
Chapter 1

Introduction

Over the decades, distributing computing plays a vital role to solve the large com-

mercial, scientific, and mathematical applications. In distributed computing, an

application is divided into various tasks and executed on appropriate processors

which are distributed over a network. The tasks of the application may be inde-

pendent or dependent. The independent tasks execute separately on the processors

and do not communicate with each other. The dependent tasks are interrelated and

may execute when their precedence constraints are satisfied, and any task of the

application may communicate with other tasks during execution. The application

having dependent tasks is represented by a Directed Acyclic Graph (DAG) [1] where

tasks of an application are denoted by nodes and interrelation among the tasks is

indicated by directed edges. The competence of computing parallel and distributed

applications is extremely dependent on their features, for example, size of data to

transfer between tasks, computation time of tasks, precedence constraints among

tasks, etc. and platform features such as number of processor, execution power of

the processors, link capacity, etc. The processors involved in distributed comput-

ing may be homogeneous in which all processors have same processing capabilities,

or heterogeneous in which each processor has different processing capabilities. The

system performing distributed computing may include multiprocessors, GPUs, mul-

ticore processors or a combination of these and involves potentially a great deal of

communication overhead which restricts the performance of applications if tasks are

not scheduled efficiently. An efficient schedule for a parallel and distributed appli-

cation significantly relies on the techniques employed to schedule the tasks on to

1



Chapter 1. Introduction 2

processors of such systems with the aim of minimizing schedule length or makespan

of the application. Another issue of interest may be minimization of energy while

scheduling tasks. The minimization of schedule length helps to enhance the pro-

cessor utilization and system throughput. The problem of obtaining schedules with

minimum length has been shown to be NP-complete [2–6]. In an attempt to give

polynomial time solutions, the known algorithms end up providing at times subop-

timal solutions.

To solve the problem of task scheduling, the known algorithms are grouped into

static and dynamic scheduling algorithms [7, 8]. The static scheduling algorithms

use all information regarding tasks in advance, such as computation time of tasks

on processing units and communication time between tasks, etc. before starting

the execution of the application while dynamic scheduling algorithms utilize the

required information for scheduling decisions at run-time. There are many methods

to assess such information [9]. This thesis focuses on static scheduling algorithms

as it generates optimal schedules without considering run-time overheads. Static

scheduling algorithms may be grouped into guided heuristic-based algorithms or

random search-based algorithms. The second group of the static algorithm takes

more time to find the required solution even though the makespan is minimized at

the cost of spare time. It gives different makespan for the same problem size and

the same inputs based on the various scheduling techniques are used to allocate

parallel tasks onto the suitable processors. Alternatively, the first group of static

algorithm focuses on generating schedules with the minimum scheduling overhead,

but the obtained makespan is not necessarily the shortest. Hence, both heuristic-

based and guided random search-based algorithms can be used as per circumstances

[10]. The heuristic-based algorithms are further divided into three subgroups that

are list scheduling, duplication-based scheduling, and clustering-based scheduling.

The list scheduling algorithms [7, 9–16], typically schedule tasks in 2 phases: the

primary phase is task prioritization in which tasks are assigned priorities based

on their associated execution and communication times; processor selection being

the second phase in which suitable processors are selected and task assignment to

processors is done. The duplication-based algorithms [2, 17–22] attempt to minimize

the communication time between tasks through duplication of tasks onto different

processors. The clustering-based algorithms [3, 11, 14, 23–27] are mainly applicable

for an unbounded number of processors and generate schedules by grouping heavily



Chapter 1. Introduction 3

communicating tasks of a given application into clusters and assigning these clusters

onto appropriate processors so that the schedule length of an application can be

minimized. In this thesis, we focus on clustering-based algorithms.

