### CERTIFICATE

It is certified that the work contained in the thesis titled "Design, Synthesis, and Biological Evaluation of Multitargeted *N*-Benzylpiperidine Analogs for the Treatment of Alzheimer's Disease" by Mr. Piyoosh Sharma has been carried out under my supervision, and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Date: Place: IIT (BHU), Varanasi Prof. Sushant Kumar Shrivastava (Supervisor)

### DECLARATION BY THE CANDIDATE

I, **Piyoosh Sharma**, certify that the work embodied in this Ph.D. thesis is my own bonafide work, and carried out by me under the supervision of **Prof. Sushant Kumar Shrivastava from July 2015 to December 2019** at the **Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology** (**Banaras Hindu University**), **Varanasi.** The matter embodied in this Ph.D. thesis has not been submitted for the award of any other degree/diploma.

I declare that I have faithfully acknowledged and given credit to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc. reported in the journals, books, magazines, reports, dissertations, theses, *etc.*, or available at websites and have not included them in this Ph.D. thesis and have not cited as my own work.

Date:

Place: IIT (BHU), Varanasi

**Piyoosh Sharma** 

**CERTIFICATE BY THE SUPERVISOR AND HEAD OF THE DEPARTMENT** It is certified that the above statement made by the student is correct to the best of our knowledge.

Prof. Sushant Kumar Shrivastava (Supervisor) (Head of the Department)

Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

## **COPYRIGHT TRANSFER CERTIFICATE**

| Title of the Thesis | : Design, Synthesis, and Biological Evaluation of<br>Multitargeted <i>N</i> - Benzylpiperidine Analogs for the<br>Treatment of Alzheimer's Disease |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Candidate's Name    | : Mr. Piyoosh Sharma                                                                                                                               |

### **Copyright Transfer**

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

#### Date:

Place: IIT (BHU), Varanasi

**Piyoosh Sharma** 

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and University's copyright notice are indicated.

# <u>Acknowledgements</u>

First of all, salutation to Lord Shiva, the reigning deity of holy city Kashi for making my sojourn fruitful. I bow at the lotus feet of *Bharat Ratna* Pandit *Madan Mohan Malaviyaji*, founder of the Banaras Hindu University. Living in his abode, I always felt a sense of holiness. The Banaras Hindu University is Pandit Malviyaji's crowning achievement. It is a stupendous monument to his peculiar genius, his audacity in conception, and his persistence in execution. The University symbolizes Malviyaji's respect for the past, confidence in the present, and hope for the future generation of India.

It is a matter of privilege and joy to express my feelings of gratitude towards my revered *Guruji Prof. Sushant Kumar Shrivastava*. It has been an honor to be under his tutelage as a Ph.D. student. I am thankful for his continuous support throughout my research for his patience, motivation, and immense knowledge. I am indebted to him for his appreciation for success and backing and support in failures, which ultimately made me keen to tackle any obstructions occurring during the research work. Without his supervision and constant help, this dissertation would not have been possible. He also helped me a lot as Head, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi to use the department facilities to carry out my research work.

I am also grateful to, *Prof. B. Mishra, Prof. S.K. Singh & Prof. Sanjay Singh*, Former Heads, for their constant inspiration, valuable suggestions and help which have led to the successful completion of this work.

I owe my gratitude to all my respected Research Progress and Evaluation Committee (RPEC) members for their encouragement and insightful comments leading me to the completion of the research work. I would like to thank *Prof. Sairam Krishnamurthy* and *Dr. Vinod Tiwari* for their support in performing pharmacological experiments. I would also like to thank *Prof. S. K. Srivastava* (School of Biochem. Engg., IIT(BHU), Varanasi), *Dr. Senthil Raja A., Dr. Gyan P. Modi, Dr. Prasanta K. Nayak, Dr. Shreyans K. Jain* and all other faculty members of the Department for their support and encouragement.

My sincere thanks to *Prof. Surya Pratap Singh & Mr. Saumitra Sen Singh* for assistance in designing and carrying out a part of the pharmacological evaluation studies at the Department of Biochemistry, Faculty of Science, IMS-BHU, Varanasi.

I also acknowledge *Department of Health Research (DHR)* for sanctioning me Young Scientist Grant under newer areas of Drugs Chemistry. I am also thankful to **Council of** *Scientific and Industrial Research-Human Resource Development Group (CSIR-HRDG)* and *Science Engineering & Research Board (SERB)* for providing me International Travel Support to attend Basel Life 2019 at Basel, Switzerland and 20<sup>th</sup> Tetrahedron Symposium at Bangkok, Thailand.

I pay my sincere thanks to *all the non-teaching staff* of the Department for their timely assistance and co-operation during my Ph.D. tenure.

I am indeed thankful to have the company of my lab mates, seniors and juniors *Dr*. *Anupam Banerjee*, *Dr*. *Ankit Seth*, *Dr*. *Nagendra Kumar*, *Mr*. *Avanish Tripathi*, *Dr*. *Prabhash Nath Tripathi*, *Dr*. *Manish Kumar Tripathi*, *Ms*. *Priyanka Kumari Choubey*, *Mr*. *Ashok Avhad*, *Mr*. *Prashant Salunke*, *Dr*. *Chhanda Charan Danta*, *Dr*. *Pavan Srivastava*, *Mr*. *Santosh Kumar Prajapati*, *Mr*. *Digambar Kumar Waiker*, *Mr*. *Ramakrishna Kakarla*, *Mr*. *Gopichand Gutti*, *Dr*. *Devendra Kumar*, *Mr*. *Uddipak Rai*, *Mr*. *Kaushik Neogi*, *Dr*. *Naveen Shivavedi*, *Mr*. *Charan Tej*, *Mr*. *Yashpal Singh*, *Ms*. *Puja Mishra*, *Ms*. *Poorvi Saraf*, *Mr*. *Sombir*, *Ms*. *Nishi Jain*, and *Ms*. *Nidhi Goswami*, who were ever ready to provide me with all the possible help.

