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PREFACE 

Modern display technology requires higher resolution, wide area, mechanical flexibility, 

optical transparency, and lower cost. Over time enormous size cathode ray tube (CRO) based 

display has been replaced by an active matrix light-emitting display (AMLED). Active 

matrix display and Passive matrix display are the two main types of flat panel display 

technology. Up to the present time, active-matrix flat panel displays (AM-FPDs) have 

conquered the bigger market, and that has been developed as an active matrix thin film 

transistor (TFT) since 1995. The flat-panel LED-based display is thin, light-weight and has 

the ability to produce high-resolution images which are very useful in many application such 

as television, monitors, smartphones, laptops, and the portable device. TFTs are the backbone 

of active matrix display technology and works as a driver (switching device) to drive a pixel 

in display ‘on’ (light) or ‘off’ (dark), therefore, development of low-cost TFT is urgently 

required. Because of their high carrier mobility and easy manufacturing process, metal oxide 

TFT may be one ideal choice for this application.  In 1940, Bell Telephone Laboratories 

demonstrated the first working example of a transistor while Weimer at RCA Laboratories 

recognized the first working thin-film transistor (TFT) in 1962. Thin-film transistors are 

basically three-terminal metal oxide field effect transistor devices. In a TFT structure, the 

dielectric layer is sandwiched between the gate electrode and the semiconductor. The charge 

flow through the semiconducting layer between the source and drain electrodes can be 

modulated by the gate bias, which induces polarization in the dielectric layer. Thin-film 

transistors are constructed using three main components; namely, i) a dielectric layer, ii) a 

semiconducting material, and iii) metallic electrodes (source (S), drain (D), and gate (G)). 

Dielectric, active channel layer, and their manufacturing process play a very important role in 
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the performance of thin-film transistors. There are various vacuum-based techniques for 

making thin-film transistors, e.g., sputtering, molecular beam epitaxy (MBE), chemical, and 

atomic vapor depositions. While the use of vacuum-based technology can deposit high 

quality of thin films, these techniques are cost capital and complex. An alternative approach 

is solution process techniques, which are very simple, convenient, and cost-saving. Solution-

processed MOx dielectric materials have been widely studied due to their high-k values, 

excellent optical transparency, and chemical/environmental stability. Moreover, their main 

function as a gate dielectric layer in TFTs, high-k dielectrics, also plays a very crucial role in 

the capacitor and memory devices. In this concern, SiO2 is the standard gate dielectric 

because it makes high-quality film without defect (free from the pinhole, impurity) in the 

form of native oxide with silicon substrates, which is easily deposited through thermally 

grown. SiO2, having nearly perfect properties for a gate insulator: high bandgap and 

electrical resistivity, outstanding Si-SiO2 interface, least defect density in bulk, and high 

crystallization temperature. However, one main drawback of this dielectric is its lower 

dielectric constant (), and due to this issue, metal oxide thin film transistor requires high 

operating voltages that limit its application to low power electronics. Relatively, high-k AlOx 

dielectric is a better choice for oxide electronics has been prepared by using various 

aluminum sources such as aluminum nitrate, aluminum acetylacetonate, aluminum chloride, 

Zirconium and hafnium oxides (HfOx) constitute another class of most-studied high-k oxide 

dielectrics that are used for low voltage TFT. Subramanian and co-workers reported high-

performance all solution-processed MOx electronics using these high -k dielectrics. 

Alternatively, Katz and co-workers proposed a novel approach by incorporating ionic 

dopants into MOx lattices to enhance the k value of host dielectric material dramatically. 
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However, the processing temperature of this ionic dielectric is very high (>800 oC), which is 

required to lower significantly for flexible electronics. Moreover, this ionic dielectric is 

mostly studied for n-channel TFT fabrication. Although for typical electronics applications, 

we need both n-channel and p-channel TFT. Therefore, the development of low voltage p-

channel TFT is also required. 

Keeping those requirements in mind, in this thesis work, we have focused on the 

development of different ion-conducting gate dielectrics, which required lower processing 

temperature and can be suitable for p- and n-channel metal oxide TFT fabrication. 