This thesis attempts to address the problem of scheduling tasks having precedence-

constraints for distributed computing on multiprocessors. It performs benchmark-

ing of some well-known task scheduling algorithms and explores the possibility of a

framework for this. The thesis proposes interesting intuitive ideas that lead to two

scheduling algorithms for minimizing schedule length of applications and another

energy-aware scheduling algorithm for minimizing the energy consumption by pro-

cessors in the considered system. We present experimental results for the proposed

algorithms and compared them with the existing algorithms for different types of

applications. The results illustrate that the proposed algorithms perform better

than some representative known algorithms.

1.1 Background

For sake of completeness, we are here giving a brief description regarding distributed

system, that is required for distributed computing. We are also discussing about task

scheduling in distributed computing.

1.1.1 Distributed Systems

Distributed computing is computing performed in a distributed system [28]. Accord-

ing to Tanenbaum and Steen [29], a distributed system is defined as ”A distributed

system is a collection of independent computers that appears to the user as a single

coherent system” and according to Colouris et al. [30] it is defined as ”A distributed

system is one in which components located at networked computers communicate

and coordinate their actions only by passing messages”.

In distributed systems, various nodes act autonomously and cooperate with each

other, which can achieve the purposes of resource sharing, openness, concurrency,

scalability, fault-tolerance, and transparency [30].



Chapter 1. Introduction 4

In summary, distributed systems have the following general characteristics:

• Concurrency of components

• Lack of Global clock

• Independent failures of components

Issues in Distributed Systems: Distributed systems are more complex than

systems that run on a single processor. Complexity arises because different parts

of the system are independently managed as is the network. There is no single

authority in charge of the system so top-down control is impossible [30].

• Transparency: To what extent should the distributed system appear to the

user as a single system?

• Openness: Should a system be designed using standard protocols that support

interoperability?

• Scalability: How can the system be constructed so that it is scalable?

• Security: How can usable security policies be defined and implemented?

• Quality of service: How should the quality of service be specified?

• Failure management: How can system failures be detected, contained and

repaired?

The benefits of distributed systems are that they can be scaled to cope with increas-

ing demand, can continue to provide user services if parts of the system fail, and

they enable resources to be shared.

Distributed computing also refers to the use of distributed systems to solve compu-

tational problems. In distributed computing, a problem is divided into many tasks,

each of which is solved by one or more computers, which communicate with each

other via message passing.



Chapter 1. Introduction 5

1.1.2 Distributed Computing versus Parallel Computing

In distributed computing, each processor has its own private memory and infor-

mation is exchanged by passing messages between the processors while in parallel

computing, all processors may have access to a shared memory to exchange infor-

mation between processors [28, 31].

1.1.3 Task Scheduling in Distributed Computing

Based on the certain parameters, task scheduling in distributed computing can be

divided into the following [7, 32–38]:

• Static versus Dynamic Scheduling: Based on the knowledge about the

task characteristics, task scheduling in distributed computing can be divided

into static and dynamic scheduling. In static scheduling, all information re-

garding tasks are known in advance, such as execution time of tasks on pro-

cessors, communication time between tasks etc. before starting the execution

of the given application while on the other hand, dynamic scheduling uses

the required information for scheduling decisions at run-time. The dynamic

scheduling incur more overhead than the static scheduling as it has to collect,

store and analyze state information. The static scheduling is also known as

compile-time scheduling whereas dynamic scheduling scheduling is known as

run-time scheduling.

• Uniprocessor versus Multiprocessor Scheduling: Based on the number

of processors, task scheduling in distributed computing is divided into unipro-

cessor and multiprocessor scheduling. In uniprocessor scheduling, the system

consists of a single processor and all the tasks are scheduled on this proces-

sor. On the other hand, a multiprocessor consists of a number of processors on

which the tasks may be scheduled. Multiprocessor systems offer the advantage

of task parallelism between the tasks. When two tasks assigned to different

processors communicate with each other, then inter-processor-communication

(IPC) comes into the picture.