A special thanks to my family. Words cannot express how grateful I am to all my *family members* for all of the sacrifices that they made on my behalf and continuous support they provided to me. Most importantly, none of this would have been possible without the love and patience of my *grandmother, parents, wife & son*. They have been a constant source of love, moral support, and strength all these years. I owe this achievement to them.

Last but not least, I pray for the *animals* who were mortified for the cause of my research work.

### Date:

Place: IIT (BHU) Varanasi

| Contents                                                                                                | Page<br>No. |
|---------------------------------------------------------------------------------------------------------|-------------|
| List of Figures                                                                                         | xi          |
| List of Tables                                                                                          | xvi         |
| Abbreviations and Symbols                                                                               | xvii        |
| Preface                                                                                                 | xxi         |
| CHAPTER 1. INTRODUCTION                                                                                 | 1           |
| 1.1 Alzheimer's disease                                                                                 | 1           |
| 1.2 Pathophysiological mechanisms involved in AD                                                        | 2           |
| 1.2.1 Cholinergic hypothesis                                                                            | 2           |
| 1.2.2 A $\beta$ hypothesis                                                                              | 4           |
| 1.2.3 Excitotoxic hypothesis                                                                            | 6           |
| 1.2.4 Oxidative stress hypothesis                                                                       | 6           |
| 1.2.5 Tau hypothesis                                                                                    | 7           |
| 1.2.6 APOe4 hypothesis                                                                                  | 9           |
| 1.2.7 CREB signaling pathways                                                                           | 10          |
| 1.3 Available neurotherapeutics for the treatment of AD                                                 | 11          |
| 1.4 Novel therapeutic strategies for the development and discovery of compounds for the treatment of AD | 11          |
| 1.4.1 Multitarget approach                                                                              | 12          |
| 1.4.2 Computer-aided drug design approach                                                               | 13          |
| 1.4.3 Molecular hybridization                                                                           | 14          |
| 1.5 Design hypothesis in the present study                                                              | 14          |
| CHAPTER 2. REVIEW OF LITERATURE                                                                         | 16          |
| 2.1. N-Benzylpiperidines: Development as multitargeted ligands in AD                                    | 16          |
| 2.2. 1,3,4-Oxadiazoles: Development as multitargeted ligands in AD                                      | 26          |
| CHAPTER 3. RATIONALE, OBJECTIVES AND PLAN OF WORK                                                       | 31          |
| 3.1. Rationale and objectives                                                                           | 31          |
| 3.1.1 Designing of Part-I (Series I) ligands                                                            | 32          |
| 3.1.2 Designing of Part-II (Series II–V) ligands                                                        | 33          |
| 3.2. Plan of work                                                                                       | 35          |
| CHAPTER 4. EXPERIMENTAL                                                                                 | 37          |
| 4.1 Computational studies                                                                               | 37          |
| 4.1.1 Pharmacophore modeling                                                                            | 37          |
| 4.1.2 Virtual screening and docking-post processing (DPP)                                               | 37          |
| 4.1.3 MM-GBSA                                                                                           | 38          |
| 4.1.4 Molecular docking study                                                                           | 38          |
| 4.1.5 Molecular dynamics simulations study                                                              | 38          |

| Contents                                                                                                                                                              | Page<br>No. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4.2 Synthesis                                                                                                                                                         | 39          |
| 4.2.1 Chemicals and reagents                                                                                                                                          | 39          |
| 4.2.2 Series I: <i>N</i> -Benzylpiperidine analogs with substituted phenyl methanimines/ methanamines                                                                 | 39          |
| 4.2.2.1 General procedure for synthesis of compounds (S <sub>I</sub> 3a–o)                                                                                            | 39          |
| 4.2.2.2 General procedure for synthesis of compounds (S <sub>I</sub> 4a–o)                                                                                            | 40          |
| 4.2.3 Series II: N-Benzylpiperidine and substituted<br>benzylidenehydrazine-1-carboxamides and Series III: 5-Phenyl-<br>1,3,4-oxadiazoles tethered with an —NH linker | 40          |
| 4.2.3.1 General procedure for synthesis of compounds ( $S_{II}$ 7)                                                                                                    | 41          |
| 4.2.3.2 General procedure for synthesis of compounds ( $S_{II}8$ )                                                                                                    | 41          |
| 4.2.3.3 General procedure for synthesis of compounds Series II<br>( <b>S<sub>II</sub>9a–h</b> )                                                                       | 41          |
| 4.2.3.4 General procedure for synthesis of compounds Series III<br>(S <sub>III</sub> 10a–c)                                                                           | 42          |
| 4.2.3.5 General procedure for synthesis of compounds Series III<br>(S <sub>III</sub> 10d–h)                                                                           | 42          |
| 4.2.4 Series IV: <i>N</i> -Benzylpiperidine and substituted 5-phenyl-1,3,4-<br>oxadiazoles tethered with the —NHCH <sub>2</sub> linker                                | 42          |
| 4.2.4.1 General procedure for synthesis of compounds (S <sub>IV</sub> 12–h)                                                                                           | 43          |
| 4.2.4.2 General procedure for synthesis of compounds (S <sub>IV</sub> 13-h)                                                                                           | 43          |
| 4.2.4.3 General procedure for synthesis of compounds Series IV (S <sub>IV</sub> 14–h)                                                                                 | 43          |
| 4.2.5 Series V: <i>N</i> -Benzylpiperidine and substituted 5-phenyl-1,3,4-<br>oxadiazoles tethered without linker                                                     | 44          |
| 4.2.5.1 General procedure for synthesis of compounds (Sv16a-h and Sv17a-h)                                                                                            | 44          |
| 4.3 Characterization of the synthesized compounds                                                                                                                     | 45          |
| 4.3.1 Melting point                                                                                                                                                   | 45          |
| $4.3.2 \text{ TLC} (R_{f} \text{ value})$                                                                                                                             | 45          |
| 4.3.3 FT-IR                                                                                                                                                           | 45          |
| 4.3.4 <sup>1</sup> H NMR and <sup>13</sup> C NMR                                                                                                                      | 45          |
| 4.3.5 Mass spectra                                                                                                                                                    | 46          |
| 4.3.6 Determination of percentage purity by HPLC                                                                                                                      | 46          |
| 4.4 Biological Evaluation                                                                                                                                             | 46          |
| 4.4.1 In vitro studies                                                                                                                                                | 46          |
| 4.4.1.1 Cholinesterase inhibition by Ellman assay                                                                                                                     | 46          |
| 4.4.1.2 Enzyme kinetics study                                                                                                                                         | 47          |
| 4.4.1.3 BACE-1 inhibition assay                                                                                                                                       | 47          |