Three new ion-conducting gate dielectrics have been developed by the sol-gel route and have 

been successfully used as a gate dielectric in metal oxide thin film transistor. These three ion-

conducting dielectrics are Li2ZnO2, LiInO2, and LiGaO2. In these dielectrics, Li2ZnO2 was 

assumed to possess a hexagonal structure while LiInO2 and LiGaO2 have the tetragonal 

structure. Owing to this Li+ ion conductivity, a high-capacitive thin film can be produced 

with these three ion-conducting dielectrics, which is a key factor in the development of low-

voltage TFTs. Finally, using these dielectrics, high-performance transistors were fabricated 

that required  2 V operating voltage with high carrier mobility and good on/off ratio. 

Metal oxide semiconductors are commonly n-type in nature. However, SnO2 can show 

ambipolar nature, in case it’s doped in a proper way. In this thesis work, a p-type doping 

SnO2 channel semiconductor has been made from the dielectric/semiconductor interface and 

has been utilized to develop high carrier mobility balanced ambipolar oxide-transistor. To 

introduce this interfacial-doping, a bottom-gate top-contact TFTs have been fabricated by 

using two different ion-conducting oxide dielectrics which contain trivalent atoms like 
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indium (In) and gallium (Ga). These ion-conducting dielectrics are LilnO2 and LiGaO2, 

respectively, containing mobile Li+ ion. During SnO2 thin film fabrication on top of those 

ionic dielectrics, the trivalent atoms allow p- doping to the dielectric/semiconductor 

interfacial SnO2 layer to introduce the hole conduction in the channel of TFT. Our 

comparative electrical data indicates that TFTs with LilnO2 and LiGaO2 dielectric is 

ambipolar in nature. Most interestingly, by using LilnO2 dielectric, we are capable of 

fabricating 1V balanced ambipolar TFT with a high electron and hole mobility values of 7 

cm2 V-1 s-1 and 8 cm2 V-1 s-1 respectively with an on/off ratio >102 for both operations which 

have been utilized for low-voltage CMOS inverter fabrication.  

In the last fifteen years, a large number of literature has been published on graphene TFT; 

those are mostly fabricated through an expensive lithography process. Moreover, it required a 

very high gate voltage to get the variation channel current, and it’s hard to get a saturation 

drain current. Because of that limitation, until now, graphene TFT are not used for common 

electronics. In this thesis work, we have fabricated large channel length (up to 5.7 mm) 

graphene field-effect transistors (GFETs) through a simple, cost-effective method that 

required thermally evaporated source-drain electrode deposition, which is less cumbersome 

from the conventional wet-chemistry based photolithography. The semiconducting nature of 

graphene has been achieved by utilizing the Li+ ion of Li5AlO4 gate dielectric, which shows 

current saturation at a low operating voltage (~2V). The length scaling of these GFETs has 

been studied with channel length variation within a range from 0.2 mm to 5.7 mm. It is 

observed that the GFET of 1.65 mm channel length shows optimum device performance with 

good current saturation. This particular GFET shows the ‘hole’ mobility of 312 cm2 V-1 s-1 

with on/off ratio 3. For comparison, GFET has been fabricated in the same geometry by 
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using conventional SiO2 dielectric that doesn’t show any gate-dependent transport property, 

which indicates the superior effect of Li+ of the ionic gate dielectric on current saturation. 

For an application as chemical gas sensor, our developed large-area graphene TFT, we have 

fabricated a GFET with a large channel length of 450 µm. The device characteristics are 

shown excellent low operation behavior within 2V, which is paving the path for portable 

TFT based chemical gas sensors. The fabricated device has also been tested for very low 

concentration ammonia under ambient environment conditions at 25 oC temperature, which 

shows the enormous potential for ammonia sensing for real-life applications. The average 

response time and recovery time of this GFET based sensor is ~40 sec and ~120 sec, 

respectively. A large change in Dirac point variation from 1.4V to 0.7V indicates its high 

sensitivity in the ammonium atmosphere.  

At the end of the thesis, we discussed the main findings of the present work and listed a few 

suggestions for future investigations. 
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