheduler.

• It takes information about the computing environment such as number of

processors from Environment Provider module.

• It performs analysis of the results received from the Scheduler and compares

the performance of scheduling algorithms on different performance criteria.

3.5.1 Advantages and Limitations of the Proposed Frame-

work

For understanding the applicability of task scheduling algorithm, an appropriate

benchmarking is required. The proposed framework will be able to cover the follow-

ing, which have not been tackled earlier:
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• The proposed framework is general in nature. The applicability of framework

is not limited only for performance assessment and comparison of list schedul-

ing algorithms; it can similarly be used for other types of scheduling heuristic

algorithms such as clustering-based and duplication-based algorithms or com-

bination thereof.

• It provides results for real-world application graphs such as Fast Fourier Trans-

form task graphs, Gaussian Elimination task graphs, Montage workflow and

Epigenomic workflow.

• It provides results for randomly generated task graphs as considered by other

researchers.

• The framework may also be used for other computing environments like cluster

computing, grid computing and cloud computing.

The proposed framework does not differentiate among types of processing units

such as CPUs, GPUs, APUs, FPGAs and MICs, and it works for the computing

environment in which processors are fully connected.

3.6 Summary

In this chapter, we evaluated and compared the performance of task scheduling algo-

rithms for heterogeneous computing systems. We used six well-known list schedul-

ing algorithms such as HEFT, PETS, LDCP, Lookahead, CEFT and PEFT for this

purpose. The analysis of results is performed on different performance metrics like

scheduling length ratio and efficiency. for randomly generated graphs and the graphs

generated from real-world applications such as FFT, Gaussian Elimination, Montage

and Epigenomics workflows.

It is concluded from the results that for randomly generated application graphs,

Lookahead produces smaller schedules for small-sized graphs and PEFT gives smaller

schedules for bigger graphs. All algorithms except CEFT produce similar sched-

ules for computation-intensive graphs, whereas for communication-intensive graphs,
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Lookahead and PEFT produce similar and better schedules than the other algo-

rithms. In terms of efficiency, Lookahead has the highest value and PEFT has the

second highest value among all algorithms. When the execution costs for a particular

task are almost same on all processors, all algorithms produce similar schedules, but

when the computation costs are different, PEFT gives the best results in terms of

SLR. HEFT and PEFT offer the best and same level of robustness of the schedules

generated by them when compared to uncertainty in the tasks computation time.

For real-world application graphs or when the structure of the graph is known,

Lookahead and PEFT perform better than the other algorithms, whereas HEFT,

PETS and LDCP produce similar results for all real-world application graphs except

for FFT. For Gaussian Elimination, Lookahead and PEFT give similar and better

results for all performance metrics. When each path in the graph is a critical path, all

algorithms produce similar schedules, but HEFT gives the best performance among

all algorithms. The Lookahead and PEFT give the best performance, including

schedule length ratio and efficiency, for Montage workflow and Epigenomics work-

flow, respectively. Overall, the results illustrated the effectiveness of framework for

benchmarking of algorithms on heterogeneous computing systems. Summary of the

results of benchmarking and comparison of task scheduling algorithms is shown in

Table 3.7.

We have further explored possibility of a framework for benchmarking of task schedul-

ing algorithms for heterogeneous computing systems. Such a framework provides for

collection of activities that need to be taken up for the benchmarking purpose, in-

cluding random graph generator and workflow generator as part of DAG generator,

a scheduler and an analyzer under the control of an environment provider.

A state forward task scheduling method may be based on merging the nodes of a

task graph whenever there is a possibility of running together the associated tasks

together on one and the same processor - this is done when heavily communicating

tasks need to be brought together, this work is known as edge zeroing and such

an algorithm is known edge zeroing algorithm [3]. We extend this idea and pro-

posed a clustering-based task scheduling algorithm that we named as Edge Priority

Scheduling (EPS) for multiprocessors environments, in the next chapter.