| Contents                                                                                                                                                                                                                                                            | Page<br>No. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4.4.1.4 Propidium iodide displacement assay                                                                                                                                                                                                                         | 48          |
| 4.4.1.5 Parallel artificial membrane permeation assay (PAMPA)                                                                                                                                                                                                       | 49          |
| 4.4.1.6 Aβ aggregation (self- and AChE-induced) inhibition by thioflavin T assay                                                                                                                                                                                    | 49          |
| 4.4.1.7 AFM study                                                                                                                                                                                                                                                   | 50          |
| 4.4.1.8 Neurotoxic liabilities against SH-SY5Y cell lines by MTT assay                                                                                                                                                                                              | 51          |
| 4.4.2 In vivo and ex vivo studies                                                                                                                                                                                                                                   | 51          |
| 4.4.2.1 Animals                                                                                                                                                                                                                                                     | 51          |
| 4.4.2.2 Acute oral toxicity study                                                                                                                                                                                                                                   | 51          |
| 4.4.2.3 Scopolamine-induced amnesia model: Y-maze test                                                                                                                                                                                                              | 52          |
| 4.4.2.4 Ex vivo studies: AChE estimation and antioxidant activity                                                                                                                                                                                                   | 53          |
| 4.4.2.5 A $\beta$ -induced AD phenotypic model: Morris water maze test                                                                                                                                                                                              | 54          |
| 4.4.2.6 Western-blot analysis                                                                                                                                                                                                                                       | 55          |
| 4.4.2.7 Immunohistochemical analysis                                                                                                                                                                                                                                | 56          |
| 4.4.3 Pharmacokinetic studies                                                                                                                                                                                                                                       | 57          |
| CHAPTER 5. RESULTS AND DISCUSSION                                                                                                                                                                                                                                   | 58          |
| 5.1 PART-I: SERIES I                                                                                                                                                                                                                                                |             |
| 5.1.1 Computational studies and designing considerations                                                                                                                                                                                                            | 58          |
| 5.1.1.1 Pharmacophore modeling                                                                                                                                                                                                                                      | 58          |
| 5.1.1.2 Virtual screening and docking-post processing (DPP)                                                                                                                                                                                                         | 59          |
| 5.1.1.3 MM-GBSA                                                                                                                                                                                                                                                     | 60          |
| 5.1.1.4 Molecular docking study                                                                                                                                                                                                                                     | 61          |
| 5.1.1.5 Molecular dynamics simulations study                                                                                                                                                                                                                        | 63          |
| 5.1.2 Chemistry                                                                                                                                                                                                                                                     | 67          |
| 5.1.2.1 Synthesis of Series I: <i>N</i> -Benzylpiperidine with substituted phenyl methanimines/methanamines                                                                                                                                                         | 67          |
| 5.1.2.2 Characterization of the synthesized compounds (Series I)                                                                                                                                                                                                    | 68          |
| 5.1.3 Biological evaluation                                                                                                                                                                                                                                         | 80          |
| 5.1.3.1 In vitro studies                                                                                                                                                                                                                                            | 80          |
| 5.1.3.2 In vivo and ex vivo studies                                                                                                                                                                                                                                 | 80          |
| 5.1.3.3 Pharmacokinetic studies                                                                                                                                                                                                                                     | 89          |
| 5.2 PART-II: SERIES II–V                                                                                                                                                                                                                                            | 93          |
| 5.2.1 Chemistry                                                                                                                                                                                                                                                     | 94          |
| 5.2.1.1 Synthesis of Series II ( <b>S<sub>II</sub>9a–h</b> ) and III ( <b>S<sub>III</sub>10a–h</b> ): <i>N</i> -<br>Benzylpiperidine with substituted<br>benzylidenehydrazine-1-carboxamides and substituted<br>5-phenyl-1,3,4-oxadiazoles tethered with —NH linker | 94          |

| Contents                                                                                                                                                                           | Page<br>No. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5.2.1.2 Characterization of the synthesized compounds (Series II and III)                                                                                                          | 95          |
| 5.2.1.3 Synthesis of Series IV ( <b>S<sub>IV</sub>14a–h</b> ): <i>N</i> -Benzylpiperidine<br>and substituted 5-phenyl-1,3,4-oxadiazoles tethered<br>with —NHCH <sub>2</sub> linker | 103         |
| 5.2.1.4 Characterization of the synthesized compounds (Series IV)                                                                                                                  | 104         |
| 5.2.1.5 Synthesis of Series V ( <b>S<sub>V</sub>17a-h</b> ): <i>N</i> -Benzylpiperidine<br>and substituted 5-phenyl-1,3,4-oxadiazoles tethered<br>without linker                   | 111         |
| 5.2.1.6 Characterization of the synthesized compounds (Series V)                                                                                                                   | 112         |
| 5.2.2 Biological evaluation                                                                                                                                                        |             |
| 5.2.2.1 In vitro studies                                                                                                                                                           | 115         |
| 5.2.2.2 In vivo and ex vivo studies                                                                                                                                                | 126         |
| 5.2.2.3 Pharmacokinetic studies                                                                                                                                                    | 132         |
| 5.2.3 Computational studies                                                                                                                                                        |             |
| 5.2.3.1 Molecular docking study                                                                                                                                                    | 133         |
| 5.2.3.2 Molecular dynamics simulations study                                                                                                                                       | 135         |
| CHAPTER 6. SUMMARY AND CONCLUSION                                                                                                                                                  | 140         |
| 6.1. Scope and future directions                                                                                                                                                   | 143         |
| CHAPTER 7. REFERENCES                                                                                                                                                              | 145         |
| CHAPTER 8. APPENDIX                                                                                                                                                                | 161         |
| 8.1. <sup>1</sup> H and <sup>13</sup> C spectra of representative synthesized compounds                                                                                            | 161         |
| 8.2. Mass spectra of representative synthesized compounds                                                                                                                          | 188         |
| 8.3 HPLC chromatograms of representative synthesized compounds                                                                                                                     | 190         |
| LIST OF PUBLICATIONS                                                                                                                                                               | 197         |

