Contents

Acknowledgements	vii
Contents	ix
Table of Figure	xiii
List of Table	xxi
List of Schemes	xxiii
Abbreviations	xxv
Chapter 1: Introduction and Literature Review	1
1.1 Cancer	1
1.2 Traditional methods of treatment and their drawbacks	1
1.2 Surgery	1
1.2.7 Surgery	2
1.2.3 Chemotherapy	
1.3 Barriers and side effects in chemotherapy	2
1.4 Drug delivery in cancer (Need of controlled drug delivery)	
1.5 Mechanism of drug release from polymers	
1.5.1 Diffusion Controlled release	6
1.5.2 Solvent Controlled release	7
1.5.3 Degradation controlled release	7
1.5.4 Stimuli Controlled release	
1.6 Drug delivery systems	
1.6.1 Liposomes	
1.6.2 Dendrimers	9
1.6.3 Hydrogels	9
1.6.4 Micelle as a drug carrier	
1.6.5 Polymeric nanoparticles	11
1.7 Bio polymers for controlled drug release	
1.7.1 Chitosan	
1.7.2 Dextrin	
1.7.3 Cellulose	13
1.7.4 Pullulan	14
1.7.5 Hyaluronan	14
1.7.6 Alginates	15

1.7.7 Gelatin	15
1.8 Strategies for polymer modification	16
1.8.1 Grafting a versatile method for polymer grafting	16
1.8.2 Atom transfer radical polymerization	18
1.8.3 Reversible addition-fragmentation chain transfer polymerization	19
1.9 Modes of delivery and cancer treatment	20
1.9.1 Transdermal patches	20
1.9.2 Subcutaneous	22
1.9.3 Intravenous	23
1.9.4 Photodynamic therapy	24
1.10 Cyclodextrin in drug delivery and cancer treatment	24
1.10.1 Graft copolymers	26
1.10.2 Nanoparticles	27
1.10.3 Dendrimers	29
1.10.4 Hydrogels	29
1.10.5 Nanofibers	30
1.11 Scope and objectives of present work	30
1.12 Plan of present work	31
Chapter 2: Experimental Section	35
2.1 Synthesis of different polymeric architectures for controlled drug release	35
2.1.1 Materials	35
2.1.2 Synthesis of polyurethane graft CD copolymers	35
2.1.3 Synthesis of short chain prepolymer and its grafting on CD	37
2.1.4 Synthesis of different generations of CD	38
2.1.5 Synthesis of polyurethane grafted linear (dextrin) brush Copolymers	40
2.2 Characterizations	41
2.2.1 Proton NMR	41
2.2.2 Fourier transform infrared spectroscopy (FTIR)	41
2.2.3 UV-Vis	41
2.2.4 Thermal analysis	42
2.2.5 Mechanical responses	42
2.2.6 Swelling and contact angle studies	42
2.2.7 Structural analysis	43
2.2.8 Morphological investigation	43
2.3 In-Vitro Drug release	44
2.4 Biocompatibility	44
2.4.1 Cell Culture	44

