Chapter 2

Preliminaries

2.1 Notations

Throughout this thesis work, the symbol R is the set of real numbers and R™*" is the set
of all n x n real matrices. The sign |- | and || - || represent the Euclidean vector norm and
induced matrix norm respectively. The matrix P > 0 (< 0) for P € R™*" means that P
is a symmetric positive (negative) definite matrix. The notations Apax(P) and Apin(P)
are the largest and smallest eigenvalues of the symmetric matrix P. The sign Sym(A)
represents the A + A” where A7 is the transpose of a matrix A. The symbol * stands for
symmetric off-diagonal terms in the matrix inequalities.

The signum function is defined as follows:

( -1 if 2(t) <0
sign(z) = ¢ [—1, 1] if z(t) =0
\ 1 if z(t) >0
The sign ¢ : [—h,0] — R™ denotes the space of functions, which are absolutely

continuous on [—h,0), have a finite lim ¢(h). W is the square integrable first-order
h—0~

derivatives of ¢ defined as

0 3
Jollw = max [o] + | [ 16(5)ds
h

Lo([—h, 0]; R™) represents the space of square integrable functions ¢ : [—h, 0] — R".
A continuous function « : [0,7] — [0, 00) is class K function if it is strictly increasing

and a(0) = 0. The function is class K, if 7 = co and a(s) — oo when s — co. A function



p:]0,00) is class KL if 5(-, s) is class K for each fixed s > 0 and S(r,-) monotonically

decreasing to zero for each fixed r > 0. O(h) denote a matrix/scalar function of h € Ry
h)|

such that lim %
h—0+

For a set {Rl Ry --- RN} of matrices, we use diag{Rl Ry --- RN} to de-

= M, where M > 0 is constant.

note the block diagonal matrix with R;s along the diagonal, and the matrix [ RlT RQT o Rﬂ !
is denoted by col [ R, Ry --- RN} . The Kronecker product of the matrices R; and Ry
is denoted by R; ® R».
We also denote z(0) = z(t + 0), 6 € [—h,0]. The bounding ellipsoid is represented
as E(W,6) = {z(t) € R"|zT(t)Wz(t) < 6}. The ball of the radius r with the center at

2o(t) is represented as

B(zo,7) :={2(t) € R"|||2(t) — 20(t)|| < 7, 20(t) € R",r > 0}.

2.2 Norms

In many physical systems, disturbances are present inherently. Due to these disturbances,
the system’s stability is affected, and the performance of the system deteriorated. The
robust control theory provides the control design techniques which eliminate the distur-
bances from the system. These control problems can be expressed in terms of norms of
input and output signals.

Norm of a Vector Space [21]: A norm on a vector space V is defined as a

non-negative function || - || that satisfies the following equations,
|z(¢)|| = 0 if and only if z(t) = 0,
laz(®)]] = [l - ||z, (2.1)
[12(6) + y I = 2O + [y (D],

for all @ € R and 2(t),y(t) € V.

The theory of vector norms can be extended to signals. Some important signal norms are
presented below.
L1-Norm: [21] The £;-norm of a signal is described as the integration of the absolute

value of the signal,

=) = / 2. (2.2)



Lo-Norm: [21] The Lo-norm of a signal is described as the integration of squared

value of the signal,

2]z = / a0t 2.3)

L-Norm: [21] The L.-norm of a signal is described as the maximum absolute

value of the signal,

[12(0)]s0 = iglg\Z(f)!- (2.4)

2.3 Time-delay Systems

Consider the following linear systems with a delay:

Z(t) = Az(t) + Aqz(t — h),
z(t) = p(t), te€[—h,0], (2.5)

where z(t) € R" is the state vector, h > 0 is a delay in the state of the system, p(t) is
the initial condition and A € R™*™ and A; € R™*" are the system matrices. The future
evolution of system trajectories depends not only on its present state, but also on its
history. The primary methods of examining its stability can be classified as two types:
frequency domain and time-domain.

Frequency-domain methods: Frequency-domain techniques provide the most
simplest method of examining a system’s stability without delay (A = 0). The neces-
sary and sufficient conditions for the stability of such a system is A(A + A;) < 0. When
h > 0, frequency-domain techniques yield the result that system (2.5) is stable if and only

if all the roots of its characteristics equation,
fA) =det(A\ — A — Age™™) =0, (2.6)

have negative real parts. However, this equation is inherent, which makes it challenging to
solve. Furthermore, if the system has uncertainties and a time-varying delay, the solution
is even more complicated. Therefore, frequency-domain techniques for the stability of
time-delay systems have severe limitations.

Time-domain methods: Time-domain techniques are primarily based on two fa-

mous theorems: the Lyapunov-Krasovskii and the Lyapunov-Razumikhin theorem. These



techniques were established in the 1950s by the Russian mathematician Krasovskii and
Razumikhin, respectively. The original intention was to obtain a sufficient condition for
the stability of the system (2.5) by constructing an appropriate Lyapunov-Krasovskii
functional or a suitable Lyapunov function. The methods mentioned above are explained
here in detail.