# LIST OF FIGURES

| Fig.<br>No. | Figure Legends                                                                                                                                                                                                   | Page<br>No. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.1         | Synthesis of ACh and cholinergic neurotransmission.                                                                                                                                                              | 4           |
| 1.2         | Amyloidogenic ( $\beta$ -secretase) and non-amyloidogenic ( $\alpha$ -secretase) pathways.                                                                                                                       | 5           |
| 1.3         | The process of tau aggregation, formation of NFTs, and neurodegeneration.                                                                                                                                        | 9           |
| 2.1         | Schematic structural representation of $(R,S)$ -1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methylpiperidine.                                                                                                     | 16          |
| 2.2         | Structures of donepezil analogs with modification of benzyl and piperidine moieties.                                                                                                                             | 17          |
| 2.3         | Structures of minaprine and its most potent analog.                                                                                                                                                              | 18          |
| 2.4         | Structures of <i>N</i> -benzylpiperidine analogs tethered with variably substituted indole moieties.                                                                                                             | 19          |
| 2.5         | The cyclopentathiophene substituted analogs of donepezil.                                                                                                                                                        | 19          |
| 2.6         | The <i>N</i> -benzylpiperidine and indolylpropargylamine tethered multitargeted hybrid.                                                                                                                          | 20          |
| 2.7         | Molecular hybrids of <i>N</i> -benzylpiperidine and 2-aminopyridine-3,5-dicarbonitrile.                                                                                                                          | 20          |
| 2.8         | The <i>N</i> -benzylpiperidine and indole molecular hybrid with multitargeted activities against AD.                                                                                                             | 21          |
| 2.9         | Ferulic acid-based N-benzylpiperidine hybrids.                                                                                                                                                                   | 22          |
| 2.10        | A molecular hybrid of <i>N</i> -benzylpiperidine and diarylthiazole as potential multitargeted ligand against AD.                                                                                                | 23          |
| 2.11        | A molecular hybrid of <i>N</i> -benzylpiperidine moiety of donepezil and coumarin.                                                                                                                               | 23          |
| 2.12        | Umbelic and caffeic acid-based molecular hybrids of <i>N</i> -benzylpiperidine.                                                                                                                                  | 24          |
| 2.13        | Donepezil-like multitargeted compounds as AChE and BACE-1 inhibitors.                                                                                                                                            | 25          |
| 2.14        | Donepezil-based hybrids of <i>N</i> -benzylpiperdine/benzylpiperazine moiety with benzimidazole or benzofuran.                                                                                                   | 25          |
| 2.15        | Novel N-benzylpiperidine carboxamide derivatives.                                                                                                                                                                | 26          |
| 2.16        | 1,3,4-Oxadiazole as GSK-3 $\beta$ and CDK-5 inhibitor.                                                                                                                                                           | 26          |
| 2.17        | 1,3,4-Oxadiazoles as ChE and LOX inhibitors.                                                                                                                                                                     | 27          |
| 2.18        | 1,3,4-Oxadizole analogs with AChE inhibitory potential from the library of $(E)$ -2-aryl-5-(3,4,5-trimethoxystyryl)-1,3,4-oxadiazoles and $(E)$ -2-aryl-5-(2-benzo[d][1,3]diox-ol-5-yl)vinyl)-1,3,4-oxadiazoles. | 27          |
| 2.19        | Novel benzothiazole tethered 1,3,4-oxadiazole hybrids.                                                                                                                                                           | 28          |
| 2.20        | 3-Piperidinyl-1,3,4-oxadiazole hybrid with AChE inhibitory activity.                                                                                                                                             | 28          |