Chapter 1. Introduction 6

• Preemptive versus Non-preemptive Scheduling: Based on whether pre-

emption is allowed or not, task scheduling in distributed computing can be di-

vided into preemptive and non-preemptive scheduling. In preemptive schedul-

ing algorithms, once a task has started execution on one of the system proces-

sors, it can be interrupted in order to execute another task. However, a task

that has started execution has to run till completion in the non-preemptive

scheduling model. The task cannot be stopped in between to execute another

task.

• On-line mode versus Batch mode Scheduling: Based on whether task

is considered alone or in group for scheduling, task scheduling in distributed

computing can be divide into on-line mode and batch mode scheduling. In on-

line mode, a task is scheduled on to a processor as soon as the task arrives at

the scheduler. On the other hand, in the batch mode, tasks are not scheduled

on to the processors when they arrive; they are collected as a batch and then

this batch of tasks is considered for allocation. on-line mode scheduling is thus

quick whereas batch mode scheduling can take better advantage of task and

resource characteristics in deciding which task to map to which resources.

• Single-criterion versus Multi-criteria Scheduling: Based on the number

of scheduling criteria, task scheduling in distributed computing can be divided

into single-criterion versus multi-criteria scheduling. The scheduling problems

dealing with only one criterion to optimize are said to be models with a sin-

gle criterion while if several criteria are considered the scheduling models are

known as multi-criteria scheduling models. Multi-criteria scheduling problems

are usually more difficult than single criterion ones.

• Bag-of-Tasks versus Workflow Scheduling: Based on whether depen-

dency between tasks is considered or not, task scheduling in distributed com-

puting can be divided into Bag-of-Tasks and Workflow scheduling. In Bag-of-

Tasks scheduling, the focus is on scheduling various independent tasks which

do not require any communication among themselves over resources. On the

other hand, in the Workflow scheduling, the focus is on considering the de-

pendencies between various tasks in the application while making scheduling

decisions.



Chapter 1. Introduction 7

1.2 Motivation

Distributed computing is being carried out by exploiting various forms of comput-

ing and communication resources. For the purpose of distributed computing, an

application is partitioned into task graph and represented by a DAG for showing

precedence constraints, computation and communication costs of the tasks of an

application. Many-many algorithms are kept coming during the last 2-3 decades.

People have been interested in computing every new algorithm with the other avail-

able algorithms especially with the same type of algorithms. This motivates us to

engage in research-oriented research for the following three purposes:

• Comparing the task scheduling algorithms for distributed computing on mul-

tiprocessors and attempting to obtain some systematic way of benchmarking

the task scheduling algorithms.

• An exercise of comparing algorithms for standard task graphs and randomly

generated task graphs is likely to provide a comparison that is considered to

be acceptable to workers in the field. Further, while trying to compare and

understand algorithms, there is always a likelihood for developing some better

or new algorithms for the task scheduling on multiprocessors.

• With the advent of the possibility of reduction of energy consumption by

processors that can control voltage and frequency dynamically. This motivates

to obtain enhancement of developed algorithms to become energy aware by

exploiting the capabilities of the said algorithms.

1.3 Objective

”Comparative study of performance of some existing task scheduling algorithms

and identifying ways of developing some task scheduling algorithms for distributed

computing on multiprocessors, that optimize the schedule length and energy con-

sumption.”



Chapter 1. Introduction 8

1.4 Thesis Contributions

The following contributions working on issues and challenges related to scheduling

for distributed computing:

• A survey and detailed discussion of the existing scheduling algorithms within

the scope of this thesis;

• Benchmarking some well-known task scheduling algorithms that belong to the

group of list-based scheduling for heterogeneous computing systems and ex-

ploring the possibility of a framework for benchmarking of scheduling algo-

rithms;

• A clustering-based task scheduling algorithm that proposes and uses the idea

of edge prioritization to obtain meaningful clustering of the tasks and improves

makespan of the application;

• A clustering-based task scheduling algorithm that makes use of edge zeroing

concept on the critical path to reduce the communication cost among the tasks

of an application and improves makespan of the application;

• An energy-aware task scheduling algorithm that aims to reduce energy con-

sumption by exploiting dynamic voltage and frequency scaling technique.

