5.A. SYNTHESIS OF ACETONAPHTHONES TETHERED PIPERIDINE-3CARBOXYLIC ACID DERIVATIVES [SERIES 1]

5.A.1. CHEMISTRY

Compounds (3S1a-3S1i) were synthesised in two steps and compounds (4S1a -4S1i) in 3 steps as per the reaction sequence outlined in Scheme 4.1. The intermediates i.e. respective bromomethyl naphthyl ketones were synthesized by the selective bromination of corresponding α-naphthyl ketones with a suspension of copper (II) bromide in chloroform-ethylacetate (1:1) [King and Ostrum, 1964]. The title compounds were prepared by the N -alkylation of piperidine-3-carboxylic acid ethyl ester with the appropriate bromomethyl naphthyl ketone. The bromomethyl naphthyl ketones were stirred with ethyl nepicotate and potassium carbonate in THF initially for two hours in an ice bath and then for 30 h at room temperature to obtain the target compounds (3S1a-3S1i). The ester derivative of the parent cyclic amino acid, i.e., ethyl nipecotate was used for the synthesis of derivatives (3S1a-3S1i) to protect the carboxyl group in this reaction. The ethyl ester group of N -alkylated derivatives was finally hydrolyzed in ethanol under basic condition (NaOH) to yield the free N -substituted piperidine-3-carboxylic acid (4S1a-4S1i) (Table 5.1).

5.A.1.1. Physicochemical Characterization

The solvent system used to determine the R_{f} values and monitor the progress of reaction was n-hexane/ethyl acetate (6:4). Subsequently, the percentage yield of the title compounds was calculated. The Log P value of synthesised compounds was determined by octanol/water "shake-flask" method to establish lipophilicity. The general chemical structure and the physicochemical properties of the final compounds (3S1a-3S1i \& 4S1a-4S1i) are presented in Table 5.1.

Table 5.1. Chemical Structures and Physicochemical Properties of Compounds (3S1a-3S1i \& 4S1a-4S1i)

Comp.	R'	R_{1}	\mathbf{R}_{6}	\mathbf{R}_{7}	$\mathbf{R}_{\text {f }}{ }^{\text {a }}$	$\underline{\log } \mathrm{P}^{\text {b }}$
3S1a	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	H	H	0.43	2.56
3S1b	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	CH3	H	0.42	2.94
3S1c	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	OCH_{3}	H	0.41	2.71
3S1d	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	Cl	H	0.34	3.18
3S1e	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	Br	H	0.32	3.50
3S1f	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	CH_{3}	CH_{3}	0.48	3.58
3S1g	$\mathrm{C}_{2} \mathrm{H}_{5}$	OCH_{3}	H	H	0.49	2.49
3S1h	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	OCH_{3}	OCH_{3}	0.51	2.64
3S1i	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	0.42	3.82
4S1a	H	H	H	H	0.53	2.38
4S1b	H	H	CH3	H	0.56	2.80
4S1c	H	H	OCH_{3}	H	0.58	2.30
4S1d	H	H	Cl	H	0.39	2.97
4S1e	H	H	Br	H	0.37	3.35
4S1f	H	H	CH_{3}	CH_{3}	0.58	3.39
4S1g	H	OCH_{3}	H	H	0.45	2.20
4S1h	H	H	OCH_{3}	OCH_{3}	0.57	2.12
4S1i	H	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	0.44	3.47

R_{f} values are determined using hexane/EtOAc (6:4) as mobile phase.
${ }^{\mathrm{b}}$ Log P values of all the compounds were determined experimentally using shake flask method.

5.A.1.2. Spectral Characterization and Elemental Analysis

The structures of compounds were characterised by FT-IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) analysis. The FT-IR spectra of the compounds (3S1a-3S1i and $\mathbf{4 S 1 a}-4 \mathbf{S 1 i}$) exhibited the characteristic medium $\mathrm{C}=\mathrm{O}$ stretching of naphthyl ketone in the range of $1690-1790 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compounds $\mathbf{4 S 1 a} \mathbf{- 4 S 1 i}$ showed a peak of the acid at down field (11.80-10.00 ppm), while compounds 3S1a-3S1i showed a triplet peak of three protons of methyl $\left(-\mathrm{CH}_{3}\right)$ at $1.31-1.10 \mathrm{ppm}$ and the quartet peak of CH_{2} protons at $4.30-4.20 \mathrm{ppm}$. The protons of methylene bridge $\left(-\mathrm{CH}_{2}\right)$ were observed as singlet in the range of $3.83-3.50 \mathrm{ppm}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of all the compounds exhibited the aromatic protons of naphthalene in the range of $7.10-8.80 \mathrm{ppm}$ and aliphatic proton of nipecotic acid in the range of $3.60-1.20 \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra also supported the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ mentioned above. In ${ }^{13} \mathrm{C}$-NMR spectra, the presence of carboxylate group for compounds 4S1a-4S1i was confirmed by a peak near to 200δ at down field. All other ${ }^{13} \mathrm{C}$ NMR peaks were seen as per the expected chemical shift. Results of the elemental analysis were within $\pm 0.4 \%$ of the theoretical values.

Ethyl 1-(2-(naphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1a)

Yield: $342 \mathrm{mg}, 52.4 \%$ as colorless oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3124 (Ar-H Str.), 2941 (CH Str.), 1735 (C=O Str.), 1307 (C-N Str.), 1242 (C-O Str.), 1051 (C-O Str.). ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.50(\mathrm{~m}, 2 \mathrm{H}$, naphthalene), 8.0-8.20 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), $7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, naphthalene), $4.21\left(\mathrm{q}, ~ J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ carboxylate), $3.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.78(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.45-2.30(\mathrm{~m}, 5 \mathrm{H}$, piperidine $), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}$, piperidine $), 1.21(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ carboxylate). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 194.3,174.4$, 135.1, 133.1, 130.1, 129.8, 127.9, 126.8, 125.7, 71.7, 63.2, 57.4, 47.3, 25.2, 22.8, 14.7. Anal. calc. for $\mathbf{C}_{20} \mathbf{H}_{23} \mathbf{N O}_{3}$: C, 73.82 ; H, 7.12 ; N, 4.30; Found: C, 73.75 ; H, 7.10; N, 4.31.

Ethyl 1-(2-(6-methylnaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1b) Yield: $268 \mathrm{mg}, 39.6 \%$ as colorless oil. FT-IR (KBr, cm^{-1}): 3078 (Ar-H Str.), 2821 (CH Str.), 1738 (C=O Str.), 1298 (C-N Str.), 1245 (C-O Str.), 1047 (C-O Str.). ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.40$ (s, 1 H , naphthalene), 8.10 ($\mathrm{s}, 1 \mathrm{H}$, naphthalene), $7.80-$
7.70 (dd, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), $7.50(\mathrm{~m}, 2 \mathrm{H}$, naphthalene), $4.30(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ carboxylate), $3.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.65-2.30(\mathrm{~m}, 5 \mathrm{H}$, piperidine), $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, naphthalene $), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}$, piperidine $), 1.31(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ carboxylate). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 196.8,171.0$, 138.1, 135.1, 133.1, 130.1, 129.8, 127.9, 126.8, 125.7, 72.3, 63.1, 57.8, 47.4, 25.7, 21.4, 22.5, 15.3. Anal. calc. for $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2} 5} \mathbf{N O}_{3}: \mathrm{C}, 74.31$; H, 7.42; N, 4.13; Found: C, 74.45; H, 7.44; N, 4.12.

Ethyl 1-(2-(6-methoxynaphthalen-2-yl)-2-oxoethyl)piperidine-3 carboxylate (3S1c)

Yield: $321 \mathrm{mg}, 45.2 \%$ as light yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3087(Ar-H Str.), 2864 (C-H Str.), 1790 (C=O Str.), 1304 (C-N Str.), 1245 (C-O Str.), 1043 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.45\left(\mathrm{~s}, 1 \mathrm{H}\right.$, naphthalene, C_{1}), $8.20(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), 7.80-7.65 (dd, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), $7.30(\mathrm{~s}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.20\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, naphthalene), $4.20\left(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ carboxylate), $3.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.75-2.30(\mathrm{~m}, 5 \mathrm{H}$, piperidine), $1.90-1.50\left(\mathrm{~m}, 4 \mathrm{H}\right.$, piperidine), $1.26\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ carboxylate). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta \mathrm{ppm}: 191.4,174.5,161.3,138.1,135.1,133.1,130.1,129.8$, $127.9,126.8,125.7,106.1,71.3,63.1,59.2,58.3,46.3,28.2,24.7,14.5$. Anal. calc. for $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 5}} \mathbf{N O}_{\mathbf{4}}$: C, 70.96; H, 7.09; N, 3.94; Found: C, 70.81; H, 7.07; N, 3.95.

Ethyl 1-(2-(6-chloronaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1d) Yield: $400 \mathrm{mg}, 55.7 \%$ as brown yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2974 (Ar-H Str.), 2675 (C-H Str.), 1784 (C=O Str.), 1329 (C-N Str.), 1251 (C-O Str.), 1057 (C-O Str.), 755 (C-Cl Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.45$ (s, 1H, naphthalene), 8.30 (s, 1 H , naphthalene), $7.90(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), $7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), 7.60-7.55 (dd, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$, naphthalene), $4.28\left(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ carboxylate), $3.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.80-2.30(\mathrm{~m}, 5 \mathrm{H}$, piperidine $), 1.90-1.40(\mathrm{~m}$,

4 H , piperidine), $1.24\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ carboxylate). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta \mathrm{ppm}: 197.08,173.95,136.39,135.52,132.57,131.55,130.71,129.19$, $128.91,127.12,126.75,64.06,61.80,55.86,53.66,44.72,24.88,22.66,14.70$. Anal. calc. for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 2}} \mathbf{C l N O}_{3}$: C, 66.75; H, 6.16; N, 3.89; Found: C, $66.82, \mathrm{H}, 6.18$; N, 3.88.

Ethyl 1-(2-(6-bromonaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1e) Yield: $402 \mathrm{mg}, 49.8 \%$ as brown oil. FT-IR (KBr, cm ${ }^{-1}$): 3089 (Ar-H Str.), 2879 (C-H Str.), 1738 (C=O Str.), 1325 (C-N Str.), 1255 (C-O Str.), 1054 (C-O Str.), 547 (C-Br Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.35$ ($\mathrm{s}, 1 \mathrm{H}$, naphthalene), 8.20 ($\mathrm{s}, 1 \mathrm{H}$, naphthalene), $7.80(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), $7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), 7.617.52 (dd, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), $4.26\left(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ carboxylate), 3.68 (s, 1H, NCH2), $3.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.70-2.30(\mathrm{~m}, 5 \mathrm{H}$, piperidine), 1.90-1.45 (m, 4H, piperidine), $1.22\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ carboxylate). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 197.08, 173.95, 141.03, 139.16, 137.22, 135.89, 133.97, 130.54, 130.34, 129.43, 126.61, 123.24, 64.06, 61.80, 55.86, 53.66, 44.72, 24.88, 22.66, 19.83, 14.70. Anal. calc. for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2} 2} \mathbf{B r N O}_{3}$: C, 59.42 ; H, 5.48; N, 3.46; Found: C, 59.27, H, 5.50; N, 3.47. Ethyl 1-(2-(6,7-dimethylnaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1f)

Yield: $325 \mathrm{mg}, 46.1 \%$ as colorless yellow oil. FT-IR (KBr, cm^{-1}): 3029 (Ar-H Str.), 2862 (C-H Str.), 1759 (C=O Str.), 1354 (C-N Str.), 1274 (C-O Str.), 1048 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.30(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), $8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), $4.30\left(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ carboxylate), $3.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.55(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NCH}_{2}$), $3.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right.$, naphthalene), 2.70-2.30 (m, 5 H , piperidine), 1.701.40 (m, 4H, piperidine), 1.27 ($\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ carboxylate). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 197.08,173.95,141.03,139.16,137.22,135.89,133.97,130.54$, $130.34,129.43,126.61,123.24,64.06,61.80,55.86,53.66,45.72,24.89,22.86$,
19.73, 14.74. Anal. calc. for $\mathbf{C}_{22} \mathbf{H}_{27} \mathbf{N O}_{3}$: C, $74.76 ; \mathrm{H}, 7.70 ; \mathrm{N}, 3.96$; Found: C, 74.52, H, 7.68; N, 3.96.

Ethyl 1-(2-(1-methoxynaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1g)

Yield: $361 \mathrm{mg}, 50.9 \%$ as light yellow oil. FT-IR (KBr, cm^{-1}): 3058 (Ar-H Str.), 2732 (C-H Str.), 1765 (C=O Str.), 1347 (C-N Str.), 1253 (C-O Str.), 1058 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 8.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene $), 8.10(\mathrm{~d}, J=$ 6.5 Hz, 1H, naphthalene), 7.70-7.60 (m, 4H, naphthalene), 4.25 (q, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ carboxylate), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, naphthalene), $3.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.60(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.80-2.35(\mathrm{~m}, 5 \mathrm{H}$, piperidine $), 1.65-1.40(\mathrm{~m}, 4 \mathrm{H}$, piperidine $), 1.20(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ carboxylate). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 196.10,173.95$, $156.32,134.01,129.57,128.54,126.76,126.15,124.77,121.40,63.38,61.80,60.86$, 55.86, 53.66, 44.72, 24.88, 22.66), 14.70. Anal. calc. for $\mathbf{C}_{\mathbf{2} \mathbf{1}} \mathbf{H}_{\mathbf{2 5}} \mathbf{N O}_{4}: \mathrm{C}, 70.96$; H , 7.09; N, 3.94; Found: C, 70.92, H, 7.06; N, 3.95.

Ethyl 1-(2-(6,7-dimethoxynaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1h)

Yield: $432 \mathrm{mg}, 56.1 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2974 (Ar-H Str.), 2514 (C-H Str.), 1714 (C=O Str.), 1395 (C-N Str.), 1258 (C-O Str.), 1087 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.42\left(\mathrm{~s}, 1 \mathrm{H}\right.$, naphthalene, C_{1}), $8.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1H, naphthalene), 7.45 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), 4.32 ($\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ carboxylate), 3.92 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}$, naphthalene), $3.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.84-2.41(\mathrm{~m}, 5 \mathrm{H}$, piperidine), $1.80-1.30\left(\mathrm{~m}, 4 \mathrm{H}\right.$, piperidine), $1.18\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ carboxylate $) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 197.08,173.95,152.07,151.03,137.32,135.96,133.23$, 128.81, 127.08, 124.51, 109.01, 107.33, 64.06, 61.80, 56.58, 55.86, 51.66, 43.72,
24.84, 22.96, 13.70. Anal. calc. for $\mathbf{C}_{22} \mathbf{H}_{\mathbf{2 7}} \mathbf{N O}_{5}$: C, $68.55 ; \mathrm{H}, 7.06$; N, 3.63; Found: C, 68.76, H, 7.04; N, 3.64.

