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PREFACE

Aluminium alloys are widely used for structural applications in aerospace, automo-

bile and construction industries. The attractiveness of aluminium alloys is due to their

relatively low cost, light weight and high specific strength. However, aluminium alloys

have relatively low modulus of elasticity, low elevated-temperature capability (≤130°C),

and are susceptible to corrosion in certain environments.

Due to the age hardening Al alloys become susceptible to different forms of corro-

sion such as stress corrosion cracking, pitting corrosion, intergranular corrosion especially

in chloride environment. In these alloys corrosion occurs due to presence of intermetallic

particles acting either anodic or cathodic with respect to the matrix. Structural compo-

nents of aircrafts such as wings experience cyclic loading and undergo failure due to

initiation and propagation of fatigue cracks from the surface. Since majority of fatigue

cracks initiate from the surface, the microstructure at the surface plays important role on

fatigue resistance of such alloys.

It is widely accepted that a gradient microstructure with nanostructured surface layer

and coarse-grained interior provides excellent fatigue properties, increasing the resistance

against fatigue crack initiation and propagation. The resistance of structural aluminium

alloys against corrosion, fatigue and wear is strongly affected by the state of the surface

and the different processes used for surface modification such as ultrasonic shot peen-

ing (USSP), surface mechanical attrition treatment (SMAT), laser shock peening, shot

peening, sand blasting, and sliding wear to improve their performance. USSP involves

repeated impact of hard balls on surface of the workpiece to cause work hardening and
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induce compressive residual stresses in surface region. In comparison with the usual pro-

cess of shot peening, USSP induces plastic deformation and compressive residual stress

to larger depth along with formation of nanostructure in the surface region because of

the high kinetic energy associated with the hard balls in this process. USSP produces

gradient structure of nano size in the surface region and a fine-grained structure of pro-

gressively increasing grain size, up to the substrate. Further, compressive residual stress

in surface region of the component/specimen increases the resistance of material against

crack initiation as well as retards the rate of crack propagation.

The present study deals with characterization of surface nanostructure developed

from the USSP treatment and effect of the nanostructuring on low cycle fatigue and cor-

rosion behavior of the important aircraft grade aluminium alloy 7075 in peak aged condi-

tion. The thesis comprises of nine chapters.

Chapter-1 presents a brief introduction along with literature review on properties

and applications of the AA7075. It also presents the details of grain refinement processes

in metals/alloys. USSP improves both fatigue resistance and corrosion resistance of alu-

minium alloys. The objectives of present investigation are listed at the end of this chapter.

Chapter-2 deals with details of the experimental procedure of USSP and charac-

terization of the nanostructure in surface region of the AA7075. The 7075 aluminium

alloy was procured from M/s Hindalco Industries Limited, Renukot, India, in the form of

cylindrical bar of 54 mm diameter and 1000 mm length. The material was studied in ret-

rogression and re-aged (RRA) condition in which the alloy was solution treated at 470°C

for 30 min, pre-aged at 120°C for 24 h, followed by retrogression at 200°C for 10 min
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and subsequent secondary aging at 120°C for 24 h.

Chapter-3 presents the effect of USSP on microstructure modification, surface rough-

ness and microhardness. Peak aged AA7075 mainly constituted fine dispersed precipitates

of GP-zones, η′ coarse precipitates of η and E-phase (Al18Cr2Mg3). The samples USSP

treated for different durations of 15, 30, 60, 180 and 300 seconds were examined for mi-

crostructural changes and phase transformation, if any. The average surface roughness

was found to increase with increase in USSP duration. Microhardness was found to be

highest in the USSP treated surface region and gradually decreases towards the substrate.

Microhardness of the surface region and also the depth of the affected region increased

with the duration of the USSP treatment. No phase transformation was observed due to

USSP as confirmed by the XRD. Nanostructures of 20, 20, 18 and 16 nm sizes developed

in surface region after USSP for durations of 30, 60, 180 and 300 seconds, respectively.

Chapter-4 describes the thermal stability of nanostructured surface layer generated

from USSP treatment. The thermal stability and other features such as precipitation of

hardening particles, grain growth kinetics and microstructural evolution of the nanostruc-

tured surface layer were investigated by annealing USSP samples at different temper-

atures from 150°C-350°C. Retention of nanostructure was observed at 150°C. Precipi-

tates started to reappear at 200°C, coarsened and finally dissolved at around 350°C. The

nanograins resulting from USSP were thermally stable up to 250°C and grain coarsen-

ing occurred at higher temperature of 300°C, however, the grain size was less than 100

nm even after annealing at 350°C. The high thermal stability of the nanostructure was

due to pinning of the grain boundaries by fine precipitates. Quantitative evaluation of
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the different strengthening processes showed that grain boundary strengthening from the

Hall-Petch relationship and dislocation hardening as per the Bailey-Hirsch relationship

were the dominant strengthening mechanisms.