| Fig.<br>No. | Figure Legends                                                                                                                                                                                                                                             | Page<br>No. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.21        | A multifunctional hybrid with 2-aminopyrimidine linked 1,3,4-<br>oxadiazole to treat AD.                                                                                                                                                                   | 29          |
| 2.22        | A molecular hybrid of 4-aminopyridine and 1,3,4-oxadiazole.                                                                                                                                                                                                | 29          |
| 2.23        | Molecular hybrids of 4-aminopyridine and 1,3,4-oxadiazole.                                                                                                                                                                                                 | 30          |
| 3.1         | Design strategy for Part-I (Series I) ligands.                                                                                                                                                                                                             | 33          |
| 3.2         | Design strategy for Part-II (Series II-V) ligands.                                                                                                                                                                                                         | 34          |
| 5.1         | Favored binding sites in generated e-pharmacophore models. [A] AChE (PDB code: 4EY7) [B] BACE-1 (PDB code: 2ZJM).                                                                                                                                          | 58          |
| 5.2         | 3D Structures of cocrystallized ligands depicting numbering of favored residues. [A] AChE (PDB code: 4EY7) [B] BACE-1 (PDB code: 2ZJM).                                                                                                                    | 59          |
| 5.3         | Structures of common identified hits. [A] SEW06622 [B] AW01119 [C] PD00698.                                                                                                                                                                                | 60          |
| 5.4         | Superimpose representation. [A] Donepezil redocked (green) and cocrystallized pose (blue) on AChE (RMSD: 0.4227 Å) [B] F1M redocked (green) and cocrystallized pose (blue) on BACE-1 (RMSD: 1.9161 Å).                                                     | 62          |
| 5.5         | Binding pattern of SEW06622 ( $S_I3a$ ) depicted in orange colored ligand binding surface at the active pocket. [A] AChE (4EY7) [B] BACE-1 (2ZJM).                                                                                                         | 62          |
| 5.6         | Binding pattern of $S_I3j$ depicted in green colored ligand binding surface at the active pocket. [A] AChE (4EY7) [B] BACE-1 (2ZJM).                                                                                                                       | 62          |
| 5.7         | Binding pattern of $S_I4j$ depicted in golden colored ligand binding surface at the active pocket. [A] AChE (4EY7) [B] BACE-1 (2ZJM).                                                                                                                      | 62          |
| 5.8         | Molecular dynamics studies of SEW06622 ( $S_I3a$ )-AChE (4EY7) docked complex. [A] Histogram [B] Graphical representation showing percentage interactions with active site residues [C] Timeline representation showing interactions at each time frame.   | 64          |
| 5.9         | Molecular dynamics studies of $S_I 3j$ -AChE (4EY7) docked complex.<br>[A] Histogram [B] Graphical representation showing percentage interactions with active site residues [C] Timeline representation showing interactions at each time frame.           | 64          |
| 5.10        | Molecular dynamics studies of $S_I4j$ -AChE (4EY7) docked complex.<br>[A] Histogram [B] Graphical representation showing percentage interactions with active site residues [C] Timeline representation showing interactions at each time frame.            | 65          |
| 5.11        | Molecular dynamics studies of SEW06622 ( $S_I3a$ )–BACE-1 (2ZJM) docked complex. [A] Histogram [B] Graphical representation showing percentage interactions with active site residues [C] Timeline representation showing interactions at each time frame. | 65          |

| Fig.<br>No. | Figure Legends                                                                                                                                                                                                                                                  | Page<br>No. |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5.12        | Molecular dynamics studies of $S_I3j$ –BACE-1 (2ZJM) docked<br>complex. [A] Histogram [B] Graphical representation showing<br>percentage interactions with active site residues [C] Timeline<br>representation showing interactions at each time frame.         | 66          |
| 5.13        | Molecular dynamics studies of $S_I4j$ -BACE-1 (2ZJM) docked<br>complex. [A] Histogram [B] Graphical representation showing<br>percentage interactions with active site residues [C] Timeline<br>representation showing interactions at each time frame.         | 66          |
| 5.14        | Lineweaver-Burk plot for the kinetic study of hAChE inhibition by compound $S_I4j$ .                                                                                                                                                                            | 82          |
| 5.15        | Dixon plot of compound $S_I4j$ at three different concentrations (0.03, 0.15, and 0.30 $\mu$ M) showing Ki value of inhibitor as the negative intersection at the x-axis.                                                                                       | 83          |
| 5.16        | Effect of test compounds on A $\beta$ aggregation inhibition. [A] Self-induced and [B] AChE-induced experiments.                                                                                                                                                | 87          |
| 5.17        | Effect of test compounds on A $\beta$ aggregation. [A] Self-induced and [B] AChE-induced A $\beta$ aggregation.                                                                                                                                                 | 87          |
| 5.18        | AFM images of A $\beta_{1.42}$ aggregates (10 $\mu$ M) incubated with or without inhibitor ( <b>S<sub>I</sub>4j</b> ) at different time intervals (0, 3, 5, and 7 days).                                                                                        | 88          |
| 5.19        | Cell viability assay on neuroblastoma SH-SY5Y cell lines with increasing concentrations of $S_I4i$ and $S_I4j$ .                                                                                                                                                | 89          |
| 5.20        | Effect of compounds $S_I4i$ , $S_I4j$ , and donepezil on scopolamine-<br>induced cognition and memory improvement. [A] Spontaneous<br>alternations (%) and [B] Total number of arm entries in the Y-maze<br>experiment.                                         | 91          |
| 5.21        | Results of <i>ex vivo</i> studies. [A] AChE activity- rate of substrate hydrolyzed [B] TBARS assay- levels of MDA [C] Superoxide dismutase assay- levels of SOD units.                                                                                          | 92          |
| 5.22        | Effect of compound $S_I4j$ in spatial memory improvement on ICV $A\beta_{1-42}$ -induced model [A] Escape latency time (ELT) [B] Number of platform crossings in target quadrant during the last 5 days of trials by Morris water maze experiment.              | 93          |
| 5.23        | Lineweaver-Burk double reciprocal plot showing the mechanism of enzyme inhibition by compound $S_{III}10g$ [A] hAChE inhibition with acetylthiocholine iodide (ATCI) as substrate [B] hBChE inhibition with butyrylthiocholine iodide (BTCI) as substrate.      | 120         |
| 5.24        | The Dixon plots of compound <b>S</b> <sub>III</sub> <b>10g</b> between Lineweaver-Burk double reciprocal slope and inhibitor concentrations. [A] Dissociation constant Ki = 0.026 $\mu$ M for hAChE and [B] Dissociation constant Ki = 0.115 $\mu$ M for hBChE. | 120         |
| 5.25        | Effect of test compounds on Aβ aggregation inhibition. [A] Self-<br>induced and [B] AChE-induced experiments.                                                                                                                                                   | 124         |
| 5.26        | Effect of test compounds on A $\beta$ aggregation. [A] Self-induced and [B] AChE-induced A $\beta$ aggregation.                                                                                                                                                 | 124         |