Ethyl 1-(2-(6-ethylnaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylate (3S1i)

 Yield: $393 \mathrm{mg}, 55.7 \%$ as dark yellow oil. FT-IR (KBr, cm^{-1}): 2963 (Ar-H Str.), 2551 (C-H Str.), 1752 (C=O Str.), 1325 (C-N Str.), 1287 (C-O Str.), 1054 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 8.50$ ($\mathrm{s}, 1 \mathrm{H}$, naphthalene), 8.15 ($\mathrm{s}, 1 \mathrm{H}$, naphthalene), 7.85-7.70 (dd, 2H naphthalene), $7.50(\mathrm{~m}, 2 \mathrm{H}$, naphthalene), $4.20(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2} carboxylate), $3.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ naphthalene), 2.55-2.30 (m, 5H, piperidine), 1.9-1.4 (m, 4H, piperidine), $1.20(\mathrm{~s}, 3 \mathrm{H}$, CH_{3} naphthalene), $1.11\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ carboxylate). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) δ ppm: 197.08, $173.95,143.79,138.12,135.85,131.37,131.10,128.75$, $128.54,127.41,125.40,64.06,61.80,55.86,53.66,44.65,27.42,24.87,22.61,14.85$, 13.22. Anal. calc. for $\mathbf{C}_{22} \mathbf{H}_{27} \mathbf{N O}_{3}$: C, $74.76 ; \mathrm{H}, 7.70$; N, 3.96; Found: C, $74.71, \mathrm{H}$, 7.68; N, 3.95.1-(2-(Naphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1a)
Yield: $173 \mathrm{mg}, 58.4 \%$ as dark yellow oil. FT-IR (KBr, cm^{-1}): 3425 (OH Str.), 3083 (Ar-H Str.), 2853 (C-H Str.), 1719 (C=O Str.), 1260 (C-N Str.), 1142 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.12(\mathrm{~s} 1 \mathrm{H}, \mathrm{COOH}), 7.90(\mathrm{~s}, 2 \mathrm{H}$, naphthalene), 7.53 (dd, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$, naphthalene), $7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ naphthalene), $7.22-7.15(\mathrm{~m}$, 2 H , naphthalene), $3.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.82-2.30(\mathrm{~m}, 6 \mathrm{H}$, piperidine), 1.38-1.34 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}:$ $197.3,176.6,138.6,134.7,134.2,129.9,128.8,128.4,127.2,126.7,124.7,64.2,55.6$, 53.9, 41.2, 25.2, 22.9. Anal. calc. for $\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{1 9}} \mathbf{N O}_{\mathbf{3}}$: C, $72.71 ; \mathrm{H}, 6.44 ; \mathrm{N}, 4.71$; Found: C, 72.58, H, 6.45; N, 4.70.

1-(2-(6-Methylnaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1b) Yield: $156 \mathrm{mg}, 50.3 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3471 (OH Str.), 3034 (Ar-H Str.), 2961 (C-H Str.), 1728 (C=O Str.), 1282 (C-N Str.), 1085 (C-O Str). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $10.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, naphthalene), 8.19 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ naphthalene), 8.02-7.94 (m, 3H, naphthalene), 4.12 ($\mathrm{s}, 2 \mathrm{H}$, NCH_{2}), $4.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.60-2.84$ (m, 6 H , piperidine), 2.20-2.12 (m, 3 H , piperidine). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ ppm: 192.5, 171.8, 133.3, 130.7, 130.1, $128.8,125.5,125.0,123.9,123.3,123.2,121.0,59.5,50.8,49.1,36.4,20.4,18.1$, 17.1. Anal. calc. for $\mathbf{C}_{19} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}_{3}$: C, $73.29 ; \mathrm{H}, 6.80$; N, 4.50 ; Found: C, $73.40, \mathrm{H}$, 6.78; N, 4.50.

1-(2-(6-Methoxynaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1c) Yield: $197 \mathrm{mg}, 60.2 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3332 (OH Str.), 2988 (Ar-H Str.), 2964 (C-H Str.), 1690 (C=O Str.), 1345 (C-N Str.), 1145 (C-O Str.), 1043 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 11.32 (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.40 (d, $J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}$, naphthalene), 7.80-7.65 (dd, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene), $7.30(\mathrm{~m}, 2 \mathrm{H}$, naphthalene), $3.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}$, naphthalene, OCH_{3}), 2.75-2.30 (m, 5H, piperidine), 1-93-1.56 (m, 4H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 196.3,174.0,161.3,138.1,135.1,133.1,130.1,129.8,127.9$, 126.8, 125.7, 106.1, 71.3, 57.1, 56.3, 47.3, 24.9, 23.2. Anal. calc. for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}_{\mathbf{4}}: \mathrm{C}$, 69.71; H, 6.47; N, 4.28; Found: C, 69.93, H, 6.47; N, 4.29.

1-(2-(6-Chloronaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1d) Yield: $165 \mathrm{mg}, 49.8 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3436 (OH Str.), 2987 (Ar-H Str.), 2745 (C-H Str.), 1691 (C=O Str.), 1372 (C-N Str.), 1207 (C-O Str.) 645 (C-Cl Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 10.94$ (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.45 (s, 2 H , naphthalene), $7.90(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), $7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.60-$ $7.55\left(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$ naphthalene), $3.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.70-$
$2.30\left(\mathrm{~m}, 5 \mathrm{H}\right.$, piperidine), 1.74-1.48 (m, 4H, piperidine). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta \mathrm{ppm}: 196.3,174.0,161.3,138.1,135.1,134.8,133.1,130.1,129.8,127.9,126.8$, 125.7, 71.3, 57.1, 47.3, 24.5, 23.4. Anal. calc. for $\mathbf{C}_{18} \mathbf{H}_{18} \mathbf{C I N O}_{3}: \mathrm{C}, 65.16$; H, 5.47; N, 4.22; Found: C, 65.09, H, 5.48; N, 4.23.

1-(2-(6-Bromonaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1e)

 Yield: $222 \mathrm{mg}, 59.3 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3280 (OH Str), 3073 (Ar-H Str.), 2979 (C-H Str.), 1712 (C=O Str.), 1380 (C-N Str.), 1265 (C-O Str.) 524 (C-Br Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.35(\mathrm{~s}, 2 \mathrm{H}$, naphthalene), $7.80(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), $7.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), 7.617.58 (dd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, naphthalene), $3.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.70-$ 2.30 (m, 5 H , piperidine), 1.72-1.47 (m, 4H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 196.3,174.0,161.3,138.1,135.1,133.1,130.1,129.8,127.9,126.8,125.7$, 123.6, 71.3, 63.1, 59.1, 47.3, 26.7, 21.3. Anal. calc. for $\mathbf{C}_{18} \mathbf{H}_{18} \mathbf{B r N O} \mathbf{3}$: C, $57.46 ; \mathrm{H}$, 4.82; N, 3.72; Found: C, 57.60, H, 4.81; N, 3.52.1-(2-(6,7-Dimethylnaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1f)

Yield: $188 \mathrm{mg}, 57.7 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3420 (OH Str), 3102 (Ar-H Str.), 2962 (C-H Str.), 1725 (C=O Str.), 1391 (C-N Str.), 1198 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.20(\mathrm{~s}, 1 \mathrm{H}$, naphthalene), 8.00 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.55(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ naphthalene $), 3.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.80-2.30(\mathrm{~m}$, 5 H , piperidine), $2.50\left(\mathrm{~s}, 6 \mathrm{H}\right.$, naphthalene, $2 \times \mathrm{CH}_{3}$), $1.60-1.30\left(\mathrm{~m}, 4 \mathrm{H}\right.$, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 196.3,174.0,161.3,138.3,136.1,133.1,130.1$, $129.8,127.9,126.8,125.7,123.6,71.9,58.5,47.3,25.6,24.1,22.5$. Anal. calc. for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2}} \mathbf{N O}_{\mathbf{3}}$: C, $73.82 ; \mathrm{H}, 7.12 ;$ N, 4.30 Found: C, 73.91, H, 7.10; N, 4.29.

1-(2-(1-Methoxynaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1g) Yield: $197 \mathrm{mg}, 60.1 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3345 (OH Str.), 3088(Ar-H Str.), 2897 (C-H Str.), 1698 (C=O Str.), 1367 (C-N Str.), 1254 (C-O Str.), 1051 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 11.55 (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.40 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene $), 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene $), 7.70-7.60(\mathrm{~m}, 4 \mathrm{H}$, naphthalene) $3.80\left(\mathrm{~s}, 3 \mathrm{H}\right.$, naphthalene, $\left.\mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.55(\mathrm{~s}, 1 \mathrm{H}$, NCH_{2}) 2.80-2.35 (m, 5H, piperidine), 1.65-1.40 (m, 4H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 196.3,174.0,161.3,159.3,138.3,136.1,133.1,130.1,129.8$, $127.9,126.8,125.7,123.6,71.3,57.1,61.5,47.3,27.2,21.4$. Anal. calc. for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 1}} \mathbf{N O}_{4}$: C, 69.71; H, 6.47; N, 4.28; Found: C, 69.52, H, 6.48; N, 4.28.

1-(2-(6,7-Dimethoxynaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1h)

Yield: $188 \mathrm{mg}, 52.8 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3266 (OH Str.), 2920(Ar-H Str.), 2754 (C-H Str.), 1691 (C=O Str.), 1405 (C-N Str.), 1215 (C-O Str.), 1048 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.10$ (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.43 (s, 1 H , naphthalene), $7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz} 2 \mathrm{H}$ naphthalene), $3.90\left(\mathrm{~s}, 6 \mathrm{H}\right.$, naphthalene, $\left.2 \times \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.59(\mathrm{~s}, 1 \mathrm{H}$, NCH_{2}), 2.70-2.30 (m, 5H, piperidine), 1.70-1.40 (m, 4H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 196.7,177.0,162.8,158.3,152.6,151.3,133.1,130.1,129.8$, $127.9,126.8,125.7,123.6,71.3,57.1,56.5,47.3,25.9,22.2$. Anal. calc. for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 3}} \mathbf{N O}_{5}$: C, 67.21 ; H, 6.49; N, 3.92; Found: C, $67.35, \mathrm{H}, 6.50 ; \mathrm{N}, 3.72$.

1-(2-(6-Ethylnaphthalen-2-yl)-2-oxoethyl)piperidine-3-carboxylic acid (4S1i) Yield: $191 \mathrm{mg}, 58.9 \%$ as dark yellow oil. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3452 (OH Str.), 2978 (Ar-H Str.), 2735 (C-H Str.), 1710 (C=O Str.), 1425 (C-N Str.), 1087 (C-O Str.). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 7.98(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.67(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, naphthalene), $7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$,
naphthalene), 7.42-7.24 (m, 3H, naphthalene) $3.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.40(\mathrm{~s}, 1 \mathrm{H}$, NCH_{2}), 2.84-2.68 (m, 3 H , piperidine), $2.66-2.41\left(\mathrm{~m}, 2 \mathrm{H}\right.$, naphthalene, $\left.\mathrm{CH}_{2}\right)$, 1.601.51 (m, 3H, piperidine), $1.23\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, naphthalene, $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 201.8, 181.2, 148.6, 142.9, 140.6, 136.1, 135.9, 133.5, 133.3, 132.2, 130.2, 68.8, 60.2, 58.4, 45.8, 33.2, 29.7, 27.4, 18.0. Anal. calc. for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2} 3} \mathbf{N O}_{\mathbf{3}}$: C, 73.82; H, 7.12; N, 4.30; Found: C, 73.69, H, 7.11; N, 4.29.

5.A.2. BIOLOGICAL ACTIVITY

5.A.2.1. In Vivo Anti-convulsant Activity

5.A.2.1.1. s.c.-PTZ Induced Seizures in Mice

The role of the GABAergic system in the genesis of epilepsy is well documented and understood. The imbalance in the inhibitory and excitatory pathways is triggered by chemical or electrical impulses leading to the generation of seizures. As a consequence, any drug supporting the inhibitory function of GABA directly or indirectly has the potential to suppress epilepsy and associated phenomena. Tiagabine, a derivative of nipecotic acid is one of these kinds of drug. Tiagabine reduces neuronal excitability by inhibiting GABA uptake into glia and neurons [Nielsen et al., 1991]. It increases synaptosomal concentrations of the inhibitory neurotransmitter GABA via inhibition of the GABA transporter GAT-1 [Bauer and Cooper-Mahkorn, 2008].

In this test, rodents were challenged a subcutaneous dose of PTZ, one hour after the administration of test compounds and the standard drug and were observed for 30 minutes. It has been reported that a subcutaneously injected convulsive dose of PTZ induces a clonic seizure of at least 5 s duration in 97% of the animals (CD97) [Löscher, 2011]. PTZ causes convulsions by interacting with picrotoxin binding cite at GABA $_{\mathrm{A}}$ receptor complex [De Deyn et al., 1992]. Compounds 3S1a, 3S1b, 3S1i, 4S1a, 4S1b, and 4S1i exhibited a significant delay in the onset of convulsion similar
to tiagabine in comparison to control group (Table 5.2.). The further inter-group comparison revealed that the antiepileptic potential of derivatives 4S1a, 4S1b and 4S1i were superior to that of $\mathbf{3 S 1 a}$, $\mathbf{3 S 1 b}$, and $\mathbf{3 S 1 i}$. Substitution at the R6 position of the acetonaphthone ring with an election withdrawing substituent diminished the antiepileptic activity that was observed in compounds 3S1c, 3S1d, 3S1e and 4S1c, 4S1d, 4S1e. Also, substitution of hydrogen with any other group at the R7 position also affected the antiepileptic effect (3S1f and 4S1f).

Table 5.2. Effect of test compounds (Series-1) on s.c.-PTZ induced seizures

Comp.	Latency of seizures (seconds) *	Frequency of seizures (numbers)*
Control	627.66 ± 37.97	3.83 ± 0.75
3S1a	$731.50 \pm 45.71^{\mathrm{a}}$	$1.83 \pm 0.75^{\mathrm{a}}$
3S1b	$728.66 \pm 37.81^{\mathrm{a}}$	$1.83 \pm 0.40^{\mathrm{a}}$
3S1c	647.33 ± 34.12	3.33 ± 1.03
3S1d	614.83 ± 62.05	3.66 ± 0.83
3S1e	638.50 ± 35.20	3.00 ± 0.63
3S1f	624.16 ± 18.83	3.50 ± 0.83
3S1g	646.16 ± 43.83	3.16 ± 0.75
3S1h	655.16 ± 34.42	3.66 ± 0.81
3S1i	$735.83 \pm 26.79^{\mathrm{a}}$	2.16 ± 0.96
4S1a	$1079.16 \pm 36.41^{\mathrm{a}, \mathrm{b}}$	$1.16 \pm 0.40^{\mathrm{a}, \mathrm{b}}$
4S1b	$1138.16 \pm 38.55^{\mathrm{a}, \mathrm{b}}$	$1.00 \pm 0.00^{\mathrm{a}, \mathrm{b}}$
4S1c	640.33 ± 57.19	3.00 ± 1.09
4S1d	653.50 ± 51.55	3.16 ± 1.16
4S1e	644.33 ± 34.54	3.16 ± 0.40
4S1f	626.66 ± 59.30	3.33 ± 1.03
4S1g	663.66 ± 25.04	2.83 ± 1.16
4S1h	654.33 ± 41.14	2.66 ± 0.51
4S1i	$1226.33 \pm 69.53^{\mathrm{a}, \mathrm{b}}$	$1.00 \pm 0.63^{\mathrm{a}, \mathrm{b}}$
Tiagabine	$1331.83 \pm 41.16^{\mathrm{a}}$	$1.00 \pm 0.00^{\mathrm{a}}$
V		

[^0]Based on the outcome of this study, the antiepileptic activity of the derivatives (3S1a, 3S1b, 3S1i 4S1a, 4S1b, and 4S1i) may be attributed to their ability to increase the level of GABA in a manner similar to tiagabine.

5.A.2.1.2. Pilocarpine-induced seizures in mice

Pilocarpine induced seizures is a rodent model of status epilepticus used to assess the antiepileptic activity of NCE's towards seizures originating from the temporal lobe [Curia et al., 2008]. Pre-treatment with test compounds delayed the onset of seizures, status epilepticus, and death. Compounds 4S1a, 4S1b, and 4S1i along-with tiagabine exhibited a statistically significant protection against pilocarpine-induced seizures whereas their ester counterpart 3S1a, 3S1b, and 3S1i were comparatively less effective in delaying the onset of seizures (Table 5.3.).