Chapter-5 describes the effect of USSP on low cycle fatigue (LCF) behavior of the

AA7075. The LCF samples were USSP treated for 30, 60, 180 and 300 seconds. Strain

controlled LCF tests were conducted for the un-USSP and different USSP treated samples,

at different total strain amplitudes (∆εt/2) of ±0.60%, ±0.55%, ±0.50%, ±0.45%, ±0.40%

and ±0.38%. In general, fatigue life was increased with decrease in strain amplitude,

for the both, un-USSP as well as USSP treated samples. However, the improvement in

fatigue life of the USSP treated samples was more prominent at lower strain amplitudes.

Enhancement in LCF life was observed by USSP treatment up to the duration of 180 s,

however, fatigue life was reduced from longer duration of USSP for 300 s. Pronounced

enhancement in LCF life resulted from the USSP treatment for 180 s due to combined

beneficial effect of grain refinement in the surface region and the associated compressive

stresses without any damage of the treated surface. USSP treatment for 300 s (USSP 300)

caused damage on the surface, cracks were developed and fatigue life was reduced.

Chapter-6 presents the role of thermal treatments, pre- and post- USSP to reduce the

associated residual compressive stress and the modification of microstructure on low cycle

fatigue behavior of the AA7075, at room temperature (RT). The un-shot peened samples

are designated as PA-unUSSP. The peak aged samples subjected to USSP are designated

as PA-USSP. The USSP treatment was carried out for 180 seconds at constant amplitude

of 80µm with hard steel balls of 3 mm diameter. Following the USSP treatment, some
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samples were subjected to stress relieving treatment at 90°C for 4 h to relieve the residual

stress and these samples are designated as PA-USSP-SR. Another set of the specimens in

solution treated condition were subjected to USSP for the same duration of 180 seconds

and subsequently to peak aging (PA) and these were designated as ST-USSP-PA. The high

density of dislocations generated during the USSP promoted nanosize precipitates of the

second phase particles during the peak aging treatment. In ST-USSP-PA condition the

high density of η′ precipitates along with nanograined surface layer resulted in delaying

the process of crack initiation and thus led to enhanced LCF life. Decrease in dislocation

density and relieving of compressive residual stress was observed after the stress relieving

treatment which resulted in decrease in LCF life in the PA-USSP-SR condition.

Chapter-7 presents corrosion behavior of the USSP treated AA7075 in 3.5 wt%

NaCl solution. The sample USSP treated for 15s (USSP 15) exhibited lower current den-

sity (0.564 mA/cm2) and higher corrosion potential (-0.695 V) as compared with that of

the un-USSP specimen with 1.269 mA/cm2 and -0.839 V, respectively. The enhancement

in corrosion resistance of USSP treated sample was due to rapid development of uniform,

homogeneous and effective passive layer on the nanostructured surface coupled with re-

finement of the coarse precipitates. Also, there was optimum combination of surface

roughness, compressive residual stress, and dislocation density in the surface region to

produce highest corrosion resistance in the USSP 15 condition.

Chapter-8 deals with the optimization of the USSP duration for enhanced corrosion

resistance. USSP was performed for different durations of 5, 10, 15, 20, 25, 30 seconds

and samples are designated as USSP 5, USSP 10, USSP 15, USSP 20, USSP 25 and
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USSP 30, for the optimization. Among the specimens USSP treated from 5 to 30 seconds,

the one USSP treated for 15 seconds (USSP 15) was found to exhibit highest corrosion

potential (Ecorr) and lowest corrosion current density (icorr). The enhanced corrosion

resistance of the USSP 15 sample was found to be due to combined effect of surface

nanostructure of the matrix, homogeneity and refinement of second phase precipitates.

Also slow strain rate tests (SSRT) were performed at constant strain rate of 1x106s−1

to evaluate stress corrosion cracking (SCC) behavior. The tensile strength in SSRT for

the USSP treated sample was enhanced significantly and the susceptibility to SCC was

reduced as compared to that of un-USSP.

Chapter-9 presents the major conclusions drawn from the present investigation along

with suggestions for the future work.

xxxv