| Fig.<br>No. | Figure Legends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page<br>No. |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5.27        | AFM images of $A\beta_{1-42}$ aggregates (10 µM) incubated with or without inhibitor ( <b>S</b> <sub>III</sub> <b>10g</b> ) at different time intervals (on days 0, 4, 7, and 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125         |
| 5.28        | Cell viability assay on neuroblastoma SH-SY5Y cell lines with increasing concentrations of [A] $S_{III}10g$ and [B] $S_{IV}14f$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126         |
| 5.29        | Effect of compounds $S_{III}10g$ , $S_{IV}14f$ , and donepezil on scopolamine-<br>induced cognition and memory improvement. [A] Spontaneous<br>alternations (%) and [B] Total number of arm entries in the Y-maze<br>experiment.                                                                                                                                                                                                                                                                                                                                                                                                    | 128         |
| 5.30        | Results of <i>ex vivo</i> studies. [A] AChE activity- rate of substrate hydrolyzed [B] TBARS assay- levels of MDA and [C] Superoxide dismutase assay- levels of SOD units.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129         |
| 5.31        | Effect of compound <b>S</b> <sub>III</sub> <b>10g</b> in spatial memory improvement on ICV $A\beta_{1.42}$ -induced model [A] Escape latency time (ELT) [B] Number of platform crossings in target quadrant during the last 5 days of trials by Morris water maze experiment.                                                                                                                                                                                                                                                                                                                                                       | 131         |
| 5.32        | Effect of $S_{III}10g$ on <i>in vivo</i> expression of A $\beta$ and BACE-1 levels in<br>the hippocampal region of the rat brain. [A] Representative bands in<br>the Western blot analysis [B] Densitometric quantification showing<br>attenuated levels of A $\beta$ and [C] BACE-1, which were elevated with<br>ICV administration of A $\beta$ ; [D] Immunostaining showing attenuated<br>levels of A $\beta$ and BACE-expression by $S_{III}10g$ at 10× magnification<br>after staining; [E & F] Quantification analysis of immunostains<br>showing changes in burden (% area) of A $\beta$ and BACE-1 levels,<br>respectively. | 132         |
| 5.33        | Docking poses of ligands in the active site of AChE (4EY7). [A] $S_{III}10g$ and [B] $S_{IV}14f$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 135         |
| 5.34        | Docking poses of ligands in the active site of BACE-1 (2ZJM). [A] $S_{III}10g$ and [B] $S_{IV}14f$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 135         |
| 5.35        | Results of molecular dynamics simulation run of 100 ns for $S_{III}10g$ -AChE (4EY7) docked complex. [A] Ligand-protein RMSD relative to protein backbone structure [B] Histogram showing interaction fractions and [C] Time-line graphical representation showing interaction with individual residues in each trajectory frame.                                                                                                                                                                                                                                                                                                   | 137         |
| 5.36        | Results of molecular dynamics simulation run of 100 ns for $S_{IV}$ 14f-AChE (4EY7) docked complex. [A] Ligand-protein RMSD relative to protein backbone structure [B] Histogram showing interaction fractions and [C] Time-line graphical representation showing interaction with individual residues in each trajectory frame.                                                                                                                                                                                                                                                                                                    | 137         |
| 5.37        | Results of molecular dynamics simulation run of 100 ns for $S_{III}10g$ -BACE-1 (2ZJM) docked complex. [A] Ligand-protein RMSD relative to protein backbone structure [B] Histogram showing interaction fractions and [C] Time-line graphical representation showing interaction with individual residues in each trajectory frame.                                                                                                                                                                                                                                                                                                 | 138         |

| Fig.<br>No. | Figure Legends                                                                                                                                                                                                                                                                                                                     | Page<br>No. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5.38        | Results of molecular dynamics simulation run of 100 ns for $S_{IV}$ 14f-BACE-1 (2ZJM) docked complex. [A] Ligand-protein RMSD relative to protein backbone structure [B] Histogram showing interaction fractions and [C] Time-line graphical representation showing interaction with individual residues in each trajectory frame. | 138         |
| 5.39        | 2D graphical representation of active site interactions in 100 ns molecular dynamics simulations runs. [A] $S_{III}10g$ -AChE [B] $S_{IV}14f$ -AChE [C] $S_{III}10g$ -BACE-1 and [D] $S_{IV}14f$ -BACE-1.                                                                                                                          | 139         |

| Scheme<br>No. | Scheme Legends                                                                         | Page<br>No. |
|---------------|----------------------------------------------------------------------------------------|-------------|
| 1             | Synthesis of compounds from Series I (SI3a-o and SI4a-o).                              | 39          |
| 2             | Synthesis of compounds from Series II $(S_{II}9a-h)$ and Series III $(S_{III}10a-h)$ . | 40          |
| 3             | Synthesis of compounds from Series IV (S <sub>IV</sub> 14a-h).                         | 42          |
| 4             | Synthesis of compounds from Series V (Sv17a-h).                                        | 44          |

## LIST OF SCHEMES

## LIST OF TABLES

| Table<br>No. | Table Captions                                                                                                                                             | Page<br>No. |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.1          | Chemical structures, mechanism, and adverse effects of USFDA approved drugs for the treatment of AD.                                                       | 11          |
| 5.1          | Glide score, interacting residues, and MM-GBSA $\Delta$ G binding free energy of identified hits (SEW06622, AW01119, and PD00698) against AChE and BACE-1. | 60          |
| 5.2          | Cholinesterases (hAChE and hBChE) and hBACE-1 inhibition activity and selectivity index of compounds (Series I).                                           | 81          |
| 5.3          | Propidium iodide displacement and predicted BBB permeability (Series I).                                                                                   | 85          |
| 5.4          | Pharmacokinetic evaluation after an oral administration of $S_I4j$ (10 mg/kg, p.o.)                                                                        | 94          |
| 5.5          | Cholinesterases (hAChE and hBChE) and hBACE-1 inhibition activity and selectivity index of compounds (Series II-V).                                        | 118         |
| 5.6          | Propidium iodide displacement and predicted BBB permeability (Series II-V).                                                                                | 123         |
| 5.7          | Pharmacokinetic evaluation after an oral administration of $S_{III}10g$ (10 mg/kg, p.o.)                                                                   | 133         |