Table 5.3. Effect of test compounds (Series 1) on pilocarpine-induced seizures

Comp.	Latency of seizures (seconds)*	Latency to death (seconds)*
Control	313.83 ± 27.30	447.83 ± 31.56
3S1a	$348.16 \pm 10.34^{\mathrm{a}}$	$516.16 \pm 39.59^{\mathrm{a}}$
3S1b	$347.83 \pm 10.75^{\mathrm{a}}$	$513.50 \pm 18.93^{\mathrm{a}}$
3S1i	$352.16 \pm 12.98^{\mathrm{a}}$	$521.50 \pm 26.49^{\mathrm{a}}$
4S1a	$437.50 \pm 21.40^{\mathrm{a}, \mathrm{b}}$	$583.50 \pm 23.51^{\mathrm{a}, \mathrm{b}}$
4S1b	$460.16 \pm 11.82^{\mathrm{a}, \mathrm{b}}$	$654.16 \pm 22.87^{\mathrm{a}, \mathrm{b}}$
4S1i	$531.16 \pm 20.87^{\mathrm{a}, \mathrm{b}}$	$767.83 \pm 53.51^{\mathrm{a}, \mathrm{b}}$
Tiagabine	$564.16 \pm 18.01^{\mathrm{a}}$	$838.16 \pm 36.51^{\mathrm{a}}$

*Values are expressed as the Mean \pm SD ($\mathrm{n}=6$); Control: Physiological saline (0.9%) containing 2.5% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg} / i . p$. .;All the test compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; ${ }^{\text {a }} p<0.05$ compared to Control; ${ }^{\text {b }} p<0.05$ compared to compounds 3S1a, 3S1b, and 3S1i.

Tiagabine has been reported in effectively protecting rodents against pilocarpine-induced convulsions [Sałat et al., 2015]. Also, in a recent study by Sałat et al., it was reported that DDPM-2571, a GAT-1 inhibitor was highly effective in the prevention of chemically-induced seizures both by pentylenetetrazole and Pilocarpine
[Sałat et al., 2017]. Thus it is evident that compounds which increase the concentration of GABA at the synaptic cleft are promising candidates as potential antiepileptic agents.

5.A.2.1.3. DMCM induced seizures in mice

DMCM belongs to the beta-carboline group of compounds and acts as a negative allosteric modulator at the benzodiazepine-binding site on the GABA $_{A}$ receptor. Besides attenuation of GABA-mediated inhibition, augmentation of excitatory amino acid by DMCM has been suggested as a mechanism of inducing epilepsy. Kulick et al., have demonstrated that tiagabine protected against DMCMevoked seizures in rats [Kulick et al., 2014]. The outcome of the DMCM induced seizures in mice illustrates that compounds 4S1a, 4S1b, 4S1i, and tiagabine exhibited a significant delay in onset of seizures induced by DMCM in comparison to control (Table 5.4.). Once again, compounds 3S1a, 3S1b, and 3S1i were comparatively less effective in protecting against seizures in this test. It was observed that compound 4S1i is statistically comparable to tiagabine in this model.

Table 5.4. Effect of test compounds (Series 1) on DMCM induced seizures

Comp.	Latency of seizures (seconds)*
Control	230.83 ± 13.83
3S1a	$272.16 \pm 11.58^{\mathrm{a}}$
3S1b	$278.66 \pm 22.21^{\mathrm{a}}$
3S1i	$282.66 \pm 17.75^{\mathrm{a}}$
4S1a	$352.16 \pm 28.63^{\mathrm{a}, \mathrm{b}}$
4S1b	$402.33 \pm 14.27^{\mathrm{a}, \mathrm{b}}$
4S1i	$454.83 \pm 21.64^{\mathrm{a}, \mathrm{b}}$
Tiagabine	$466.16 \pm 14.71^{\mathrm{a}, \mathrm{b}}$

[^1]
5.A.2.2. Rota-rod Performance Test in Mice

The rota-rod test is widely used to evaluate the effect of compounds on the motor coordination of rodents [Shiotsuki et al., 2010]. In this experiment, hybrids 4S1a, 4S1b, 4S1i and tiagabine did not cause any alteration in "fall-off" time on rotating rods as compared to control indicating their inability to induce any observable signs of impairment in muscle co-ordination thereby affecting the motor performance and skeletal, muscular strength of the treated animals (Table 5.5). Standard drug diazepam was however seen to significantly reduce the "fall-off" time post-treatment.

Table 5.5. Effect of test compounds (Series 1) on rota-rod performance test in mice

Comp.	Fall off time before treatment (seconds)*	Fall off time after treatment (seconds)*
Control	334.16 ± 29.78	336.16 ± 28.84
4S1a	321.16 ± 11.99	323.33 ± 12.38
4S1b	332.16 ± 13.37	334.83 ± 13.65
4S1i	321.50 ± 11.74	325.83 ± 11.89
Tiagabine	335.83 ± 11.44	339.16 ± 11.08
Diazepam	325.83 ± 9.47	$181.66 \pm 25.47^{\mathrm{a}}$
*V		

*Values are expressed as the Mean \pm SD ($\mathrm{n}=6$); Control: Physiological saline (0.9%) containing 2.5% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg} / i . p$.; Diazepam: $4 \mathrm{mg} / \mathrm{kg} . i . p$.; All the test compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; ${ }^{\text {a }} p<0.05$ compared to Control.

5.A.2.3. Cell viability and neurotoxicity (MTT Assay)

Some antiepileptic drugs and their metabolites have been reported to possess neurotoxicity [Ambrósio et al., 2000; Araújo et al., 2004; Gao and Chuang, 1992; Gao et al., 1995; Liu et al., 2015; Nonaka et al., 1998]. Ideally, antiepileptic drugs should prevent the seizures without producing neuronal toxicity. Therefore, the therapeutic suitability of the most active compounds ($\mathbf{4 S 1 a}, \mathbf{4 S 1 b}, \& 4 \mathrm{~S} 1 \mathrm{i}$) and their effects on cell viability was determined in neuroblastoma cell line (SH-SY5Y). The
ability of intracellular dehydrogenases to reduce MTT to the formazan, is interpreted as the measure of cell viability ($\mathbf{F i g} \mathbf{5 . 1}$).

Fig. 5.1 Conversion of MTT to formazan in the presence of mitochondrial dehydrogenase

The formazan upon solubilization can be measured spectrophotometrically, which is directly proportional to the viable cell number [Lim et al., 2015]. The results of the experiment reveal that the MTT reduction was not effected significantly by test compounds (4S1a, $\mathbf{4 S 1 b}, \boldsymbol{\&} \mathbf{4 S 1 i}$), thus corresponds to the insignificant cell death in the concentrations of the test compounds ranging from $1 \mu \mathrm{M}$ to $80 \mu \mathrm{M}$ (Table 5.6.).

Table 5.6. Percentage cell viability of the test compounds (Series 1) at different concentrations in neuroblastoma cell line (SH-SY5Y).

Comp.	Percentage cell viability *					
	$\mathbf{1} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{1 0} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{2 0} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{4 0} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{8 0} \boldsymbol{\mu \mathbf { m }}$	
4S1a	99.59 ± 0.04	99.79 ± 0.10	99.79 ± 0.12	98.21 ± 0.17	91.36 ± 0.13	
4S1b	99.44 ± 0.06	99.36 ± 0.11	98.39 ± 0.27	96.37 ± 0.15	90.95 ± 0.21	
4S1i	99.71 ± 0.08	99.61 ± 0.07	98.47 ± 0.23	95.91 ± 0.31	91.09 ± 0.19	

"Percentage cell viability of SH-SY5Y cells incubated with increasing concentration of test compounds. Values are expressed as the percentage cell viability \pm SD of at least five independent experiments.

5.A.2.4. Repeated dose toxicity studies

Owing to the reported haematological, renal and hepatic side effects of antiepileptic drugs [Tolou-Ghamari et al., 2013; Bachmann et al., 2011; Hamed, 2017; Gram and

Bentsen, 1983], the assessment of the related parameters is of paramount necessity. The body weights of test compound (4S1i) treated group were normal in comparison to the control group. As compared to the control group, daily food and water intakes were also not significantly changed in test compound (4S1i) treated groups. Compound 4S1i showed no significant change in the levels of haemoglobin, TLC, and DLC. It is apparent from observed data that the serum levels of glucose, cholesterol, alkaline phosphatase, AST, ALT, blood urea nitrogen, creatinine and total protein were also not altered significantly in the group treated with compound 4S1i. The results of haematological and biochemical parameters are summarized in table Table 5.7 and Table 5.8 respectively. The outcome of the estimation of various haematological and biochemical parameters confirms the safety of the compound 4S1i at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine.
әаsеъечдsoчd әш！！ey

$1 \varepsilon^{\circ} 0 \mp 90{ }^{\circ}$	L0＇0 $\mp 588^{\circ} 0$	88＊\ddagger F 8 でてI	IE＇S $\mp 0 ¢^{*} \mathrm{E}$ ¢乙	9L＇IF $0 S^{*} \angle \mathcal{E}$	E0＇t干 $¢$ E＊0t	00＊ 2 干 99＊00I	90＊9 9 9 ${ }^{\circ} 06$	วu！q¢ธิe！L
$\varsigma \varepsilon^{\circ} 0 \mp \varepsilon 6^{\circ} \mathrm{t}$	$60^{\circ} 0$ 干 $28^{\circ} 0$		七で 6 干 $0 c^{\circ} 6 \mathrm{E}$ 亿	$8 I^{\circ} \mathrm{E} \mp \mathrm{\varepsilon} 8 \cdot 8 \varepsilon$		$\bigcirc 0^{\circ} 9 \mp \varepsilon \varepsilon^{\circ} \mathrm{E} 0 \mathrm{I}$	と9｀て戸91「 28	St
$0 \chi^{\circ} 0 \mp \mathrm{SI}^{\circ} \mathrm{S}$	L0．0 $998^{\circ} 0$	LでI \ddagger かでで			ど・と戸と8＊てt		［9＊$¢ \mp 0 ¢^{\circ} 68$	［0．1u0，
（Ip／u8） ［ ${ }^{170} \mathbf{I O}$	（Ip／反w әи！и！еә．ノ	（IP／8um） вә．Iด poolg	$\begin{gathered} \left(1!U_{\Omega}\right) \\ \text { dTV } \end{gathered}$	$\begin{gathered} (\mathbf{I} \mathbf{W} / \Omega) \\ \mathbf{L} / \mathbf{V} \end{gathered}$	$\begin{aligned} & (\mathbf{I} \mathbf{W} / \mathrm{Q}) \\ & \mathbf{L S V} \end{aligned}$		$\begin{gathered} (\mathbf{I p} / \mathbf{\delta} \mathbf{L}) \\ \text { əsomn! } \end{gathered}$	риәшрвәл

Results and Discussion $\|$ Chapter 5

5.A.2.5. In Vitro Parallel Artificial Membrane BBB Permeability (PAMPA-BBB) Assay

The main impediment for nipecotic acid is to cross the highly selective BBB and to reach the target site. Therefore, lipophilic analogs were synthesized, in order to facilitate their permeation across BBB. To precisely predict the transport of the synthesized derivatives through the BBB, the permeability of the lead compounds 4S1a, 4S1b, and 4S1i was assessed by the parallel artificial membrane permeation assay (PAMPA-BBB) as per the reported procedure. The validation of the assay was performed by comparing the experimentally determined permeability of nine commercially available drugs with that of the values reported in the literature. A plot of experimentally obtained permeability $\left[P_{\text {e(exp }}\right]$ versus permeability reported in the literature $[\mathrm{Pe}(\mathrm{ref})]$ provided a good linear correlation $P_{e(\text { exp })}=1.308 P_{e(\text { ref })}-0.8394$ $\left(\mathrm{R}^{2}=0.9317\right)$. Using this equation, the cut-off limits were calculated for the determination of BBB permeability of the test compounds. The values of $P_{e(r e f)}$ has been taken from the limits established by Di et al. [Di et al., 2003].

The findings suggest that the evaluated derivatives exhibited considerable permeability to cross BBB (Table 5.9). Also, the permeability $\left(P_{e}\right)$ of the lead derivative $\mathbf{4 S 1 i}$ in the assay was found to be $\mathbf{8 . 8 9}$ which reveal that it is comparatively more permeable than standard drug Tiagabine, the $P e$ of which was found to be 7.86. Also, the outcome indicates that 4S1i is relatively more permeable than 4S1a and 4S1b.

Results and Discussion
 Chapter 5

Table 5.9. PAMPA- BBB permeability $\left(P_{e}\right)$ value for commercial drugs, Tiagabine (Standard), selected leads of Series 1.

Comp.	PAMPA- BBB permeability $\boldsymbol{P}_{\boldsymbol{e}(\text { exp })}\left(\mathbf{1 0}^{-6} \mathbf{c m ~ s}^{-1}\right)$	PAMPA- BBB Prediction $\left(\right.$ CNS $^{\mathbf{b}}$, CNS- $\left.^{\mathbf{c}}, \mathbf{C N S} \pm^{\mathbf{d}}\right)$
Validation of the model by nine commercial drugs		
Verapamil	16.00	CNS+
Diazepam	16.00	CNS+
Progesterone	9.30	CNS+
Atenolol	0.80	CNS-
Dopamine	0.20	CNS-
Lomefloxacin	1.10	CNS-
Alprazolam	5.40	CNS+
Chlorpromazine	6.50	CNS+
Oxazepam	10.00	CNS +

Evaluation of $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)$ for the test compounds and standard

Tiagabine (standard)	7.86	CNS+
$\mathbf{4 S 1 a}$	5.84	CNS+
$\mathbf{4 S 1 b}$	7.24	CNS+
$\mathbf{4 S 1 i}$	8.89	CNS+

${ }^{\text {a }}$ Data represented are the mean of assay for commercial drugs ($\mathrm{n}=2$);
${ }^{\text {b/ }} \mathrm{CNS}+$ ' (prediction of high BBB permeation); $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)>4.3926$.
${ }^{\text {c'CNS-' }}$ (prediction of low BBB permeation); $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)<1.7766$.
${ }^{\mathrm{d}} \mathrm{CNS}^{\prime} \pm$ (prediction of uncertain BBB permeation); $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right) 4.3926$ to 1.7766

5.A.3. COMPUTATIONAL STUDIES

5.A.3.1. Homology modeling of GAT-1

Construction of a 3D model of the protein is possible through homology modeling. Homology modeling principally involves three steps including (a) alignment of the amino acid sequence of selected Template (b) model preparation, followed by (c) validation. Human GAT1 protein has been selected for model building. Drosophila dopamine transporter (dDAT), is one of the closest transporter

Results and Discussion

protein related to human GAT1 for which structures are available. Using dDAT structure as template homology model of both the occluded and the open-to-out conformations were created. After the alignment, 46% sequence identity and 67% similarity of the 4XP4 template with GAT1 sequence has been obtained (Fig. 5.2).

The models were exhaustively tested and verified through comparison to functional and mutational data reported in the literature. The homology model was evaluated through computations of molecular interactions fields and sequence identities. In Ramachandran plot, all the residues except Phe174 and Ser178 were present in the allowed region (Fig. 5.3). The putative spots for the ligand selectivity were then identified. Template in an open-to-out conformation was used for allowing access to bulky synthesized molecules. A validated homology model was obtained followed by the identification of putative spots for ligand (Tiagabine) selectivity. Tiagabine was added as a co-crystallized ligand in the model which was further utilized for molecular docking and dynamics.

Results and Discussion $\|$ Chapter 5

Fig. 5.2. Sequence alignment between GAT1 and drosophila melanogaster dopamine transporter. Identical residues are colored in red, while similar residues are colored in yellow.

