List of Figures

No.	Captions	Page
		no.
Figure 1.1	Surfactant contribution in different sectors	3
Figure 1.2	Europe Biosurfactants Market size, by application, 2015 & 2023	7
	(USD Million)	
Figure 2.1	Biosurfactant produced by microbe	16
Figure 2.2	Removal of heavy metal from soil	33
Figure 2.3	Zoosporicidal activity of biosurfactant	34
Figure 2.4	Action of Biosurfactant on Skin	36
Figure 3.1	Growth curves of Candida tropicalis MTCC230 under different	51
	concentration of glucose and petrol	
Figure 3.2	Growth curves of Candida tropicalis MTCC230 under different	52
	concentration of glucose and kerosene oil.	
Figure 3.3	Growth curves of Candida tropicalis MTCC230 under different	53
	concentration of glucose and Kitchen waste oil (mustard oil).	
Figure 3.4	Emulsification activity when different hydrocarbon used as carbon	54
	source for biosurfactant production (I- Kitchen waste oil, II-petrol,	
	III-kerosene oil).	
Figure 3.5	Emulsification index $(E_{24}\%)$ shown by different hydrocarbons	54
	sources (P-Petrol, M-Mastured oil, K-Kerosene oil).	
Figure 3.6	Optimization of pH	55
Figure 3.7	Optimization of temperature	56
Figure 3.8	Pareto chart of six-factor effects on Biosurfactant production.	68
	Upper four factors beyond the red line shows the significant effect	
	on production (P<0.05) and the factors below the red line shows	
	the non-significant factor (P>0.05).	
Figure 3.9	2D Contour plot of Biosurfactant production in terms of E ₂₄ [Effect	75
	of Temperature and Microelements (A), Temperature and	
	amm.Chloride (B), Microelements and amm.Chloride (C),	
	Temperature and Hydrocarbon (D), Microelements and	

	Hydrocarbon (E), amm.Chloride and Hydrocarbon (F).	
Figure 3.10	Optimum combination of different parameters for biosurfactant	76
	production	
Figure 4.1	Effect of (a) pH, (b) salinity and (c) temperature on the stability of	86
	biosurfactant	
Figure 4.2	CMC value of biosurfactant produced from an adaptive strain C.	88
	tropicalis MTCC230 (a), and from B. Subtilis MTCC2423(b).	
Figure 4.3	Oil spreading analysis (a) control (b) oil displaced by biosurfactant	89
	produced from an adaptive strain <i>C.tropicalis</i> MTCC230.	
Figure 4.4	Soil washing analysis (a) control: soil contaminated with engine	90
	oil, (b) contaminated soil washed with water, (c) contaminated soil	
	washed with biosurfactant produced Candida tropicalis MTCC	
	230.	
Figure 4.5	Thin layer chromatography of extracted biosurfactant produced	91
	from C. tropicalis MTCC230	
Figure 4.6	Near Infrared (NIR) spectrum (a) surfactinproduced from a B.	92
	subtilis MTCC2423 and (b) biosurfactant from an adaptive strain	
	C. tropicalis MTCC230.	
Figure 4.7	FTIR spectrum (a) Biosurfactant produced from Candida	93
	tropicalis MTCC230 and (b) surfactin produced from Bacillus	
	subtilis MTCC 2423.	
Figure 4 8	HPLC chromatogram of (a) standard surfactin (Sigma-Aldrich)	95
I Igui e no	and (b) biosurfactant produced from <i>Candida tropicalis</i> MTCC	
	230	
Figure 4.9	ESI-TOF-MS: Intact mass of singly charged and doubly charged	97
8	of biosurfactant produced from an acclimatized strain <i>C. tropicalis</i>	
	MTCC230 (a) and (b) mass of surfactin standard surfactin (Sigma-	
	Aldrich).	
Figure 4.10	lab scale setup of sand pack column	99
Figure 5.1	Surfactin structure	103
Figure 5.2	(a) Docking view of surfactin (stick) to amyloid fibril (ribbon). (b)	109
	surfactin (blue color) molecule, amino acid residue chain A	

	(green) and chain B (cyan) with in the 5 Å area of surfactin.	
Figure 5.3	Docking view of (a) surfactin (blue) to amyloid beta-peptide	110
	(green), (b) surfactin (blue) to amyloid beta-peptide (green) shows	
	the residue near 5 Å around.	
Figure 5.4	RMSD graph of amyloid fibril (black) and Surfactin + amyloid	111
	fibril complex (red).	
Figure 5.5	Radius of gyration graph of amyloid fibril (black) and Surfactin +	112
	amyloid fibril complex (red).	
Figure 5.6	RMSF graph of amyloid fibril (black) and Surfactin + amyloid	113
	fibril complex (red).	
Figure 5.7	Salt bridge length of (A) amyloid fibril without surfactin molecule	115
	(11.5 Å) and (B) amyloid fibril with surfactin (9.0 Å).	
Figure 5.8	SAS graph of amyloid fibril (black) and Surfactin + amyloid fibril	116
	complex (red).	
Figure 6.1	Near IR spectrum of surfactin and lipopeptide (Biosurfactant) with	124
	the survanta.	
Figure 6.2	Far IR spectrum of surfactin and lipopeptide (Biosurfactant) with	124
	the survanta	
Figure 6.3	Near IR spectrum of lipopeptide (Biosurfactant) at different	126
	dilutions.	
Figure 6.4	Near IR spectrum of Surfactin at different dilutions.	127
Figure 6.5	Near IR spectrum of Survanta at different dilutions.	127
Figure 6.6	Far IR spectrum of lipopeptide (Biosurfactant) at different	128
	dilutions.	
Figure 6.7	Far IR spectrum of Surfactin at different dilutions.	129
Figure 6.8	Far IR spectrum of Survanta at different dilutions.	129