## **ABBREVIATIONS & SYMBOLS**

| ACh               | Acetylcholine                                                   |
|-------------------|-----------------------------------------------------------------|
| AChE              | Acetylcholinesterase                                            |
| AD                | Alzheimer's disease                                             |
| AFM               | Atomic force microscopy                                         |
| AMP               | Adenosine monophosphate                                         |
| AMPK              | AMP-activated protein kinase                                    |
| AP                | Anterior – Posterior                                            |
| ApoE              | Apolipoprotein E                                                |
| Αβ                | Amyloid beta                                                    |
| APP               | Amyloid precursor protein                                       |
| ATCI              | Acetylthiocholine iodide                                        |
| ATR               | Attenuated total reflectance                                    |
| BACE-1            | Beta amyloid cleaving enzyme 1                                  |
| BBB               | Blood-brain barrier                                             |
| BChE              | Butyrylcholinesterase                                           |
| BSA               | Bovine serum albumin                                            |
| BTCI              | Butyrylthiocholine iodide                                       |
| CADD              | Computer-aided drug design                                      |
| CaMK              | Ca <sup>2+</sup> /calmodulin dependent kinase                   |
| CAS               | Catalytic anionic site                                          |
| CAT               | Choline acetyltransferase                                       |
| CDCl <sub>3</sub> | Deuterochloroform                                               |
| CDK-5             | Cyclin dependent kinase-5                                       |
| ChE               | Cholinesterase                                                  |
| CNS               | Central nervous system                                          |
| CoA               | Coenzyme A                                                      |
| CoMFA             | Comparative molecular field analysis                            |
| CoMSIA            | Comparative molecular similarity indices analysis               |
| COX               | Cyclooxygenase                                                  |
| CREB              | Cyclic-AMP-response element-binding protein                     |
| CST               | Conjugated secondary antibody                                   |
| СҮР               | Cytochrome P                                                    |
| DMSO              | Dimethyl sulfoxide                                              |
| DPP               | Docking-post processing                                         |
| DTNB              | 5,5-Dithio-bis-(2-nitrobenzoic acid                             |
| DV                | Dorsal - Ventral                                                |
| Dyrk1A            | Dual specificity tyrosine- phosphorylation-regulated kinase-1 A |
| EDGs              | Electron donating groups                                        |
| EDTA              | Ethylenediaminetetraacetic acid                                 |

| ELT     | Escape latency time                                           |
|---------|---------------------------------------------------------------|
| ERK     | Extracellular signal-regulated protein kinases                |
| ESI     | Electrospray ionization                                       |
| EtOH    | Ethanol                                                       |
| EWGs    | Electron withdrawing groups                                   |
| FDA     | Food and drug administration                                  |
| FRET    | Fluorescence resonance energy transfer                        |
| FT-IR   | Fourier-transform infrared spectroscopy                       |
| GSK-3β  | Glycogen synthase kinase-3β                                   |
| hAChE   | Human AChE                                                    |
| hBChE   | Human BChE                                                    |
| HPLC    | High performance liquid chromatography                        |
| HTVS    | High throughput virtual screening                             |
| i.p.    | Intraperitoneal                                               |
| ICV     | Intracerebroventricular                                       |
| JNK     | Janus kinase                                                  |
| LBDD    | Ligand-based drug design                                      |
| MAO-B   | Monoamine oxidase-B                                           |
| MAPK    | Mitogen activated protein kinase                              |
| MARK    | Microtubule affinity-regulating kinase                        |
| MDA     | Malondialdehyde                                               |
| ML      | Medial – Lateral                                              |
| MM-GBSA | Molecular mechanics generalized Born surface area             |
| MnSOD   | Manganese superoxide dismutase                                |
| mp      | Melting point                                                 |
| MPO     | Myeloperoxidase                                               |
| MTT     | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide |
| Na-CMC  | Sodium carboxymethyl cellulose                                |
| NADPH   | Reduce form of nicotinamide adenine dinucleotide phosphate    |
| NFI     | Normalized fluorescence intensity                             |
| NFTs    | Neurofibrillary tangles                                       |
| NMDAR   | <i>N</i> -Methyl-D-aspartate receptor                         |
| NMR     | Nuclear magnetic resonance spectroscopy                       |
| NOS     | Nitric oxide synthase                                         |
| NOx     | NADPH oxidase                                                 |
| NPT     | Normality, pressure and temperature                           |
| OECD    | Organisation for economic co-operation and development        |
| OPLS    | Optimized potential for liquid simulations                    |
| p.o.    | Per oral                                                      |
| PAMPA   | Parallel artificial membrane permeation assay                 |

| PAS   | Peripheral anionic site                      |
|-------|----------------------------------------------|
| PBL   | Porcine brain lipid                          |
| PBS   | Phosphate buffered saline                    |
| PBST  | Phosphate buffered saline with Tween 20      |
| PDB   | Protein data bank                            |
| PDE   | Phosphodiesterase                            |
| PHFs  | Paired helical fibrils                       |
| PI    | Propidium iodide                             |
| РКА   | Protein kinase-A                             |
| PPs   | Protein phosphatases                         |
| PTPA  | Protein tyrosine phosphatase-A               |
| QSAR  | Quantitative structure-activity relationship |
| RIPA  | Radioimmunoprecipitation assay               |
| RMSD  | Root mean square deviation                   |
| RNS   | Reactive nitrogen species                    |
| ROS   | Reactive oxygen species                      |
| SBDD  | Structure-based drug design                  |
| SFKs  | Src family non-receptor tyrosine kinases     |
| SOD   | Superoxide dismutase                         |
| SP    | Standard precision                           |
| TBARS | Thiobarbituric acid reactive substances      |
| TBST  | Tris-buffered saline with Tween 20           |
| TLC   | Thin layer chromatography                    |
| TPKI  | Tau protein kinase-I                         |
| TRITC | Tetramethylrhodamine isothiocyanate          |
| UV    | Ultraviolet spectroscopy                     |
| VSGB  | Variable surface generalized Born            |
| WHO   | World Health Organization                    |
| XO    | Xanthine oxidase                             |
| XP    | Extra precision                              |
| XRD   | X-ray diffraction                            |
|       |                                              |