Fig. 5.3. Ramachandran plot of the GAT1. 3-dimensional model showing the dihedral angles of the amino acids

Results and Discussion | Chapter 5

5.A.3.2. Molecular Docking Studies

In silico docking studies were performed using the Schrödinger Maestro program to gain insight into the possible mode of protein-ligand interactions using a generated and validated model of GAT1 GABA transporter. The validation of the prepared grid and docking protocols was performed by generating a minimum energy conformer of tiagabine, and it's docking on a prepared grid. The results demonstrate that tiagabine occupied the same active site within the binding pocket leading to its consensual interaction with the amino acid residues within the active site (Fig. 5.4) [Jurik et al., 2015; Petrera et al., 2016; Skovstrup et al., 2010].

The potential hybrids $\mathbf{4 S 1 a}, \mathbf{4 S 1 b}$, and $\mathbf{4 S 1 i}$ based on the outcome of in vivo pharmacological evaluations were selected for in silico docking studies. The results of docking simulations reveal that compounds 4S1a (GLIDE Score: -5.8); 4S1b (GLIDE Score: -4.9) and 4S1i (GLIDE Score: -7.3) have occupied the active binding pocket leading to their interaction with active site residues similar to tiagabine (Fig. 5.5, Fig.

5.6 \& Fig. 5.7).

The inspection of docked poses of compound $4 S 1$ a, $4 \mathbf{S 1 b}$, and $4 S 1$ ishowed that the O atom of carboxyl group interacted with Na611 through a salt bridge formation. Another O atom present in carboxyl group of compound $\mathbf{4 S} 1 \mathrm{i}$ shown to have additional metal coordination interaction with Na 611 . The O atom of the carboxyl group in all the potential hybrids also interacted through a network of hydrogen bonding with backbone atoms of Gly65 and the side chain hydroxyl groups of Tyr140. Additionally, the phenyl ring of compound 4S1b was also stabilized through π - π stacking interaction with Phe294. The carbonyl side chain of compound

Results and Discussion
 Chapter 5

4S1i was involved in hydrogen bonding interaction with a side chain amino group of Gln291. The charged interactions with $\operatorname{Arg} 69$ and Asp451 were also responsible for stabilizing the aromatic rings of compound $\mathbf{4 S 1 i}$. The detailed interaction results of tiagabine, 4S1a, 4S1b, and 4S1i with active site amino acid residues are summarized in Table 5.10. Overall, these interactions of all the docked ligands with the modelled protein of GAT1 GABA transporter showed consensual binding with active site amino acids residues leading to its effective inhibition.

Table 5.10. Details of protein-ligand interactions of tiagabine, 4S1a, 4S1b, and 4S1i

Comp.	Parameters					
	Glide Score	Interacting residues*				
		Hydrogen bonding	Salt bridge	pi-pi stacking	Metal coordination bond	Other Interacting residues
Tiagabine	-4.6	Gly65, Tyr140, Phe294	Na611	None	None	Tyr60, Ala61, Gly63, Trp68, Arg69, Tyr139, Ile143, Gln291, Ser295, Gly297, Phe447, Asp451
4S1a	-5.8	Gly65, Tyr 140	Na611	None	None	Tyr60, Gly63, Tyr139, Phe294, Gly297, Leu300, Ser396, Asp451, Ala455, Ser456, Leu460
4S1b	-4.9	Gly65, Tyr 140	Na611	Phe294	None	Gly63, Leu64, Arg69, Thr290, Gln291, Ser295, Tyr452
4S1i	-7.3	Gly65, Tyr140, Gln291	Na611	None	Na611	Gly63, Leu64, Arg69, Phe294, Ser295, Tyr452, Gly457

[^2]
Results and Discussion $\|$ Chapter 5

Fig. 5.4. Docked pose of the tiagabine on homology modeled protein structure of GAT1 GABA transporter. Ribbon representation of protein showing active site binding interaction of tiagabine (ball \& stick model)

Fig. 5.5. Docked pose of the $\mathbf{4 S 1 a}$ on modeled protein structure of GAT1 GABA transporter. Ribbon representation of protein showing active site binding interaction of 4S1a (ball \& stick model).

Results and Discussion $\|$ Chapter 5

Fig. 5.6. Docked pose of the $\mathbf{4 S 1 b}$ on modeled protein structure of GAT1 GABA transporter. Ribbon representation of protein showing active site binding interaction of $\mathbf{4 S 1 b}$ (ball \& stick model).

Fig. 5.7. Docked pose of the $\mathbf{4 S 1 i}$ on modeled protein structure of GAT1 GABA transporter. Ribbon representation of protein showing active site binding interaction of 4S1i (ball \& stick model).

Results and Discussion | Chapter 5

5.A.3.3. Molecular Dynamics

The dynamics simulation runs of the generated minimized complex of $\mathbf{4 S 1 i}$ with GABA GAT1 transporter protein of 4XP4 was performed for 20 ns to predict the stability of binding mode interactions. The overall stability of the system was evaluated by RMSD (Root Mean Square Deviation) and RMSF (Root Mean Square Fluctuation) calculations. The results of the RMSD values confirmed that all frames of the complex were in trajectory throughout the simulation with average fluctuation in the range of $0.4 \AA$ (Fig. 5.8).

The structural stability of the protein and ligand $\mathbf{4 S 1 i}$ was further confirmed by calculating protein and ligand RMSF, respectively. The RMSF value obtained below $3 \AA$ confirmed the absence of overall local changes along the protein chain and ligand atom position along the complete phase of the dynamic simulation run (Fig. 5.9). The graphical representation of binding interactions of compound 4S1i showed the active site interactions throughout the simulation run (Fig. 5.10). The results demonstrated that compound 4S1i efficiently interacted with active site residues Leu64, Gly65, and Tyr140 through H-bonds. Besides, it also interacted with Phe294 through hydrophobic interactions.

The interaction fraction with individual amino acid residues was also calculated and represented in a stacked bar chart (Fig. 5.11). The interaction fraction of a percentage of total contact maintained throughout the run. For example, 0.6 suggests that interaction was maintained 60% of the total simulation run.

Fig. 5.8. Protein RMSD (Left Y-Axis) and ligand RMSD (Right Y-Axis) values in \AA with time in ns (X-Axis).

Fig. 5.9. Protein RMSF (Left side) and ligand RMSF (Right side) values in \AA with time in ns.

Results and Discussion $\|$ Chapter 5

Fig. 5.10. The detailed atomic interactions of ligand 4S1i with the key active amino acid residues.

Fig. 5.11. Stacked bar charts of protein interactions with ligand 4S1i as monitored throughout the MD simulation.

Results and Discussion ||hapter 5

5.A.3.4. Estimation of "Drug-Like" Properties

By using QikProp module of Schrödinger Maestro 10.5 .014 in silico, "drug likeliness" of the most active derivatives ($\mathbf{4 S 1 a}, \mathbf{4 S 1 b} \boldsymbol{\&} \mathbf{4 S 1 i}$) has been predicted. The estimated results of some key parameters are mentioned in Table 5.11. Lipophilicity is the key requisite for the synthesized compounds for CNS activity. Predicted values for $\mathbf{Q P l o g B B}$ and $\mathbf{C N S}$ activity indicate that the selected compounds were active for CNS and may cross the BBB [Ugale and Bari, 2016]. The predicted $\log \mathrm{P}$ values were also found within the range, but the experimental values differ with that of the predicted ones. Usually, the compounds designed for CNS disorders should have a lower polar surface area (PSA) [Zerroug et al. 2018]. To get entry in the brain, an upper limit of 90 has been reported for PSA [Pajouhesh and Lenz, 2005]. The predicted PSA values were found to be in the range of 79.014-79.015, which revealed that the selected compounds exhibit lower polar surface area and may have the ability to cross BBB.

The predicted "rtvFG" (Number of reactive functional groups) value was found to be 0 for all the tested compounds, which suggests the absence of reactive functional groups that cause decomposition, reactivity, or toxicity problems in vivo. The compounds exhibited drug likeliness based on Lipinski's rule of five (mol_MW $<500, \mathbf{Q P l o g P o} / \mathbf{w}<5$, donorHB $6 \leq 5, \operatorname{accptHB} \leq 10)$. QPlogKHSA values for the tested compounds fall within the limit [Lipinski et al. 2012], indicating considerable binding of the compounds with plasma proteins. Overall the predicted parameters revealed that the compounds $\mathbf{4 S 1 a}, \mathbf{4 S 1 b}$, and $\mathbf{4 S 1 i}$ fulfil drug-like characteristics.

QPlogKHSA：Prediction of binding to human serum albumin； \＃rtvF ．Num．No of violations of Lipinski＇s rule of five； CNS：Predicted central nervous system activity；
\＃rtvFG：Number of reactive functional group；
QPlogPo／w：Predicted octanol／water partition coefficient；
QPlogBB：Predicted brain／blood partition coefficient； Mol＿MW：molecular weight；
PSA：polar surface area；

9	I	60%	0	0	0	I8I＇I	959＊0－	$t+0 \cdot 8 L$	LOt＇SてE	ILSt
9	I	E20＊0－	0	0	0	†6L＇0	$809^{\circ}{ }^{-}$	SIO\％ 6 L	8E＊ 1 IE	qISt
9	I	ELI ${ }^{-}$	0	0	0	$\varepsilon 6 t^{\circ} 0$	$895^{\circ} 0^{-}$	$\dagger 10 \% 6$	\＆SE゙L6て	EIS \boldsymbol{t}
$(0 z-z)$ янıdээะ	$\begin{gathered} (9-0) \\ \text { ЯHIouop } \end{gathered}$	$\underset{\text { Y80IdO }}{\text { VSH }}$		$\begin{gathered} (Z-0) \\ \text { DHSl.I\# } \end{gathered}$	$(z+-z-)$ SNO	$\begin{gathered} (8 \cdot 9-\tau-) \\ \text { M/0d soldO } \end{gathered}$	$\begin{gathered} \left(Z^{\cdot} I-\varepsilon^{-}\right) \\ \text {gЯవoIdO } \end{gathered}$	$\begin{gathered} (00 z-L) \\ \text { VSd } \end{gathered}$	$\begin{aligned} & (؟ Z L-0 \varepsilon I) \\ & M N^{-}{ }^{-10} W \end{aligned}$	－duo ${ }^{\text {a }}$

Table 5．11．In silico drug likeliness properties of active compounds of Series 1

5.B. SYNTHESIS OF NOVEL SCHIFF BASES OF 1-(2-AMINOETHYL) PIPERIDINE-3-CARBOXYLIC ACID. [SERIES 2]

5.B.1. CHEMISTRY

The synthesis of the target compounds 5S2a-5S2y was performed according to the reaction sequence outlined in Scheme 4.1. At the outset, Ethyl 1-(2-aminoethyl)piperidine-3-carboxylate (3S2) was synthesized by piperidine-3carboxylic acid ethyl ester (1S2) and 2-bromoethylamine hydrobromide (2S2) by nucleophilic substitution $\left(\mathrm{SN}_{2}\right)$ reaction. Compound $\mathbf{3}$ which is an ester derivative of the parent cyclic amine (nipecotic acid) was used for protecting carboxyl group in the reaction. The ethyl ester group of compound $\mathbf{3 S 2}$ was further hydrolyzed in alcoholic alkaline solution to generate 1-(2-aminoethyl)piperidine-3-carboxylic acid (4S2). The compounds 5S2a-5S2y were synthesized by the nucleophilic addition of the amino group of compound $\mathbf{4 S} \mathbf{2}$ to the carbonyl group of corresponding aromatic aldehydes forming an unstable aminomethanol intermediate followed by dehydration in an acidic environment to generate an imine. Presence of an ethylene bridge in title compounds provides the necessary flexibility to the overall structure.

5.B.1.1. Physicochemical Characterization

$\mathrm{DCM} /$ methanol (9.5:0.5) was used as solvent system to determine the R_{f} values and to monitor the progress of the reaction. Subsequently, the percentage yield of the title compounds was calculated. To determine the melting points, open capillary tubes were used on a Stuart Melting Point apparatus (SMP10). The experimental Log P value of synthesised compounds was determined by octanol/water "shake-flask" method using Shimadzu UV/Visible spectrophotometer to establish lipophilicity. The general chemical structure and the physicochemical properties of the final compounds (5S2a-5S2y) are presented in Table 5.12.

Table 5.12. Chemical structures and physicochemical properties of compounds 5S2a5S2y

Comp.	Ar-group	$\mathbf{R}_{\mathbf{f}}{ }^{\mathbf{a}}$	Log P $^{\mathbf{b}}$	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$
$\mathbf{5 S 2 a}$	Phenyl	0.46	2.36	$192-194$
$\mathbf{5 S 2 b}$	2-Chlorophenyl	0.37	2.62	$162-164$
$\mathbf{5 S 2 c}$	4-Chlorophenyl	0.37	2.60	$167-169$
$\mathbf{5 S 2 d}$	2,3-Dichlorophenyl	0.30	3.16	$181-183$
$\mathbf{5 S 2 e}$	2,4-Dichlorophenyl	0.28	3.31	$172-174$
$\mathbf{5 S 2 f}$	2,3,6-Trichlorophenyl	0.26	3.48	$187-189$
$\mathbf{5 S 2 g}$	3-Fluorophenyl	0.43	2.42	$158-160$
$\mathbf{5 S 2 h}$	4-Fluorophenyl	0.42	2.46	$166-168$
$\mathbf{5 S 2 2}$	2,4-Difluorophenyl	0.41	2.51	$177-179$
$\mathbf{5 S 2 j}$	3,4,5-Trifluorophenyl	0.34	2.90	$186-188$
$\mathbf{5 S 2 k}$	3-Bromophenyl	0.29	3.28	$155-157$
$\mathbf{5 S 2 1}$	4-Bromophenyl	0.31	3.20	$158-160$
$\mathbf{5 S 2 m}$	2,6-Dibromophenyl	0.27	3.47	$148-150$
$\mathbf{5 S 2 n}$	4-Nitrophenyl	0.25	3.41	$212-214$
$\mathbf{5 S 2 0}$	2-Nitrophenyl	0.26	3.37	$222-224$
$\mathbf{5 S 2 p}$	2-Hydroxyphenyl	0.52	2.12	$198-200$
$\mathbf{5 S 2 q}$	4-Hydroxyphenyl	0.56	2.08	$213-215$
$\mathbf{5 S 2 r}$	3-Methoxyphenyl	0.49	2.27	$204-206$
$\mathbf{5 S 2 s}$	4-Methoxyphenyl	0.48	2.29	$209-211$
$\mathbf{5 S 2 2}$	3,4-Dimethoxyphenyl	0.51	2.18	$224-226$
$\mathbf{5 S 2 u}$	3,4,5-Trimethoxyphenyl	0.54	2.10	$217-219$
$\mathbf{5 S 2 v}$	4-Methylphenyl	0.35	2.82	$177-179$
$\mathbf{5 S 2 w}$	Napthyl	0.28	3.42	$228-230$
$\mathbf{5 S 2 x}$	4-Trifluoromethoxyphenyl	0.24	3.78	$163-165$
$\mathbf{5 S 2 y}$	3-Trifluoromethylphenyl	0.30	3.27	$181-183$

[^3]
5.B.1.2. Spectral Characterization and Elemental Analysis

The structures of the synthesized compounds were ascertained by FT-IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR and elemental analysis. The amino group in compound $\mathbf{3 S 2}$ was confirmed by the presence of asymmetric $\mathrm{N}-\mathrm{H}$ stretching around $3366 \mathrm{~cm}^{-1}$ and symmetric N-H stretching around $3298 \mathrm{~cm}^{-1}$ respectively. The characteristic broad OH stretching peak observed at around $3236 \mathrm{~cm}^{-1}$ in compound $4 \mathbf{S} 2$ depicted the presence of H-bonded O-H group. The absorption bands in the compounds 5S2a-5S2y showed characteristic skeletal frequencies for $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$ at $1729-1706 \mathrm{~cm}^{-1}$ and $1628-1612 \mathrm{~cm}^{-1}$, respectively. A singlet varying from $\delta_{\mathrm{H}} 11.6-11.18 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR belonged to piperidine-CO-OH, and the singlet appeared at $\delta_{\mathrm{H}} 9.02-8.10 \mathrm{ppm}$ revealed the presence of $\mathrm{N}=\mathrm{CH}-$ methaneimine protons. The chemical shifts from 181.2-172.9 ppm and 164.3-156.7 ppm in ${ }^{13} \mathrm{C}$ NMR confirmed the existence of $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$, respectively. Results of the elemental analysis were found within $\pm 0.4 \%$ of the theoretical values and were well within the limit.