2.4	.2 Cell adhesion	45
2.4	.3 Fluorescence imaging	46
2.5	Animal studies	46
2.5	.1 In-vivo anti-tumor efficacy	
2.5	.2 Histopathology and biochemical assay	47
2.5	.3 Biodistribution	48
Chapte	r 3: Efficacy of polyurethane graft on cyclodextrin to control drug re	lease for
tumor	reatment	49
3.1	Introduction	49
3.2	Results and discussion	
3.2	.1 Different architecture through grafting	
3.2	.2 Thermal and mechanical responses with structural alteration in graft c 55	opolymer
3.3	Sustained release of drug using varying architecture	60
3.4	Biocompatibility and in-vitro efficiency under controlled release	66
3.5	Efficacy of controlled release for cancer treatment in animal model	70
3.6	Conclusion	78
Chanta	r 4: Craftad Cycladaytrin as carrier for control drug delivery and off	icient cell
Chapte	1 4. Graneu Cyclouextrin as carrier for control urug denvery and en	
killing.	1 4. Graneu Cyclouextrin as carrier for control urug denvery and en	
killing. 4.1	Introduction	
killing . 4.1 4.2	Introduction	
killing . 4.1 4.2 4.2	Introduction Results and discussion .1 Spectroscopic evidence for grafting	81
killing . 4.1 4.2 4.2 4.2 4.2	Introduction Results and discussion .1 Spectroscopic evidence for grafting .2 Thermal and mechanical responses in graft copolymer	81
killing. 4.1 4.2 4.2 4.2 4.2 4.2	Introduction Results and discussion .1 Spectroscopic evidence for grafting .2 Thermal and mechanical responses in graft copolymer .3 In-vitro drug release and polymer drug interaction	81
killing. 4.1 4.2 4.2 4.2 4.2 4.2 4.3	 Introduction	81
killing. 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.4	 Introduction Results and discussion 1 Spectroscopic evidence for grafting 2 Thermal and mechanical responses in graft copolymer 3 In-vitro drug release and polymer drug interaction Biocompatibility and in-vitro toxicity Conclusion 	81
killing. 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.4 Chapte	 Introduction Results and discussion 1 Spectroscopic evidence for grafting 2 Thermal and mechanical responses in graft copolymer 3 In-vitro drug release and polymer drug interaction Biocompatibility and in-vitro toxicity Conclusion r 5: Third Generation Cyclodextrin Graft with Polyurethane Embedo 	81
killing. 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.4 Chapte Hydrog	 Introduction	etent cen
killing. 4.1 4.2 4.2 4.2 4.2 4.3 4.4 Chapte Hydrog 5.1	Introduction Introduction Results and discussion .1 Spectroscopic evidence for grafting .2 Thermal and mechanical responses in graft copolymer .3 In-vitro drug release and polymer drug interaction .3 Biocompatibility and in-vitro toxicity Conclusion r 5: Third Generation Cyclodextrin Graft with Polyurethane Embedo gel for a Sustained Drug Release: Complete Shrinkage of Melanoma Introduction	etent cen
killing. 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.4 Chapte Hydrog 5.1 5.2	Introduction Results and discussion 1 Spectroscopic evidence for grafting 2 Thermal and mechanical responses in graft copolymer 3 In-vitro drug release and polymer drug interaction Biocompatibility and in-vitro toxicity Conclusion r 5: Third Generation Cyclodextrin Graft with Polyurethane Embedo gel for a Sustained Drug Release: Complete Shrinkage of Melanoma Introduction Results and discussion	etent cen
killing. 4.1 4.2 4.2 4.2 4.2 4.3 4.4 Chapte Hydrog 5.1 5.2 5.2 5.2	Introduction Results and discussion 1 Spectroscopic evidence for grafting 2 Thermal and mechanical responses in graft copolymer 3 In-vitro drug release and polymer drug interaction Biocompatibility and in-vitro toxicity Conclusion r 5: Third Generation Cyclodextrin Graft with Polyurethane Embedded for a Sustained Drug Release: Complete Shrinkage of Melanoma Introduction Results and discussion 1 Spectroscopic characterization	
killing. 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.4 Chapte Hydrog 5.1 5.2 5.2 5.2 5.2	Introduction Results and discussion 1 Spectroscopic evidence for grafting 2 Thermal and mechanical responses in graft copolymer 3 In-vitro drug release and polymer drug interaction Biocompatibility and in-vitro toxicity Conclusion r 5: Third Generation Cyclodextrin Graft with Polyurethane Embedored for a Sustained Drug Release: Complete Shrinkage of Melanoma Introduction Results and discussion 1 Spectroscopic characterization 2 Structure and Morphology	leicht cen
killing. 4.1 4.2 4.2 4.2 4.2 4.3 4.4 Chapte Hydrog 5.1 5.2 5.2 5.2 5.2 5.3	Introduction Results and discussion 1 Spectroscopic evidence for grafting 2 Thermal and mechanical responses in graft copolymer 3 In-vitro drug release and polymer drug interaction Biocompatibility and in-vitro toxicity Conclusion r 5: Third Generation Cyclodextrin Graft with Polyurethane Embedored for a Sustained Drug Release: Complete Shrinkage of Melanoma Introduction Results and discussion 1 Spectroscopic characterization 2 Structure and Morphology In-vitro drug release	Internet cont

5.5	In Vivo efficiency	112
5.6	Conclusion	118
Chapter for susta	r 6: Modified biopolymer dextrin grafted polyurethane copolymer hyd ained drug release and Melanoma treatment	rogels 121
6.1	Introduction	121
6.2 6.2. 6.2.	 Results and discussion	123 123 opolymer
6.2.	3 Structural and surface characterization	130
6.3	In Vitro drug release from brush polymers/hydrogel	132
6.4	Biocompatibility studies	137
6.5	Cellular uptake and Cytotoxicity studies	139
6.6	In-Vivo studies on Melanoma model	142
6.7	Conclusion	149
Chapter	r 7: Conclusion and Future Scope	151
7.1	Conclusion	151
7.2	Scope for future work	155
Reference	ces	157
List of P	Publications	176
Book Ch	napter	178
Patents f	filed	178

Table of Figure

Figure 1.1: A schematic presentation of controlled release systems over traditional release.
Figure 1.2: Different polymeric carriers for controlled drug delivery
Figure 1.3: Schematic representation of different grafting methods
Figure 1.4: Mechanism of ATRP[71]
Figure 1.5: RAFT polymerization mechanism. 20
Figure 1.6: A cooperative system of chemotherapy and photothermal therapy for treatment of A431 tumors by the integration near-infrared responsive GNR-PEG@MNs and MPEG-PDLLA-DTX micelles. (Step 1: Injection of DTX loaded micelles; Step 2: After the injection, pressing of GNR-PEG@MNs at the tumor sites and under 2 W/cm ² irradiation by 808 nm laser within 5 min)
Figure 1.7: Structures of cyclodextrin. Top- chemical structure of cyclodextrin, Bottom 3D structure of α , β and γ cyclodextrins with their dimensions

