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Estatic Static energy consumption

Piynamic Dynamic power consumption

f Operating frequency of the processor

Via Supply voltage of the processor

frmin Minimum operating frequency of the processor
Jmaz Maximum operating frequency of the processor
f1(T3) Frequency when a task T; executed at frequency f

Vi(T3) Voltage when a task T} executed at frequency f3



PREFACE

In distributed computing, a big computational application is solved by dividing
it into many tasks and executing them onto different processing units. The dis-
tributed computing environment may be homogeneous in which all processors have
same processing capabilities, or it may be heterogeneous in which all processors are
comprised of different processing capabilities. It involves potentially a great deal of
communication overhead which restricts the performance of applications if tasks are
not scheduled efficiently. The scheduling of tasks, with precedence constraints, on
different processors is one of the core concerns for distributed computing in multipro-
cessor environments and significantly relies on the techniques employed to schedule
the tasks with the aim of optimizing makespan and energy consumption. The task
scheduling problem is known to be NP-complete. Therefore, many task scheduling
algorithms are proposed in literature to solve this problem and new methods keep
coming in. It is always useful to look for a fresh approach, towards understanding
and interpretation of the existing algorithms and such an effort may lead to some

possible newer ways of solving the problem.

The thesis benchmarks some well-known task scheduling algorithms for distributed
computing on multiprocessors and proposes a possible framework for this purpose.
The proposed approach provides for generation of graphs through a Directed Acyclic
Graph generator, then produces schedules through a scheduler which makes use of
scheduling algorithms and finally analyses the results obtained by using various

performance metrics. The proposed framework is general in nature.

The work also attempts to propose some new algorithms for working out possi-
ble scheduling, of tasks that optimize makespan. We propose two clustering-based
algorithms for scheduling of precedence constrained tasks in multiprocessor environ-

ments. The first algorithm proposes and uses the idea of edge prioritization to obtain
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meaningful clustering of the tasks. The second algorithm makes use of edge zeroing
concept on the critical path to reduce the communication cost among the tasks of an
application. We have performed an average analysis of the results obtained for vari-
ous real-world application graphs and random graphs. Along with average analysis,

we also performed a statistical analysis of the results using confidence intervals.

Further, we propose an energy-aware scheduling algorithm for multiprocessor envi-
ronments which aims to reduce power consumption by exploiting dynamic voltage
and frequency scaling technique. This algorithm is an energy aware version of our
first proposed algorithm and uses the idea edge prioritization to save energy con-
sumption. It also studies the slack time for non-critical tasks, extends their execution
time and reduces the energy consumption without increasing the makespan of the
application. The simulation experiments conducted with four well-known energy
aware scheduling algorithms for some selected benchmark random graphs demon-
strate that the proposed energy-aware scheduling algorithm achieves more energy

saving than compared algorithms.
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