Ethyl 1-(2-aminoethyl) piperidine-3-carboxylate (3S2)

FT-IR (KBr, cm^{-1}): 3366 (Asymmetric N-H), 3298 (Symmetric N-H), 2868 (C-H), $1748(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 4.21\left(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ carboxylate), 3.25 (dd, $J=12.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.96-2.90 (m, 1 H , piperidine), 2.88-2.65 (m, 4H, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.56(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.52-2.41 (m, 1H, piperidine), 2.38-2.26 (m, 1H, piperidine), 1.91-1.64 (m, 3H, piperidine), $1.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ carboxylate). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 173.9, 61.7, 60.8, 56.8, 53.6, 44.6, 39.3, 24.9, 22.6, 14.7. Anal. calcd. for $\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$: C, 59.97 ; H, 10.07; N, 13.99. Found: C, 59.82; H, 10.04; N, 13.95.

1-(2-aminoethyl)piperidine-3-carboxylic acid (4S2)

FT-IR (KBr, cm^{-1}): 3363 (Asymmetric N-H), 3304 (Symmetric N-H), 3212 (O-H), $2860(\mathrm{C}-\mathrm{H}), 1724(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$, $3.01(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.83-2.68 (m, 5 H , piperidine H , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.56(1 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}$, piperidine), $2.53-2.41(1 \mathrm{H}, \mathrm{m}$, piperidine $)$, $2.32-2.23(1 \mathrm{H}, \mathrm{m}$, piperidine $), 2.11(1 \mathrm{H}, \mathrm{dd}, J=14.0,6.1 \mathrm{~Hz}$, piperidine $), 1.77-1.59$ ($3 \mathrm{H}, \mathrm{m}$, piperidine), $1.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 182.9$, 67.4, 62.0, 60.2, 47.5, 45.9, 31.7, 29.2. Anal. Calcd. for $\mathbf{C}_{8} \mathbf{H}_{16} \mathbf{N}_{2} \mathbf{O}_{2}$: C, 55.79 ; H , 9.36; N, 16.27. Found: C, 55.61; H, 9.34; N, 16.31.

1-(2-(benzylideneamino)ethyl)piperidine-3-carboxylic acid (5S2a)
Yield: $125 \mathrm{mg}, 48.07 \%$. FT-IR (KBr, cm^{-1}): 3220 (O-H), 3042 (Ar C-H), 2880 (C-H), $1712(\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{N}), 1586(\mathrm{Ar} \mathrm{C=C}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.32$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $8.42(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.48-7.27(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $3.67(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}$), $3.04(\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, NCH_{2}), 2.78-2.67 (m, 2H, piperidine), $2.63(\mathrm{~m}, 1 \mathrm{H}$, piperidine), $2.32(\mathrm{~m}, 1 \mathrm{H}$, piperidine), 2.11 (m, 1H, piperidine), 1.77-1.64 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: $181.2,163.3,135.7,132.1,128.8,125.5,63.1,59.8,59.5,56.3$, 49.1, 24.4, 20.4. Anal. Calcd. for $\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{2 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$: C, $69.20 ; \mathrm{H}, 7.74 ; \mathrm{N}, 10.76$. Found: C, 69.39; H, 7.76; N, 10.74.

1-(2-((2-chlorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2b)

Yield: $153 \mathrm{mg}, 52.04 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3236 (O-H), 3042 (Ar C-H), 2889 (C-H), $1716(\mathrm{C}=\mathrm{O}), 1612(\mathrm{C}=\mathrm{N}), 1585(\mathrm{Ar} \mathrm{C=C}) 798(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $11.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.32(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N})$, 7.44-7.22 (m, 4H, phenyl), $3.58\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.18(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.71(\mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.68-2.57(\mathrm{~m}, 2 \mathrm{H}$, piperidine $), 2.51-2.47(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 2.41-2.28 (m, 1H, piperidine), 2.08-2.04 (m, 1 H , piperidine), 1.76-1.59 (m, 3 H ,
piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=179.4,161.9,136.4,134.2,132.4$, 130.7, 128.5, 124.3, 60.1, 57.8, 56.1, 55.7, 48.2, 24.6, 22.1. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{19} \mathbf{C l N}_{2} \mathbf{O}_{2}$: C, 61.12; H, 6.50; N, 9.50. Found: C, 61.03; H, 6.49; N, 9.52.

1-(2-((4-chlorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2c)
Yield: $133 \mathrm{mg}, 45.24$ \%. FT-IR (KBr, cm^{-1}): 3238 (O-H), 3041 (Ar C-H), 2878 (C-H), 1712 (C=O), 1614 (C=N), 1582 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$) 812 (C-Cl). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $11.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.28(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ phenyl), $7.34\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, phenyl), $3.66\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.98(\mathrm{dd}$, $J=12.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.76\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.66-2.51(\mathrm{~m}, 2 \mathrm{H}$, piperidine), 2.47-2.31 (m, 1H, piperidine), 2.27-2.16 (m, 1H, piperidine), 2.09-1.95 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), $1.68-1.47$ ($\mathrm{m}, 3 \mathrm{H}$, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 177.1, 160.9, 137.7, 135.1, 129.7, 128.9, 60.1, 58.8, 57.5, 56.7, 55.1, 25.4, 21.4. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{19} \mathbf{C l N}_{2} \mathbf{O}_{2}$: C, 61.12; H, 6.50; N, 9.50. Found: C, 61.29; H, 6.52; N, 9.47.

1-(2-((2,3-dichlorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2d) Yield: $168 \mathrm{mg}, 51.22 \%$. FT-IR (KBr, cm^{-1}): 3233 (O-H), 3041 (Ar C-H), 2876 (C-H), 1725 (C=O), 1617 (C=N), 1590 ($\mathrm{ArC=C}$) 797, 788 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.77(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.58-7.20(\mathrm{~m}, 3 \mathrm{H}$, phenyl), $4.00\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right.$), $3.23(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $3.05-2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.86-2.79(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.65(\mathrm{dd}, J=$ 12.3, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.52-2.47 (m, 1 H , piperidine), 2.37-2.31 (m, 1 H , piperidine), 1.92-1.83 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: $173.68,160.7,132.4,131.5,131.1,130.9,125.5,123.8,56.8,52.7,52.6,51.0,38.2$, 22.2, 19.9. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{18} \mathbf{C l}_{2} \mathbf{N}_{2} \mathbf{O}_{2}$: C, $54.72 ; \mathrm{H}, 5.51 ; \mathrm{N}, 8.51$. Found: C, 54.89; H, 5.52; N, 8.50.

1-(2-((2,4-dichlorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2e)
Yield: $148 \mathrm{mg}, 45.12 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3230 (O-H), 3040 (Ar C-H), 2880 (C-H), 1718 (C=O), 1619 (C=N), 1591 ($\mathrm{Ar} \mathrm{C=C)} \mathrm{826}$,798 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.31(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.41-7.21(\mathrm{~m}, 3 \mathrm{H}$, phenyl), 3.54 (t, $J=7.41 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}$), $3.18(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.68\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.66-2.55(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.49(\mathrm{dd}, J$ $=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $)$, 2.40-2.0 (m, 1 H , piperidine), 2.13-2.02 (m, 1 H , piperidine), 1.78-1.59 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: $178.4,161.7,137.8,135.5,132.1,130.9,130.3,128.8,59.5,55.5,55.3,53.7,40.99$, 24.2, 21.3. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{18} \mathbf{C l}_{2} \mathbf{N}_{2} \mathbf{O}_{2}$: C, $54.72 ; \mathrm{H}, 5.51 ; \mathrm{N}, 8.51$. Found: C, 54.85; H, 5.53; N, 8.53.

1-(2-((2,3,6-trichlorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2f) Yield: $172 \mathrm{mg}, 47.51 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3226 (O-H), 3066 (Ar C-H), 2871 (C-H), 1727 (C=O), 1611 (C=N), 1586 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$) 811, 787, 778 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta \mathrm{ppm}: 11.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.40(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}$, phenyl), $3.50\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right.$), $2.97(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.33\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.66-2.55(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.49(\mathrm{dd}$, $J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}$, piperidine), 2.14-1.95 (m, 1 H , piperidine), 1.77-1.47 (m, 3H piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 174.4$, $159.7,136.8,134.5,132.8,131.9,131.3,129.9,59.1,57.5,56.2,54.1,40.4,25.2$, 21.9. Anal. Calcd. for $\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{1 7}} \mathbf{C l}_{3} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$: C, $49.54 ; \mathrm{H}, 4.71 ; \mathrm{N}, 7.70$. Found: C, 49.40; H, 4.70; N, 7.72.

1-(2-((3-fluorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2g)
Yield: $144 \mathrm{mg}, 51.79$ \%. FT-IR (KBr, cm ${ }^{-1}$): 3229 (O-H), 3049 (Ar C-H), $2890(\mathrm{C}-\mathrm{H})$, 1721 (C=O), 1625 (C=N), 1594 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$) $1278(\mathrm{C}-\mathrm{F}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $11.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.30(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.39-7.03(\mathrm{~m}, 4 \mathrm{H}$, phenyl),
$3.70\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.99(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.77(\mathrm{t}$, $\left.J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.68-2.54(\mathrm{~m}, 2 \mathrm{H}$, piperidine $), 2.46-2.29(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 2.23-2.19 (m, 1H, piperidine), 2.04-1.97 (m, 1H, piperidine), 1.71-1.50 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 177.4,164.3\left(\mathrm{~d}, J_{C, F}=259.4 \mathrm{~Hz}\right.$, phenyl), 162.1 (d, $J_{C, F}=4.5 \mathrm{~Hz}$, imine CH), $139.8\left(\mathrm{~d}, J_{C, F}=7.1 \mathrm{~Hz}\right.$, phenyl), $129.5(\mathrm{~d}$, $J_{C, F}=7.1 \mathrm{~Hz}$, phenyl), $124.8\left(\mathrm{~d}, J_{C, F}=4.1 \mathrm{~Hz}\right.$, phenyl $), 118.4\left(\mathrm{~d}, J_{C, F}=26.2 \mathrm{~Hz}\right.$, phenyl), 115.5 (d, $J_{C, F}=27.3 \mathrm{~Hz}$, phenyl), 59.4, 55.5, 55.1, 53.4, 40.7, 25.9, 22.9. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{\mathbf{1}} \mathbf{F N}_{2} \mathbf{O}_{2}$: C, 64.73; H, 6.88; N, 10.07. Found: C, 64.94; H, 6.89; N, 10.03.

1-(2-((4-fluorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2h)

Yield: $122 \mathrm{mg}, 43.88$ \%. FT-IR (KBr, cm ${ }^{-1}$): 3228 (O-H), 3039 ($\mathrm{Ar} \mathrm{C-H}$), 2887 (C-H), 1729 (C=O), $1620(\mathrm{C}=\mathrm{N}), 1598$ (Ar C=C) 1318 (C-F). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 11.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $8.27(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.06\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, phenyl), $3.59\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.05(\mathrm{dd}$, $J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.90\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.83-2.69(\mathrm{~m}, 2 \mathrm{H}$, piperidine), 2.68-2.49 (m, 1H, piperidine), 2.33-2.17 (m, 1H, piperidine), 2.16-1.91 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), $1.86-1.42$ ($\mathrm{m}, 3 \mathrm{H}$, piperidine). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 176.4, 163.3 (d, $J_{C, F}=248.8 \mathrm{~Hz}$, phenyl), 162.6 (imine CH,), 133.4 (d, $J_{C, F}=3.8$ Hz , phenyl), 131.7 (d, $J_{C, F}=8.1 \mathrm{~Hz}, 2 \times \mathrm{CH}$, phenyl), 115.6 (d, $J_{C, F}=24.8 \mathrm{~Hz}, 2 \times \mathrm{CH}$, phenyl), 60.1, 55.8, 55.2, 53.7, 40.9, 25.9, 22.6. Anal. Calcd. for $\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{1 9}} \mathbf{F N}_{2} \mathbf{O}_{2}$: C, 64.73; H, 6.88; N, 10.07. Found: C, 64.89; H, 6.86; N, 10.09.

1-(2-((2,4-difluorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2i) Yield: $153 \mathrm{mg}, 51.69 \%$. FT-IR (KBr, cm^{-1}): 3242 (O-H), 3036 (Ar C-H), 2872 (C-H), 1716 ($\mathrm{C}=\mathrm{O}$), 1612 (C=N), 1588 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$) 1319, 1292 (C-F). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.29(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.53-6.80(\mathrm{~m}, 3 \mathrm{H}$, phenyl), $3.53\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.06-2.81(\mathrm{~m}, 1 \mathrm{H}$, piperidine), $2.74(\mathrm{t}, J$
$\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.64-2.57(\mathrm{~m}, 2 \mathrm{H}$, piperidine $), 2.34-2.29(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 2.21-2.08 (m, 1H, piperidine), 2.05-1.99 (m, 1H, piperidine), 1.72-1.61 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 175.8,165.3\left(\mathrm{dd}, J_{C, F}=190.1\right.$, 12.7 Hz, phenyl), 163.4 (dd, $J_{C, F}=188.3,12.8 \mathrm{~Hz}$, phenyl), $160.6\left(\mathrm{~d}, J_{C, F}=6.7\right.$, imine CH), $133.7\left(\mathrm{dd}, J_{C, F}=11.1,3.5 \mathrm{~Hz}\right.$, phenyl), $121.7\left(\mathrm{dd}, J_{C, F}=8.3,3.4 \mathrm{~Hz}\right.$, phenyl), $113.6\left(\mathrm{dd}, J_{C, F}=22.0,3.6 \mathrm{~Hz}\right.$, phenyl), $103.7\left(\mathrm{t}, J_{C, F}=24.9 \mathrm{~Hz}\right.$, phenyl), $60.2,55.7$, 54.8, 53.8, 41.3, 24.9, 22.1. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{18} \mathbf{F}_{2} \mathbf{N}_{2} \mathbf{O}_{2}: \mathrm{C}, 60.80 ; \mathrm{H}, 6.12 ; \mathrm{N}$, 9.45. Found: C, 60.66; H, 6.11; N, 9.47.

1-(2-((3,4,5-trifluorobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2j) Yield: $168 \mathrm{mg}, 53.50$ \%. FT-IR (KBr, cm^{-1}): 3238 (O-H), 3038 ($\mathrm{Ar} \mathrm{C-H}$), 2868 (C-H), 1710 (C=O), 1616 (C=N), 1588 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$) 1306, 1292, 1286 (C-F). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.29(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.10(\mathrm{dd}, J=$ 8.0, 4.9 Hz, 2H, phenyl), $3.83\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.47(\mathrm{dd}, J=12.4,7.9$ $\mathrm{Hz}, 1 \mathrm{H}$, piperidine), $2.90\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.77-2.54(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.26(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.18-2.11 (m, 1H, piperidine), 2.14-2.08 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), $1.73-1.37\left(\mathrm{~m}, 3 \mathrm{H}\right.$, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 174.4, $161.4\left(\mathrm{t}, J_{C, F}=4.1 \mathrm{~Hz}\right.$, imine CH), $149.8\left(\mathrm{ddd}, J_{C, F}=223.8,24.8,7.2 \mathrm{~Hz}\right.$, phenyl), 140.5 (dt, $J_{C, F}=49.8,28.2 \mathrm{~Hz}$, phenyl), $135.8\left(\mathrm{td}, J_{C, F}=5.9,3.9 \mathrm{~Hz}\right.$, phenyl), 111.9 (ddd, $J_{C, F}=27.9,7.2,4.1 \mathrm{~Hz}$, phenyl), $59.2,56.4,54.6,40.1,25.8,21.4$. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{\mathbf{1 7}} \mathbf{F}_{3} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$: C, 57.32; H, 5.45; N, 8.91. Found: C, $57.21 ;$ H, 5.47 ; N, 8.89.