Figure 1.8: a) Schematic presentation of multifunctional MSNPs-CD-PEG-FA for targeted and controlled drug delivery; b) Release profiles of Dox loaded MSNPs-S-S-CD under different pH environment at 37 °C; c) Cell viability of HeLa cells after incubation with free Dox, Dox-MSNPs-CD-PEG-FA, or Dox-MSNPs-CD-PEG at different Dox doses... 28

Figure 3.3: a) Thermal stability (TGA thermogrammes) of pure CD, PU and their grafts as measured through thermogravimetric analyser; b) DSC thermogrammes of PU and its graft copolymers as indicated both for heating (bottom three) and cooling cycle (top two thermogrammes). The inset figure represents DSC pattern of pristine CD; c) Stress–strain curves of graft copolymers showing elongation at break. 56

Figure 3.8: Biological responses of graft copolymers through cellular studies. a) Cell viability of indicated samples at time interval of 1, 3 and 5 days through MTT assay measurement; b) Fluorescence microscopic images of cell cultured on indicated specimens and images are taken after one day of cell proliferation (mag $40\times$); c) Morphology of cells grown on different sample surface as indicated (cell adhesion); d) Quantification of cell adhesion through optical density measurement of adhered cells over various sample surface.

Figure 3.10: a) Images of mice after tumor generation using B16 F10 cell line and tumor size after treatment with drug loaded indicated systems for varying time interval; b)

Figure 4.1: a) ¹H NMR Spectra of CD, prepolymer (PP) and their indicated grafts. Occurrences of new peak due to grafting are marked as 'a' and another peak at δ ~8 ppm demarcates the intermolecular hydrogen bonding. Calculation of degree of substitution from integrated peak area is presented in the text; b) FTIR spectra of pure CD, PP and their graft copolymers as indicated; c) UV- Vis spectra of CD and indicated graft copolymers. Vertical lines indicate the peak position for n- π^* transition of carbonyl peak; d) Molecular weight analysis through gel permeation chromatogram of graft copolymers. 83

Figure 4.5: a) Cumulative release profiles of drug loaded graft copolymers indicated, showing controlled drug release profile from graft copolymers; b) Schematic model showing the drug release from pure CD and graft copolymer. c) Contact angle of graft copolymers and PP showing low graft density copolymers are hydrophobic as compared to high graft density copolymer. 91

Figure 4.7: a) UV-Vis spectra of drug loaded graft copolymer and CD showing polymerdrug interaction. Vertical lines indicate the respective peak positions; b) DSC thermogrammes of representative CgP-H and its drug loaded sample showing depression of melting peak and heat of fusion in presence of drug. 94

Figure 6.3: Structural and morphology investigation, a) XRD patterns of pure Dextrin, PU and their graft copolymers; b) Small angle neutron scattering profile of D and P and its graft copolymers. Inset figures represent the Debye-Bueche fitting of the initial data points showing the correlation length; c) Optical images of the graft copolymers showing greater agglomerates. d) AFM images of Dextrin, P and their grafts in semi contact mode ($10 \times 10 \ \mu m^2$).

Figure 6.9: a) Histopathological images of vital organs after treatment; b) Biochemical parameters, Hepatic function test including AST, ALT, and ALP: c) Renal function namely

BUN and Creatinine of the mice treated with Gels. Corresponding values of healthy mice
are indicated by the arrows; d) MIA stained tumor tissues of control, drug and D-P-L-MC-
D

Líst of Table

Table 3.1: Release constant k, correlation coefficient (r), release exponent (n) calculated from various models for drug loaded CD and its respective copolymers
Table 4.1: Release constant k, correlation coefficient (r), release exponent (n) calculated from various models for short chain PU graft
Table 5.1: Release constant k, correlation coefficient (r), release exponent (n) calculated from various models for different genrations of CD 109
Table 6.1: Release constant k, correlation coefficient (r), release exponent (n) calculated from various models for drug loaded dextrin and its respective copolymers

List of Schemes

Scheme 2.1: Chemical scheme showing grafting of polyurethane onto CD	6
Scheme 2.2: Chemical scheme showing grafting of short polyurethane chains onto CD 3'	7
Scheme 2.3: Scheme showing formation of different generations of CD using small spacer HMDI and its subsequent grafting with polyurethane	9
Scheme 2.4: Chemical scheme showing grafting of polyurethane onto linear biopolymer dextrin	0

Abbrevíatíons

CRS	Control release systems
3D	Three dimensional
PEG	Poly ethylene glycol
РТХ	Paclitaxel
DOX	Doxorubicin
i.v	Intravenous
HEMA	Hydroxyl ethyl-meth acrylate
MBA	N,N'-methylene bis(acrylamide)
НА	Hyaluronan
CD	Cyclodextrin
СРТ	Camptothecin
ATRP	Atom transfer radical polymerisation
RAFT	Reversible addition fragmentation transfer
СМС	Carboxymethyl cellulose
HEC	Hydroxyl ethyl cellulose
НСРТ	Hydroxycamptothecin
ТР	Tea polyphenols
G	Guanine
C	Cytosine
h	Hour
t	Time
Т	Temperature

°C	Degree Celcius
σ	Stress
3	Strain