1.5 Thesis Organization

The chapters of this thesis are structured as shown in Fig. 1.1. The remainder of

the thesis is organized as follows:

• Chapter 2 presents the preliminary concepts and literature review of the task

scheduling algorithms. In this chapter, existing algorithms related to list

scheduling, duplication-based scheduling and clustering-based scheduling are

discussed and analyzed.



Chapter 1. Introduction 9

Figure 1.1: Thesis organization.

• Chapter 3 provides benchmarking of some well-known task scheduling algo-

rithms that belong to the group of list-based scheduling for heterogeneous

computing systems. This chapter discusses the comparison metrics and the

algorithms considered for benchmarking. After that, the performance of al-

gorithms are evaluated and compared for randomly generated graphs and the

graphs generated from real-world applications such as fast Fourier transform

(FFT), Gaussian Elimination, Montage and Epigenomics workflows. Fur-

ther, this chapter explores the possibility of a framework for benchmarking

of scheduling algorithms. This chapter is derived from:

– Ashish Kumar Maurya and Anil Kumar Tripathi, “On Benchmarking



Chapter 1. Introduction 10

Task Scheduling Algorithms for Heterogeneous Computing Systems,” The

Journal of Supercomputing, Springer, vol. 74, no. 7, pp. 3039-3070, 2018

[SCI].

– Ashish Kumar Maurya and Anil Kumar Tripathi, “Performance Com-

parison of HEFT, Lookahead, CEFT and PEFT Scheduling Algorithms

for Heterogeneous Computing Systems,” in Proceedings of the 7th Interna-

tional Conference on Computer and Communication Technology (ICCCT-

2017), ACM, pp. 128–132, 2017, India.

• Chapter 4 describes the proposed clustering-based task scheduling algorithm

called EPS. This chapter discusses the concept of edge prioritization and clus-

tering in context to the proposed algorithm. The time complexity of EPS is

analyzed and an illustrative example demonstrating the working of the EPS

algorithm is given. Finally, the experimental results, with a statistical analysis,

are presented for randomly generated graphs and the graphs generated from

real-world applications such as Gaussian Elimination and FFT. This chapter

is derived from:

– Ashish Kumar Maurya and Anil Kumar Tripathi, “An Edge Priority-

based Clustering Algorithm for Multiprocessor Environments,” Concur-

rency and Computation: Practice and Experience, Wiley, 2018 (in press)

[SCIE].

• Chapter 5 describes the proposed clustering-based task scheduling algorithm

called ECP. This chapter discusses the concept of critical path computation

and edge selection regarding ECP. This chapter also presents the complexity

analysis of algorithms presented in this chapter and provides an illustrative

example demonstrating the working of the ECP. Finally, the experimental re-

sults, with a statistical analysis, are presented for randomly generated graphs

and the graphs generated from real-world applications such as Gaussian Elim-

ination, FFT and systolic array. This chapter is derived from:

– Ashish Kumar Maurya and Anil Kumar Tripathi, “ECP: A Novel

Clustering-based Technique to Schedule Precedence Constrained Tasks

on Multiprocessor Computing Systems,” Computing, Springer, pp. 1-25,

2018 (available as Online First article), [SCI].



Chapter 1. Introduction 11

• Chapter 6 presents an energy aware task scheduling algorithm called EAEPS

that aims at reduces energy consumption by exploiting dynamic voltage and

frequency scaling technique. This chapter discusses the system models used

in this work and formalizes the problem. Finally, the experimental results are

compared with the existing algorithms and reported. This chapter is derived

from:

– Ashish Kumar Maurya and Anil Kumar Tripathi, “An Energy Aware

Edge Priority-based Scheduling Algorithm for Multiprocessor Environ-

ments,” in Proceedings of the 24th International Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA′18), pp.

42-46, 2018, USA.

• Chapter 7 concludes the thesis, summarizes its findings, and provides directions

for future work.