1-(2-((3-bromobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2k)

Yield: $166 \mathrm{mg}, 49.11 \%$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3242 (O-H), 3028 (Ar C-H), 2868 (C-H), $1719(\mathrm{C}=\mathrm{O}), 1622(\mathrm{C}=\mathrm{N}), 1588(\mathrm{Ar} \mathrm{C=C}), 628(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: 11.52 (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.28 ($\mathrm{s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}$), 7.90-7.19 (m, 4H, phenyl), $3.59\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.10(\mathrm{dd}, J=12.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.81(\mathrm{t}$,
$\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.74-2.70(\mathrm{~m}, 2 \mathrm{H}$, piperidine $), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 2.34-2.29 (m, 1H, piperidine), 2.24-2.09 (m, 1H, piperidine), 1.84-1.62 (m, 3 H , piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $176.5,162.9,138.1,134.3,131.4$, 130.6, 126.5, 121.8, 69.2, 57.9, 56.2, 55.4, 47.3, 24.4, 21.9. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{19} \mathbf{B r N}_{2} \mathbf{O}_{2}$: C, 53.11; H, 5.65; N, 8.26. Found: C, 53.30; H, 5.65; N, 8.24.

1-(2-((4-bromobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2I)
Yield: $143 \mathrm{mg}, 42.31 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3258 (O-H), 3053 (Ar C-H), 2898 (C-H), $1724(\mathrm{C}=\mathrm{O}), 1619(\mathrm{C}=\mathrm{N}), 1602(\mathrm{Ar} \mathrm{C}=\mathrm{C}), 639(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm: $11.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.26(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 7.45 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $3.57\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right.$), 3.05 (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.90\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.66-2.50(\mathrm{~m}, 2 \mathrm{H}$, piperidine), 2.37 (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.26-2.21(\mathrm{~m}, 1 \mathrm{H}$, piperidine), 2.15-1.96 (m, 1H, piperidine), 1.74-1.54 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) δ ppm: $177.1,160.9,137.7,135.1,129.7,128.9,60.1,58.8,57.5,56.7,55.1$, 25.4, 21.4. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{19} \mathbf{B r N}_{2} \mathbf{O}_{2}$: C, 53.11 ; H, 5.65 ; N, 8.26. Found: C, 53.02; H, 5.64; N, 8.27.

1-(2-((2,6-dibromobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2m) Yield: $196 \mathrm{mg}, 47.12 \%$. FT-IR (KBr, cm^{-1}): 3255 (O-H), 3059 (Ar C-H), 2865 (C-H), $1718(\mathrm{C}=\mathrm{O}), 1622(\mathrm{C}=\mathrm{N}), 1598(\mathrm{Ar} \mathrm{C=C}), 616(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 11.51 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), 8.38 ($\mathrm{s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}$), 7.44-7.07 (m, 3H, phenyl), $3.51\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.05(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.96(\mathrm{t}$, $\left.\mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.80-2.55(\mathrm{~m}, 2 \mathrm{H}$, piperidine $), 2.34(\mathrm{dd}, \mathrm{J}=12.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.31-2.25 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), $2.10-2.06(\mathrm{~m}, 1 \mathrm{H}$, piperidine), $1.80-1.51$ (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: 173.4, 156.7, 137.9, 132.9, $131.3,124.9,59.7,55.9,55.6,54.7,40.1,24.8,22.6$. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{\mathbf{1 8}} \mathbf{B r}_{2} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$: C, 43.09; H, 4.34; N, 6.70. Found: C, $43.22 ; \mathrm{H}, 4.35 ; \mathrm{N}, 6.68$.

1-(2-((4-nitrobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2n)
Yield: $162 \mathrm{mg}, 53.11$ \%. FT-IR (KBr, cm ${ }^{-1}$): 3233 (O-H), 3062 (Ar C-H), 2879 (C-H), 1706 ($\mathrm{C}=\mathrm{O}$), 1612 ($\mathrm{C}=\mathrm{N}$), 1596 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$), $1562(\mathrm{~N}=\mathrm{O}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta \mathrm{ppm}: 11.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.56(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 8.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 8.11 (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $3.66\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right.$), 2.95 (dd, $J=12.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.71\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.64-2.47(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.39(\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.34-2.18(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 2.14-1.92 (m, 1H, piperidine), 1.87-1.32 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) δ ppm: $176.3,161.2,151.1,140.5,130.7,124.6,61.3,57.2,55.5,54.7,41.1$, 26.4, 21.8. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{\mathbf{1 9}} \mathbf{N}_{\mathbf{3}} \mathbf{O}_{4}$: C, $59.01 ; \mathrm{H}, 6.27$; $\mathrm{N}, 13.76$. Found: C , 59.21; H, 6.25; N, 13.80.

1-(2-((2-nitrobenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2o) Yield: $178 \mathrm{mg}, 58.36 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3242 (O-H), 3055 (Ar C-H), 2869 (C-H), 1721 ($\mathrm{C}=\mathrm{O}$), 1619 ($\mathrm{C}=\mathrm{N}$), 1585 ($\mathrm{Ar} \mathrm{C}=\mathrm{C}$), 1545 (N=O). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.54(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 8.09-7.39(\mathrm{~m}, 4 \mathrm{H}$, phenyl), $3.65\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.98(\mathrm{dd}, J=12.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.79(\mathrm{t}$, $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.68-2.63(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.57-2.41(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 2.37-2.24 (m, 1H, piperidine), 2.26-2.11 (m, 1 H , piperidine), 1.74-1.51 (m, 3 H , piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $172.9,160.1,148.2,133.7,132.6$, 131.7, 128.3, 124.9, 67.2, 58.4, 56.9, 55.2, 40.3, 24.1, 22.5. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{19} \mathbf{N}_{3} \mathbf{O}_{4}: \mathrm{C}, 59.01 ; \mathrm{H}, 6.27 ; \mathrm{N}, 13.76$. Found: C, $59.18 ; \mathrm{H}, 6.28 ; \mathrm{N}, 13.73$.

1-(2-((2-hydroxybenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2p)
Yield: $161 \mathrm{mg}, 58.33 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3368 (sharp, O-H), 3238 (broad, O-H), 3039 (Ar C-H), 2869 (C-H), 1717 (C=O), 1616 (C=N), 1588 (Ar C=C). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 9.02(1 \mathrm{H}, \mathrm{s}$, Phenyl OH$), 8.23(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}$), 7.45-6.78 (m, 4H, phenyl), $3.62\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.22$
(dd, $J=12.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.81\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$), 2.75-2.61 (m, 2 H , piperidine), 2.66-2.54 (m, 1H, piperidine), 2.39-2.32 (m, 1H, piperidine), 2.13$2.09\left(\mathrm{~m}, 1 \mathrm{H}\right.$, piperidine), $1.75-1.65\left(\mathrm{~m}, 3 \mathrm{H}\right.$, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 176.4,164.1,160.8,133.1,129.3,121.7,120.3,117.9,62.2,59.4,57.7,55.7$, 40.9, 24.4, 22.1. Anal. Calcd. for $\mathbf{C}_{\mathbf{1}} \mathbf{H}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$: C, $65.20 ; \mathrm{H}, 7.30 ; \mathrm{N}, 10.14$. Found: C, 65.01; H, 7.28; N, 10.12.

1-(2-((4-hydroxybenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2q)
Yield: $146 \mathrm{mg}, 52.89 \%$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3376 (sharp, O-H), 3239 (broad, O-H), 3068 (Ar C-H), 2862 (C-H), 1724 (C=O), 1628 (C=N), 1592 ($\mathrm{Ar} \mathrm{C=C)}.{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.90(\mathrm{~s}, 1 \mathrm{H}$, Phenyl OH$), 8.25(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}$), $7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 3.69 $\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.98(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.77(\mathrm{t}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 2.49-2.27 (m, 2H, piperidine), $2.29(\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.10-1.93 (m, 1 H , piperidine), 1.68-1.47 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), 1.46-1.32 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: $176.4,161.6,159.5,131.3$, 127.5, 116.6, 60.5, 57.4, 55.7, 52.9, 40.8, 23.4, 21.5. Anal. Calcd. for $\mathbf{C}_{15} \mathbf{H}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{3}$: C, 65.20; H, 7.30; N, 10.14. Found: C, 65.42; H, 7.31; N, 10.17.

1-(2-((3-methoxybenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2r) Yield: $128 \mathrm{mg}, 44.14 \%$. FT-IR (KBr, cm ${ }^{-1}$): 3237 (O-H), 3049 (Ar C-H), 2885 (CH), 1723 ($\mathrm{C}=\mathrm{O}$), 1618 ($\mathrm{C}=\mathrm{N}$), $1590\left(\mathrm{Ar} \mathrm{C=C)}.{ }^{1} \mathrm{H}\right.$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: $11.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.27(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.34-6.87(\mathrm{~m}, 4 \mathrm{H}$, phenyl), 3.81 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.98(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.84\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.74-2.70(\mathrm{~m}, 2 \mathrm{H}$, piperidine), 2.67-2.48 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), 2.45-2.28 (m, 1 H , piperidine), 2.20-2.08 (m, 1 H piperidine), 1.79-1.56 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 175.4,162.7$, $160.1,139.3,129.3,122.6,117.5,112.1,59.2,56.8,55.9,55.2,53.5,40.8,24.1,22.3$.

Anal. Calcd. for $\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{2} 2} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$: C, 66.18; H, 7.64; N, 9.65. Found: C, 66.40; H, 7.64; N, 9.63.

1-(2-((4-methoxybenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2s)
Yield: $122 \mathrm{mg}, 42.06$ \%. FT-IR (KBr, cm^{-1}): 3229 (O-H), 3040 ($\mathrm{Ar} \mathrm{C-H}$), 2875 (C-H), $1716(\mathrm{C}=\mathrm{O}), 1622(\mathrm{C}=\mathrm{N}), 1590(\mathrm{Ar} \mathrm{C=C}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.36$ (s, 1H, COOH), $8.24(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.93(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.99$ (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.76\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 2.64-2.52 (m, 2 H , piperidine), 2.40 (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.24-2.15(\mathrm{~m}, 1 \mathrm{H}$, piperidine), $2.05-1.93\left(\mathrm{~m}, 1 \mathrm{H}\right.$, piperidine), 1.76-1.46 (m, 3 H , piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 175.4,162.3,161.3,131.7,128.4,114.5,60.2,57.8,56.9$, 55.2, 52.1, 40.9, 24.4, 22.8. Anal. Calcd. for $\mathbf{C}_{16} \mathbf{H}_{22} \mathbf{N}_{2} \mathbf{O}_{3}$: C, 66.18; H, 7.64; N, 9.65. Found: C, 66.29; H, 7.66; N, 9.68.

1-(2-((3,4-dimethoxybenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2t) Yield: $157 \mathrm{mg}, 49.66$ \%. FT-IR (KBr, cm^{-1}): 3228 (O-H), 3034 (Ar C-H), 2865 (C-H), 1716 ($\mathrm{C}=\mathrm{O}$), 1618 ($\mathrm{C}=\mathrm{N}$), 1585 ($\mathrm{Ar} \mathrm{C=C)}.{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.37$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 8.19(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.26-6.89(\mathrm{~m}, 3 \mathrm{H}$, phenyl), $3.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.97(\mathrm{dd}, J=12.5$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.74\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.63-2.54(\mathrm{~m}, 2 \mathrm{H}$, piperidine), 2.38 (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.25-2.16(\mathrm{~m}, 1 \mathrm{H}$, piperidine), 2.02-1.95 (m, 1H, piperidine), 1.66-1.46 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta \mathrm{ppm}: 175.7,162.5,152.7,149.5,131.4,124.6,113.4,112.8,60.7,57.8$, 56.7, 55.7, 52.5, 40.7, 24.2, 22.1. Anal. Calcd. for $\mathbf{C}_{17} \mathbf{H}_{24} \mathbf{N}_{2} \mathbf{O}_{4}$: C, 63.73; H, 7.55; N, 8.74. Found: C, 63.51; H, 7.53; N, 8.76.

1-(2-((3,4,5-trimethoxybenzylidene)amino)ethyl)piperidine-3-carboxylic
acid (5S2u)

Yield: $175 \mathrm{mg}, 50.00 \%$. FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3219(\mathrm{O}-\mathrm{H}), 3040(\mathrm{Ar} \mathrm{C}-\mathrm{H}), 2873(\mathrm{C}-\mathrm{H})$, $1711(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{N}), 1581(\mathrm{Ar} \mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.39$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 8.24(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 6.87(\mathrm{~s}, 2 \mathrm{H}$, phenyl), $3.83(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{X}$ $\left.\mathrm{OCH}_{3}\right), 3.79\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51(\mathrm{dd}, J=12.5$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.84\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.69-2.53(\mathrm{~m}, 2 \mathrm{H}$, piperidine), $2.28(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.25-2.09(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, $1.76-1.58\left(\mathrm{~m}, 1 \mathrm{H}\right.$, piperidine), $1.52-1.39\left(\mathrm{~m}, 3 \mathrm{H}\right.$, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 177.4,161.6,154.3,140.6,135.7,108.9,59.8,56.4,57.4,56.7,54.2$, 40.8, 25.2, 21.1. Anal. Calcd. for $\mathbf{C}_{18} \mathbf{H}_{\mathbf{2 6}} \mathbf{N}_{2} \mathbf{O}_{5}$: C, $61.70 ; \mathrm{H}, 7.48 ; \mathrm{N}, 7.99$. Found: C, 61.85; H, 7.46; N, 7.80.

1-(2-((4-methylbenzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2v) Yield: $123 \mathrm{mg}, 44.89$ \%. FT-IR (KBr, cm^{-1}): 3229 (O-H), 3049 (Ar C-H), 2872 (C-H), $1718(\mathrm{C}=\mathrm{O}), 1622(\mathrm{C}=\mathrm{N}), 1591(\mathrm{Ar} \mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 11.47$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 8.18(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.19(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $3.69\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 2.99(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}$, 1 H , piperidine), $2.76\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.70-2.52(\mathrm{~m}, 2 \mathrm{H}$, piperidine $), 2.42$ $(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}$, piperidine), $2.03-1.96(\mathrm{~m}, 1 \mathrm{H}$, piperidine $), 1.67-1.49(\mathrm{~m}, 3 \mathrm{H}$, piperidine $) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ ppm: 174.4, 161.24, 142.5, 132.4, 129.5, 128.4, 59.6, 55.7, 55.5, 53.78, 41.1, 24.9, 23.6, 20.8. Anal. Calcd. for $\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{22} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$: C, 70.04; H, 8.08; N, 10.21. Found: $69.79 ;$ H, 8.10; N, 10.18.