## **SYMBOLS & UNITS**

| ×g | Relative | centrifugal | force |
|----|----------|-------------|-------|
| 0  |          |             |       |

- °C Degree Celsius
- μL Microliter
- μm Micrometer
- μM Micromolar
- Å Angstrom
- α Alpha
- β Beta

| γ                | Gamma                                      |
|------------------|--------------------------------------------|
| v                | Wavenumber                                 |
| AUC              | Area under curve                           |
| cm               | Centimeter                                 |
| C <sub>max</sub> | Maximal plasma concentration               |
| d                | Doublet                                    |
| dd               | Doublet of doublets                        |
| ddd              | Doublet of doublets of doublets            |
| equiv            | Equivalent                                 |
| g                | Gram                                       |
| h                | Hour                                       |
| Hz               | Hertz                                      |
| J-value          | Spin-spin coupling constant                |
| Κ                | Kelvin                                     |
| kg               | Kilogram                                   |
| KHz              | Kilohertz                                  |
| m                | Multiplet                                  |
| mg               | Milligram                                  |
| min              | Minute                                     |
| mL               | Milliliter                                 |
| mM               | Millimolar                                 |
| MRT              | Mean residence time                        |
| N/m              | Newton per meter                           |
| ng               | Nanogram                                   |
| nm               | Nanometer                                  |
| ppm              | Parts per million                          |
| q                | Quartet                                    |
| RH               | Relative humidity                          |
| rpm              | Rotations per minute                       |
| S                | Seconds/Singlet                            |
| t                | Triplet                                    |
| $t_{1/2}$        | Elimination half-life                      |
| td               | Triplet of doublets                        |
| T <sub>max</sub> | Time to reach maximum plasma concentration |
| U/mL             | Units per milliliter                       |
| v/v              | Volume by volume                           |
| w/v              | Weight by volume                           |

#### **PREFACE**

Alzheimer's disease (AD) is an enormous healthcare burden caused by loss of neurons and synapses, particularly in neocortex and hippocampus. AD causes substantial structural and functional damage of the brain, which resulted into severe behavioral alterations and cognitive dysfunction. A recent report 2018 from World Health Organization (WHO) accounts for 50 million cases of AD worldwide and this figure is estimated to be tripled by 2050. There are several underlying pathophysiological mechanisms involved in the progressive cognitive deficits of AD such as, decline in acetylcholine (ACh) levels, amyloid beta (A $\beta$ ) aggregation and deposition, activation of *N*-methyl-D-aspartate receptor (NMDAR), oxidative stress, tau hyperphosphorylation and generation of neurofibrillary tangles (NFTs), apolipoprotein E4 (APOe4) gene transcription, cyclic-AMP-response element-binding protein (CREB) signaling pathways, etc.

Current treatment strategies for AD encompass the use of FDA approved medications like cholinesterase (ChE) inhibitors (donepezil, rivastigmine, and galantamine) and Nmethyl-D-aspartate (NMDA) receptor antagonist (memantine). However, drug therapy for this ailment is still in its infancy and fails to delay the progression of the disease. The new strategy of multi-targeted inhibitors has been adopted recently, which involves targeting multiple enzymes simultaneously with a single molecule. This strategy was built upon the fact that AD is a multifactorial disorder, linked with multiple targets. Thereby, design and development of multitarget-directed ligands could be successful for mitigating the disease progression rather than providing symptomatic relief only.

This research work is divided into two parts. The first part deals with the designing of Series I ligands based upon computational methods, such as pharmacophore modeling, high-throughput virtual screening (HTVS), docking-post processing (DPP), molecular mechanics generalized Born surface area (MM-GBSA), molecular docking, and dynamics simulations. The designed series of ligands were evaluated for their multitargeted inhibitory potential against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), beta secretase-1 (BACE-1), and AB. Compounds were also assessed for their binding capability with peripheral anionic site (PAS) of AChE by propidium iodide displacement assay and blood-brain barrier (BBB) penetrability was predicted by PAMPA model. The neurotoxic liability of compounds was evaluated against SH-SY5Y neuroblastoma cell lines by MTT assay. The neurobehavioral studies in rats were performed to evaluate the effect of compounds in improving the learning and memory. Moreover, pharmacokinetic study was performed to determine the oral absorption characteristics of lead candidates.

The second part of the thesis work involved designing Series II-V compounds using a molecular hybridization approach on the basis of outcomes from Series I. The compounds were evaluated by several *in vitro* and *in vivo* studies to be established as potential multitargeted ligands for the treatment of AD. Additionally, molecular mechanistic analyses were performed by Western-blot and immunohistochemistry.

To this date, the research work has led to the publication of two research papers and two filed Indian Patents. Suggestions and comments on the part of the readers are always welcome.

The work has been presented in this dissertation under the following sections:

**Chapter 1:** The first chapter offers an introductory section which deals with a basic information along with the historical background, pathophysiological mechanisms involved, and current therapeutics available for the treatment of AD. A brief discussion

about novel strategies adopted for the AD, such as multitargeting, computational methods, and molecular hybridization.

**Chapter 2:** This chapter focused on detailed literature survey on cholinesterase (AChE and BChE), BACE-1 and A $\beta$  inhibitory potential of the compounds bearing *N*-benzylpiperidines and 1,3,4-oxadiazoles.

**Chapter 3:** This chapter summarizes the research objectives, the overall rationale for carrying out this investigation and plan of work as embodied in this thesis.

**Chapter 4:** This chapter describes the experimental procedure used in the synthesis, characterization, protocols for computational studies, and *in vitro* and *in vivo* pharmacological evaluations.

Chapter 5: This chapter covers the results and discussion part of the research work.

Chapter 6: This chapter outlines the summary and conclusion.

**Chapter 7:** This section includes the references as a source of information to carry out the research work.

**Chapter 8:** An appendix consisting of the NMR ( $^{1}$ H and  $^{13}$ C) and Mass spectra along with HPLC chromatograms of the representative compounds followed by a list of published papers, filed patents, and presentations at international conferences.