1-(2-((naphthalen-2-ylmethylene)amino)ethyl)piperidine-3-carboxylic acid (5S2w)

Yield: $149 \mathrm{mg}, 48.06 \%$. FT-IR (KBr, cm^{-1}): 3239 (O-H), 3039 (Ar C-H), 2881 (C-H), 1710 ($\mathrm{C}=\mathrm{O}$), 1618 ($\mathrm{C}=\mathrm{N}$), 1588 ($\mathrm{ArC=C}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 11.60$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 8.10(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 8.08-7.26(\mathrm{~m}, 7 \mathrm{H}$, naphthyl H$), 3.89(\mathrm{t}, J$ $\left.=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.08(\mathrm{dd}, J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.86(\mathrm{t}, 2 \mathrm{H}$, NCH_{2}), 2.74-2.57 (m, 2H, piperidine), 2.47 (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), 2.38-2.30 (m, 1H, piperidine), 2.25-2.12 (m, 1H, piperidine), 1.87-1.60 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: $176.4,162.4,134.9,133.8,133.5$, 129.7, 129.3, 129.0, 128.4, 126.9, 126.4, 59.5, 55.4, 55.3, 53.7, 40.9, 24.9, 22.6. Anal. Calcd. for $\mathbf{C}_{19} \mathbf{H}_{22} \mathbf{N}_{2} \mathbf{O}_{2}$: C, 73.52; H, 7.14; N, 9.03. Found: C, 73.77; H, 7.13; N, 9.05. 1-(2-((4-(trifluoromethoxy)benzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2x)

Yield: $187 \mathrm{mg}, 54.36 \%$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3237 (O-H), 3046 (Ar C-H), 2881 (C-H), 1712 (C=O), 1619 (C=N), 1579 ($\mathrm{ArC=C}$), 1356 (C-F). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm: 11.55 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}$), $8.27(\mathrm{~s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.97\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, phenyl), $3.60\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.05(\mathrm{dd}$, $J=12.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine $), 2.89\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.77-2.67(\mathrm{~m}, 2 \mathrm{H}$, piperidine), 2.66 (dd, $J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.28-2.20(\mathrm{~m}, 1 \mathrm{H}$, piperidine), 2.11-1.98 (m, 1H, piperidine), 1.79-1.57 (m, 3H, piperidine). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 173.4,161.8,152.6,134.8,129.4,121.8\left(\mathrm{q}, J_{C, F}=325.1,193.1 \mathrm{~Hz}\right.$, OCF_{3}), 121.2, $60.1,57.5,56.4,55.8,52.6,40.4,23.4,21.5$. Anal. Calcd. for $\mathbf{C}_{16} \mathbf{H}_{19} \mathbf{F}_{3} \mathbf{N}_{2} \mathbf{O}_{3}: \mathrm{C}, 55.81 ; \mathrm{H}, 5.56 ; \mathrm{N}, 8.14$. Found: C, $55.63 ; \mathrm{H}, 5.57$; N, 8.11.

1-(2-((3-(trifluoromethyl)benzylidene)amino)ethyl)piperidine-3-carboxylic acid (5S2y)

Yield: $176 \mathrm{mg}, 53.66$ \%. FT-IR (KBr, cm ${ }^{-1}$): 3243 (O-H), 3068 (Ar C-H), $2878(\mathrm{C}-\mathrm{H})$, 1719 (C=O), 1616 (C=N), 1588 ($\mathrm{Ar} \mathrm{C=C}$), 1346 (C-F). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
ppm: 11.33 (s, $1 \mathrm{H}, \mathrm{COOH}$), 8.46 ($\mathrm{s}, 1 \mathrm{H}$, imine $\mathrm{CH}=\mathrm{N}$), $7.89-7.25$ ($\mathrm{m}, 4 \mathrm{H}$, phenyl), $3.77\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{NCH}_{2}\right), 3.06(\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, piperidine), $2.87(\mathrm{t}$, $\left.J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.81-2.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}\right.$, piperidine), 2.53-2.29 (m, 2 H , piperidine), 2.23-2.07 (m, 1H, piperidine), 1.88-1.64 (m, 3 H , piperidine). ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 176.4,162.1,137.0,129.75,129.73,129.6,129.0\left(\mathrm{q}, J_{C, F}=\right.$ 33.2 Hz , phenyl C-3), 124.1, 123.6 (q, $J_{C, F}=272.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), $59.5,55.4,55.3,53.7$, 40.9, 24.9, 22.6. Anal. Calcd. for $\mathbf{C}_{\mathbf{1} 6} \mathbf{H}_{\mathbf{1 9}} \mathbf{F}_{3} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{2}$: C, 58.53 ; H, 5.83; N, 8.53. Found: C, 58.69; H, 5.81; N, 8.51.

5.B.2. BIOLOGICAL ACTIVITY

5.B.2.1. In vitro PAMPA-BBB assay

Determination of brain permeability is very crucial for antiepileptic drugs to reach the target site and elicit its effect. PAMPA-BBB is a technique to observe the BBB permeation of drug molecules. In the current work, the permeability of the synthesized compounds was evaluated by PAMPA-BBB as per the reported procedure of Di et al. [Di et al., 2003]. This system is a prototype of BBB that measures the effective permeability ($\mathrm{P}_{\mathrm{e}}, \mathrm{cm} / \mathrm{s}$) of an artificial lipid membrane and thereby predicts the rate of trans-cellular passive diffusion of drugs across the BBB. A plot of experimentally obtained permeability $\left[\mathrm{P}_{\mathrm{e}(\mathrm{Exp})}\right]$ versus permeability reported in the literature $\left[\mathrm{P}_{\mathrm{e}(\mathrm{Ref})}\right]$ provided a good linear correlation $\mathrm{P}_{\mathrm{e}(\mathrm{Exp})}=1.308 \mathrm{P}_{\mathrm{e}(\mathrm{Ref})}-0.8394$ $\left(\mathrm{R}^{2}=0.9317\right)$. Using this equation, we have calculated the cut-off limits for determining the BBB permeability of the test compounds. The values of $\mathrm{P}_{\mathrm{e}(\mathrm{Ref})}$ were taken from the limits established by Di et al. The findings suggested that the compounds 5S2d, 5S2f, 5S2j, 5S2l, 5S2m, 5S2n, 5S2w, 5S2x, and 5S2y exhibited considerable permeability across BBB. $\mathbf{5 w}$ was more permeable $\left(\mathrm{P}_{\mathrm{e}}=8.93\right)$ than the standard tiagabine $\left(\mathrm{P}_{\mathrm{e}}=7.96\right)$ (Table 5.13).

Table 5.13. Permeability analysis using PAMPA-BBB assay (Series 2)

Comp.	PAMPA- BBB permeability $\boldsymbol{P}_{\boldsymbol{e}(\text { exp })}\left(\mathbf{1 0}^{\mathbf{- 6}} \mathbf{c m ~ s}^{\mathbf{- 1}}\right)$	PAMPA- BBB Prediction $\left(\mathbf{C N S}+^{\mathbf{b}}, \mathbf{C N S}-{ }^{\mathbf{c}}, \mathbf{C N S} \mathbf{\pm}^{\mathbf{d}}\right)$
Validation of the model by nine commercial drugs		
Verapamil		16.00
Diazepam	16.00	CNS+
Progesterone	9.30	CNS+
Atenolol	0.80	CNS+
Dopamine	0.20	CNS-
Lomefloxacin	1.10	CNS-
Alprazolam	5.40	CNS-
Chlorpromazine	6.50	CNS+
Oxazepam	10.00	CNS+

Evaluation of $P e\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)$ for the test compounds and standard		
Tiagabine (standard)	7.86	CNS+
5S2a	3.32	CNS \pm
5S2b	3.69	CNS \pm
5S2c	4.18	CNS \pm
5S2d	6.52	CNS+
5S2e	4.23	CNS \pm
5S2f	5.69	CNS+
5S2g	1.66	CNS-
5S2h	1.98	CNS \pm
5S2i	4.18	CNS \pm
5S2j	5.53	CNS+
5S2k	4.14	CNS \pm
5S21	7.24	CNS+
5S2m	4.76	CNS+
5S2n	4.84	CNS+
5S20	3.12	CNS \pm
5S2p	3.15	CNS \pm
5S2q	2.75	CNS \pm
5S2r	2.43	CNS \pm
5S2s	3.02	CNS \pm

$\mathbf{5 S 2 t}$	1.19	CNS-
$\mathbf{5 S 2 u}$	1.56	CNS-
$\mathbf{5 S 2 v}$	2.85	CNS \pm
$\mathbf{5 S 2 w}$	8.93	CNS+
$\mathbf{5 S 2 x}$	7.51	CNS+
$\mathbf{5 S 2 y}$	6.98	CNS+

${ }^{\text {a }}$ Data represented are the mean of assay for commercial drugs $(\mathrm{n}=2)$;
${ }^{\text {b، }} \mathrm{CNS}+'$ (prediction of high BBB permeation); $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)>4.3926$.
${ }^{\text {c' }}$ CNS-' (prediction of low BBB permeation); $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right)<1.7766$.
${ }^{\mathrm{d}} \mathrm{CNS}^{\prime}$ ' (prediction of uncertain BBB permeation); $P_{e}\left(10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}\right) 4.3926$ to 1.7766

5.B.2.2. In Vivo Anti-convulsant Activity

5.B.2.2.1. s.c.-PTZ Induced Seizures in Mice

Manipulation of GABA metabolism, synaptic uptake mechanism and its receptor complex along with neuronal ion channels has been a central theme for research to discover safe and effective novel drugs for the treatment of epilepsy. Tiagabine is a recent entrant in the category of anti-epileptic drug that has a distinct mechanism of reuptake inhibition of GABA at the synapse. Tiagabine augments the level and neuro-inhibitory activity of GABA by interfering the function of GABA transporters specifically GAT1.

Subcutaneous injection of PTZ is validated and most commonly used rodent model of epilepsy. In this test inhibitory potential of test drugs to suppress or delay the seizures induced by PTZ is measured. It was observed that the test compounds 5S2d, 5S2I, 5S2w, 5S2x and 5S2y significantly delayed the onset of seizures and its frequency. However, compounds 5S2n, 5S2f, 5S2m, and 5S2j failed to exhibit antiseizure activity in this model (Table 2). Tiagabine also significantly delayed the onset of seizures and frequency of seizures. 5S2d, 5S2w, and 5S2y were most potent amongst synthesized compounds.

Table 5.14. Effect of the test compounds (Series 2) on s.c. PTZ induced seizures

Comp.	Latency of seizures (seconds)*	Frequency of seizures (numbers)
Control	554.16 ± 18.84	4.33 ± 0.81
5S2d	$1036.50 \pm 20.56^{\mathrm{a}}$	$1.66 \pm 0.81^{\mathrm{a}}$
$\mathbf{5 S 2 f}$	$555.33 \pm 12.82^{*}$	3.66 ± 0.81
$\mathbf{5 S 2 j}$	564.16 ± 25.46	3.83 ± 0.75
5S2l	$843.16 \pm 21.94^{\mathrm{a}}$	$1.83 \pm 0.75^{\mathrm{a}}$
$\mathbf{5 S 2 m}$	560.83 ± 19.45	4.33 ± 0.81
$\mathbf{5 S 2 n}$	$565.16 \pm 46.82^{\mathrm{a}}$	4.16 ± 0.75
$\mathbf{5 S 2 w}$	$1181.66 \pm 19.16^{\mathrm{a}}$	$1.16 \pm 0.40^{\mathrm{a}}$
$\mathbf{5 S 2 x}$	$792.33 \pm 19.59^{\mathrm{a}}$	$2.16 \pm 0.75^{\mathrm{a}}$
$\mathbf{5 S 2 y}$	$1119.83 \pm 21.84^{\mathrm{a}}$	$1.33 \pm 0.51^{\mathrm{a}}$
Tiagabine	$1276.33 \pm 17.50^{\mathrm{a}}$	$1.16 \pm 0.40^{\mathrm{a}}$

* Values are expressed as the Mean \pm SD ($\mathrm{n}=6$); Control: Physiological saline (0.9%) containing 2.5% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg}$, i.p.; All the test compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; ${ }^{\text {a }} p<0.05$ compared to control.

5.B.2.2.2. DMCM Induced Seizures in Mice

Only those compounds that exhibited significant antiepileptic activity in the sc-PTZ model were selected for further screening in DMCM induced seizure test. DMCM is a potent convulsant agent having dual effect-augmenting excitatory amino acid and attenuating GABA inhibitory function. DMCM has been identified to possess specific benzodiazepine binding sites [Petersen, 1983]. The outcome of the model was similar to that of sc-PTZ induced seizure model. All the test compounds (5S2d, 5S2l, 5S2w, 5S2x and 5S2y) and standard drug significantly delayed the onset of convulsion (Table 5.13).

Table 5.15. Effect of the test compounds (Series 2) on DMCM induced seizures.

Comp.	Latency of seizures (seconds)*
Control	222.33 ± 6.02
5S2d	$373.33 \pm 8.35^{\mathrm{a}}$
5S21	$272.33 \pm 11.62^{\mathrm{a}}$
5S2w	$417.83 \pm 9.17^{\mathrm{a}}$
5S2x	$267.66 \pm 13.93^{\mathrm{a}}$
5S2y	$411.50 \pm 16.67^{\mathrm{a}}$
Tiagabine	$438.66 \pm 10.46^{\mathrm{a}}$

*Values are expressed as the Mean \pm SD $(\mathrm{n}=6)$; Control: Physiological saline (0.9%) containing 2.5% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg}$, i.p.; All the test compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; ${ }^{\text {a }} \mathrm{p}<0.05$ compared to control.

5.B.2.3. Rota-rod Performance Test in Mice

Drugs acting on CNS do have potential to cause motor incoordination. In order to assess the putative motor incoordination effect of drugs rota rod test is widely used. In this test rodents are placed on a rotating rod and fall off time is measured before and after the drug treatment. A significant decrease in the fall off time indicates the motor incoordination effect of the drug. In this test, all the test compounds were found to be devoid of any adverse effect on muscle coordination (Table 5.14). Standard drug diazepam showed a significant reduction in fall off time.

Table 5.16. Effect of the test compounds (Series 2) on rota-rod performance test in mice.

Comp.	Fall off time before treatment (seconds)*	Fall off time after treatment (seconds)*
Control	318.33 ± 11.37	326.66 ± 12.95
5S2d	323.50 ± 6.41	328.16 ± 5.56
5S2w	331.83 ± 15.06	333.33 ± 8.23
5S2y	325.16 ± 16.64	331.83 ± 15.35
Tiagabine	320.83 ± 13.07	322.66 ± 5.98
Diazepam	334.83 ± 15.86	$152.66 \pm 12.12^{\mathrm{a}}$

[^4]compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; ${ }^{\text {a }} p<0.05$ compared to control.

5.B.2.2. Cell viability and neurotoxicity (MTT Assay)

Some antiepileptic drugs and their metabolites have been reported to possess neurotoxicity [Ambrósio et al., 2000; Araújo et al., 2004; Gao and Chuang 1992; Gao et al., 1995; Liu et al., 2015; Nonaka et al., 1998]. Ideally, antiepileptic drugs should prevent the seizures without producing neuronal toxicity. Therefore, the therapeutic suitability of the most active compounds (5S2d, 5S2w, \& 5S2y) and their effects on cell viability was determined in neuroblastoma cell line (SH-SY5Y). The ability of intracellular dehydrogenases to reduce MTT to the formazan is interpreted as the measure of cell viability. The formazan upon solubilization can be measured spectrophotometrically, which is directly proportional to the viable cell number [Lim et al., 2015]. The results of the experiment revealed that the MTT reduction was not effected significantly by test compounds thus corresponds to the insignificant cell death in the concentrations ranging from 1-80 $\mu \mathrm{M}$ (Table 5.17).

Table 5.17. Cell Viability of the test compounds (Series 2) at different concentrations in neuroblastoma cell line (SH-SY5Y).

Comp.	Percentage cell viability*				
	$\mathbf{1} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{1 0} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{2 0} \boldsymbol{\mu} \mathbf{m}$	$\mathbf{4 0} \boldsymbol{\mu} \mathbf{m}$	$\mathbf{8 0} \boldsymbol{\mu m}$
5S2d	99.99 ± 0.05	99.95 ± 0.10	99.91 ± 0.12	98.63 ± 0.06	89.25 ± 0.12
5S2w	99.74 ± 0.13	99.46 ± 0.22	96.50 ± 0.38	92.22 ± 0.47	83.52 ± 0.30
5S2y	99.60 ± 0.12	99.40 ± 0.22	95.81 ± 0.38	91.48 ± 0.47	84.92 ± 0.38

*Percentage cell viability of SH-SY5Y cells incubated with increasing concentration of test compounds. Values are expressed as the percentage cell viability \pm SD of at least five independent experiments.

5.B.2.3. Repeated dose toxicity studies

Compound 5S2w was evaluated for haematological, hepatic and renal toxic liabilities through their effects on various serum biomarkers. The outcome of the estimation of different haematological and biochemical parameters is summarized in Table 5.18
and $\mathbf{5 . 1 9}$ respectively. The results confirmed the safety of the compound $\mathbf{5 S 2 w}$ at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ Tiagabine.

$\underline{L E}{ }^{\circ} \mathrm{O} \mp 90^{\circ} \mathrm{S}$	L0．0 $\mp 58{ }^{\circ} 0$		$I \varepsilon^{\circ} \mathrm{S}$ 干 $0 S^{\prime} \varepsilon \dagger 乙$	9L｀I $+0 S^{\circ} \angle E$	$\varepsilon 0 * ゅ \mp \varepsilon \varepsilon \cdot 0 \downarrow$	00＊L $\mp 99^{\circ} 00 \mathrm{~L}$	90．9 +9 ［ 06	วu！qBถ̇E！L
$\downarrow S^{\circ} 0 \mp 08^{\circ} \downarrow$	$60^{\circ} 0 \mp 6 L^{\circ} 0$	9 L^{\prime} I $+6 L^{\prime}$ II			$0 L^{\circ} \mathrm{S}$ 干 $\left.\varepsilon 8^{\circ} 0\right\rangle$	98＊${ }^{\circ}$ 干 99° 10I	てE＇† $+0 S^{\circ} \dagger 8$	MZSS
$0 \chi^{\circ} 0$ 干 $¢ 1 \cdot \varsigma$	$L 0^{\circ} 0 \mp 98^{\circ} 0$	$L Z^{\prime} I \mp+Z^{\prime} て \mathrm{I}$		$76 . 乙 \mp \varepsilon \varepsilon \cdot 6 \varepsilon$	$\varepsilon \downarrow^{\circ} \mathrm{E} \mp \varepsilon 8^{\circ}$ てt		［9｀¢ $\mp 0 ¢^{\circ} 68$	［0．1140
（IP／ $\mathbf{4 8}$ ） u！əŋ0．1d ［P70L	（Ip／buw） әи！и！рәлつ		$\begin{aligned} & \left(1!u_{\Omega}\right) \\ & \text { dTV } \end{aligned}$	$\begin{gathered} (\mathbf{I} \mathbf{W} / \mathbf{\Omega}) \\ \mathbf{L T V} \end{gathered}$	$\begin{gathered} (\mathbf{I} \mathbf{w} / \mathbf{Q}) \\ \mathbf{L S V} \end{gathered}$		（Ip／ธ⁄u） วsoonlin	

Values are mean $\pm \mathrm{SD}, \mathrm{WBC}=$ White blood corpuscles．

Control $\quad 11.71 \pm 0.59$
（In／OI X）（IP／uis）
u！qоןбошәН
Table 5．18．Effect of test compound（5S2w）on hematological parameters of mice in 28 days repeated dose toxicity studies
¢ лəұdeч：｜｜uo！ssnos！a pue słjnsəy

5.B.3. COMPUTATIONAL STUDIES

5.B.3.1. Homology modeling of GAT-1

The same homology model of GAT-1 was used to investigate the binding mode interactions of the title compounds of series $\mathbf{2}$ which was previously constructed for series 1. The outcomes of the homology modelling were elaborated under section

5.A.3.1.

5.B.3.2. Molecular Docking Studies

In silico docking studies were performed using the Schrödinger Maestro program to gain insight into the possible mode of protein-ligand interactions using a generated and validated model of GAT1 GABA transporter (PDB Code: 4XP4). The validation of the prepared grid and docking protocols was performed by generating a minimum energy conformer of tiagabine, and it's docking on a prepared grid. The results demonstrate that tiagabine occupied the same active site within the binding pocket leading to its complementary interaction with the amino acid residues within the active site [Jurik et al. 2013, Petrera et al. 2016, Skovstrup et al. 2010]. (Fig. 5.12.)

The binding affinity of the active compounds 5S2d, 5S2w and 5S2y was determined by using GAT1 GABA transporter modeled protein. The molecular docking studies yielded the best possible conformation for all the ligands 5S2d (Glide Score: -3.9); 5S2w (GLIDE Score: -6.2) and 5S2y (GLIDE Score: -7.3) occupying the similar binding pocket as that of tiagabine (GLIDE Score: -4.6). In the present study, the active binding pocket was selected from literature with the presence of active site amino acid residues Tyr60, Ala61, Gly63, Gly65, Trp68, Arg69, Tyr139, Tyr140, Ile143, Gln291, Phe294, Ser295 and Na atom [Petrera et al., 2016].

The docking conformations of the compounds 5S2d, 5S2w, and 5S2y reveal salt bridge formation between oxygen (O) atom of carboxyl group and sodium
(Na611). Another oxygen (O) atom present in carboxyl group of compound 5S2y shown to have additional metal coordination interaction with sodium (Na611). The O atom of the carboxyl group in all the docked ligands interacted through a network of hydrogen bonding with backbone atom of Gly65. Compounds 5S2d and 5S2w involved in the hydrogen bonding with side chain hydroxyl groups of Tyr140. Additionally, the NH group of all the ligands was also involved in hydrogen bonding interactions with Phe294 similar to tiagabine. The NH group of compound 5S2y was additionally involved in π-cationic interaction with Tyr60. The charged interactions with Arg69 and Asp451 were also responsible for stabilizing the aromatic rings of the ligands. The detailed interaction results of tiagabine, 5S2d, 5S2w, and 5S2y with active site amino acid residues are summarized in Table 5.20. Overall, these interactions of all the docked ligands with the modeled protein of GAT1 GABA transporter showed complementary binding with active site amino acids residues as shown in Fig. 5.13, 5.14 and 5.15.

Fig. 5.12. 3D Ribbon structure representation of docking conformation of the tiagabine in the hydrophobic pocket of homology modelled protein structure of GAT1 GABA transporter. Structure of tiagabine is shown as ball and stick model; light brown color surface is showing hydrophobic pocket; blue and red surface is charged surface of the protein; green dotted line is showing H -bonding interactions between active site amino acid residues and ligand.

Fig. 5.13. 3D Ribbon structure representation of docking conformation of the compound 5S2d in the hydrophobic pocket of homology modelled protein structure of GAT1 GABA transporter. Structure of compound 5S2d is shown as ball and stick model; light brown color surface showing hydrophobic pocket; the blue and red surface is charged surface of the protein; green dotted lines are H -bonding, and the red dotted line is charged interaction between active site amino acid residues and ligand.

Fig. 5.14. 3D Ribbon structure representation of docking conformation of the compound $5 \mathbf{5} 2 \mathrm{w}$ in the hydrophobic pocket of homology modelled protein structure of GAT1 GABA transporter. Structure of compound 5S2w is shown as ball and stick model; light brown color surface showing hydrophobic pocket; the blue and red surface is charged surface of the protein; green dotted lines are H -bonding and orange dotted lines are Van der Waals interactions between active site amino acid residues and ligand.

Fig. 5.15. 3D Ribbon structure representation of docking conformation of the compound 5S2y in the hydrophobic pocket of homology modelled protein structure of GAT1 GABA transporter. Structure of compound 5S2y is shown as ball and stick model; light brown color surface showing hydrophobic pocket; the blue and red surface is charged surface of the protein; green dotted lines are H -bonding and orange dotted lines are Van der Waals interactions between active site amino acid residues and ligand.

Comp.	Parameters							
	Glide Score	Interacting residues*						
		H-bonding	Salt bridge	Metal Coordination	$\begin{gathered} \pi-\pi \\ \text { cation } \end{gathered}$	Hydrophobic	Polar	Charged
Tiagabine	-4.6	Gly65, Tyr140, Phe294	Na611	None	None	Tyr60, Ala61, Gly63, Trp68, Tyr139, Ile143, Gly297, Phe 447	$\begin{aligned} & \text { Asn66, Gln291, } \\ & \text { Ser295, Ser396 } \end{aligned}$	$\begin{aligned} & \text { Arg69, } \\ & \text { Asp451 } \end{aligned}$
5S2d	-3.9	Gly65, Tyr140, Phe294	Na611	None	None	Tyr60, Ala61, Ile62, Gly63, Leu64, Trp68, Leu136, Tyr139, Gly297, Leu300, Leu460	$\begin{gathered} \text { Asn66, Ser295, } \\ \text { Ser396 } \end{gathered}$	$\begin{aligned} & \text { Arg69, } \\ & \text { Asp451 } \end{aligned}$
5S2w	-6.2	Gly65, Tyr140, Phe294	Na611	None	None	Tyr60, Ala61, Gly63, Leu64, Leu136, Tyr139, Tyr296, Gly297, Leu300, Ala455, Leu460	Asn66, Ser295, Ser396, Ser456	Asp451
5S2y	-7.3	Gly65, Phe294	Na611	Na611	Tyr60	Ala61, ile62, Gly63, Leu64, Leu136, Tyr139, Tyr140, Tyr296, Gly297, Leu300, Ala455, Leu460	Asn66, Ser396, Ser456	Asp451

[^5]
5.B.3.3. Molecular Dynamics

The dynamics simulation runs of the generated minimized complex of 5S2w with GABA GAT1 transporter protein of 4XP4 was performed for 50 ns to predict the stability of binding mode interactions. The overall stability of the system was evaluated by RMSD (Root Mean Square Deviation) and RMSF (Root Mean Square Fluctuation) calculations. The results of the RMSD values confirmed that all frames of the complex were in trajectory throughout the simulation with average fluctuation in the range of 1-3 \AA (Fig. 5.16 \& 5.17).

Fig. 5.16. Protein RMSD (Left Y-Axis) and ligand RMSD (Right Y-Axis) values in \AA with time in ns (X-Axis) for the molecular dynamics simulation run for the complex of 5 w with GAT1 GABA transporter.

Fig. 5.17. Protein RMSF (Left side) and ligand RMSF (Right side) values in \AA with time in nsec.

The graphical representation of binding interactions of compound 5S2w showed the active site interactions throughout the simulation run (Fig. 5.18). The results demonstrated that compound 5S2w efficiently interacted with active site residues Ala61, Gly65, Asn66, Arg69, Tyr140 and Phe294 through H-bonds. Besides, it also interacted with Phe294 through hydrophobic π-stacking. The carboxylate O -atom also involved in salt bridge formation with Na611 atom. The interaction fraction with individual amino acid residues was also calculated and represented in a stacked bar chart (Fig. 5.19). The interaction fraction is the percentage of total contact for the simulation run. For example, 0.8 suggests that interaction was maintained 80% of the total simulation run.

Fig. 5.18. The detailed atomic interactions of ligand 5S2w with the key active amino acid residues with GABA GAT1 transporter protein.

Fig. 5.19. Stacked bar charts of protein interactions with ligand 5S2w as monitored throughout the MD simulation.

5.B.3.4. Estimation of "Drug-Like" Properties

The results of some principle descriptors for the prediction of in silico "drug likeliness" of the most active compounds (5S2d, 5S2w, and 5S2y) are mentioned in Table 5.21. The predicted values for QPlogBB and CNS activity predicted by QikProp method indicated that the selected compounds were found to be active for CNS and might be permeable across blood-brain barrier [Das et al., 2014]. These results are comparable with the outcome of PAMPA-BBB assay and experimental log P values. However, the experimental $\log \mathrm{P}$ values differ with that of the predicted values. The predicted PSA (polar surface area) values were found to be in the range of 58.378-59.856, which revealed that the selected compounds showed lower polar surface area. Lower PSA is a key requisite for the compounds designed for CNS disorders [Meena et al., 2015].

The absence of reactive functional groups that causes decomposition, reactivity, or toxicity problems in vivo was predicted by the outcome of "rtvFG"
value, which was found to be 0 for all the tested compounds. The test compounds demonstrated drug likeliness as per the Lipinski's rule of five (mol_MW <500, QPlogPo/w <5, donorHB ≤ 5, accptHB ≤ 10). QPlogKHSA values for the tested compounds fall within the limit, indicating considerable binding of the compounds with plasma proteins. Overall the predicted parameters revealed that the compounds 4a, 4b, and 4i fulfill drug-like characteristics [Banerjee et al., 2016].

0		I	0	$\underline{\text { L }} 0^{\circ} 0^{-}$	S6I＊6S	S79 ${ }^{\text {I }}$	0	S00＊0－	EE＊8ZE	KZSS
0	$\bigcirc \bigcirc$	I	0	90I ${ }^{\circ}{ }^{-}$	8LE 8 S	$\angle \nabla^{\prime} \mathrm{I}$	I	65000	てZ＊6こを	MZSS
0	$\varsigma^{\circ} \mathrm{S}$	I	0	ESO＊	9S865	6LS＇I	0	L9200－	$6 \varepsilon^{\circ} 01 \varepsilon$	pZSS
	$\begin{gathered} (0 z-\tau) \\ \text { GH } \\ \text { 1dove } \end{gathered}$	$\begin{gathered} (9-0) \\ \text { ЯH } \\ \text { IOUOр } \end{gathered}$		$\begin{gathered} \left(S^{\bullet} I-S^{\bullet} I-\right) \\ \text { VSHY } \\ \text { ©OI dO } \end{gathered}$	$\begin{gathered} (00 z-L) \\ \text { VSd } \end{gathered}$	$\begin{gathered} (8 \cdot 9-\tau-) \\ \text { M/0 } \mathbf{d s i}^{\text {sioldO }} \end{gathered}$	$(z+-z-)$ SND	$\begin{gathered} \left(Z^{`} I-\varepsilon-\right) \\ \text { ggoiddO } \end{gathered}$	$\begin{gathered} (£ Z L-0 \varepsilon I) \\ M N^{-}{ }^{-10 W} \end{gathered}$	－duo，
Table 5．21．In silico drug like properties of the active compounds of Series 2.

[^0]: * Values are expressed as the Mean \pm SD ($\mathrm{n}=6$); Control: Physiological saline (0.9%) containing 2.5% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg} / \mathrm{i} . \mathrm{p}$.;All the test compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; a $\mathrm{p}<0.05$ compared to Control; b p <0.05 compared to compounds 3S1a, 3S1b, and 3S1i.

[^1]: * Values are expressed as the Mean \pm SD ($\mathrm{n}=6$); Control: Physiological saline (0.9%) containing 2.5% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg} / i . p$.; All the test compounds were administered intraperitoneally at an equimolar dose relative to $10 \mathrm{mg} / \mathrm{kg}$ tiagabine; ${ }^{\text {a }} p<0.05$ compared to Control; ${ }^{\mathrm{b}} p<0.05$ compared to compounds $\mathbf{3 S 1 a}$, 3S1b, and 3S1i.

[^2]: * All the interactions were observed within 4A distance.

[^3]: ${ }^{\mathrm{a}} \mathrm{R}_{\mathrm{f}}$ values are determined using DCM/methanol (9.5:0.5) as mobile phase. ${ }^{\mathrm{b}} \mathrm{Log} \mathrm{P}$ values of all the compounds were determined experimentally using shake flask method.

[^4]: ${ }^{*}$ Values are expressed as the Mean \pm SD ($\mathrm{n}=6$); Control: Physiological saline (0.9\%) containing 2.5\% tween 80 ; Tiagabine: $10 \mathrm{mg} / \mathrm{kg}$, i.p.; Diazepam: $4 \mathrm{mg} / \mathrm{kg}$, i.p.; All the test

[^5]: § Jəұdeч: uo!ssnos!a pue słjnsəy