Consider a retarded functional differential equation

i) = f(t, =), (2.7)

where z(t) € R™ is the state, z; = z(t +6),—h < 6 < 0,h > 0 is the time-delay;
f(t,z) : R x C — R™ where C is the set of continuous functions mapping form R™ in the
time-interval ¢ — h < ¢ to R™. If the evaluation of z(t) is sought at time instant ¢t > ¢,
then z; for —h < 6 < 0, which therefore defines the initial conditions and is denoted as
2, € C.

Lyapunov-Krasovskii stability theorem [1,109]. The system (2.7) is uniformly

stable if there exists a continuous differentiable function V(z;), V(0) = 0, such that
u(llz®)]) < V(z) <o(lzlle) (2.8)

and

V(z) < —w(|l=(@)]), (2.9)

where u, v, w are continuous nondecreasing scalar functions with u(0) = v(0) = w(0) = 0

and u(a) > 0,v(a) > 0,w(a) > 0 for > 0. If w(a) > 0 for o > 0, then it is uniformly

asymptotically stable and if, moreover, lim u(a) = oo, then it is globally uniformly
a—r00

asymptotically stable.
Lyapunov-Razumikhin stability theorem [1,109]. The system (2.7) is uni-

formly stable if there exists a continuous differentiable function V(z),V(0) = 0, such
that

u(l[2(]) < V(z) < v(llzlle) (2.10)
and

V(=(t) < —w(|z(0]), (2.11)



where u, v, w are continuous nondecreasing scalar functions with u(0) = v(0) = w(0) = 0
and u(a) > 0,v(a) > 0,w(a) > 0 for a > 0. If w(a) > 0 for @ > 0, then it is uniformly
asymptotically stable and if, moreover, ah—{rolo u(a) = oo, then it is globally uniformly
asymptotically stable.

These two methods are extensively studied, and also the development of these tech-
niques is described further. In both techniques, two types of sufficient conditions are
broadly examined. The first type is delay-independent stability, and the second type is
delay-dependent stability conditions.

Consider the Lyapunov-Krasovskii functional candidate

Vi(z) = 27 (1) P2(t) + /th ()02 (s)ds, (2.12)

where P > 0 and () > 0 are Lyapunov matrices and to be determined; and z; denotes the
translation operator acting on the trajectory: z,(0) = z(t + 6) for some interval [—h,0].
Then the derivative of V}(z:) along the the solutions of system (2.5) is defined and limiting
it to less than the zero yields the following delay-independent stability conditions of the
system:

PA+ATP+(Q PA
Q Py (2.13)

* —Q
Since the inequalities are linear concerning matrix variables P and @), it is defined as an
LMI. If it has feasible solution, then the Lyapunov-Krasovskii stability theorem provides
asymptotic stability of the system (2.5) for all A > 0.

The delay-independent stability conditions have no information on delay and provide
conservative results, especially when it is small. Another type of condition overcomes this
conservativeness: delay-dependent conditions, which contain delay h. Since the solution
of system (2.5) is continuous function of h, there must exist an upper bound, h, on the
delay such that the system (2.5) is stable for all & € [0, h]. Thus, the upper bound on the
delay is the main criterion for judging a delay-dependent condition’s conservativeness.

Next, the delay-dependent stability includes the addition of a quadratic double-

integral term to the Lyapunov-Krasovskii functional (2.12)

Vi(z) = Vi(z) + Valz), (2.14)



where
0t
Vg(zt):/ / 21(8)Z 2(s)dsd.
—h Jt+0
The derivative of Va(z;) is
t
5 = hT (1) Z2(1) — / () Z2(s)ds. (2.15)
t—h

Delay-dependent conditions can be obtained from the Lyapunov-Krasovskii stability theo-
rem. However, dealing with the integral term of (2.15) is difficult. Three methods of study-
ing delay-dependent problems have been studied: the discretized Lyapunov-Krasovskii
functional method, fixed model transformations, and parametrized model transforma-
tions.

The discretized Lyapunov-Krasovskii functional techniques are used to find the linear
systems and neutral systems stability with a constant delay [13,15,152]. This method
estimates the maximum allowable delay, which guarantees the system’s stability. However,
it is not simple, straightforward, and cannot efficiently handle systems with time-varying
delays. Thus, this method has not been extensively investigated or employed [13].

The following inequalities play an essential role in obtaining the stability conditions.

Basic inequality: Va,b € R® and VR > 0,
—2a"b < o’ Ra + b"R™'b. (2.16)
Park’s inequality [153]: Va,b € R", VR > 0, and VM € R™*"

. R RM a
—2aTh < [a b} . (2.17)
« (MTR+ DR RM+1)| |b

Moon et al.’s inequality [154]: Va € R}, Vb € R}, VN € R"™*™ and for

X Y
VX € RWxe VY € R"*™ and VZ € R™*™ if > 0, then
x 7

; X v-nN| |a
—2aTNb < [a b] . (2.18)
* Z b

The fundamentals of the typical model transformations are explained in [155,164].



2.4 Linear Matrix Inequalities (LMlIs)

Many control theory problems such as stability analysis of the linear systems and controller
design problems can be expressed in terms of LMIs [11]. This is due to the valuable
properties of the LMIs, inventions in mathematical programming, and the development
of practical algorithms and methods of using them to solve problems. Previously, Riccati
equations and inequalities were used to represent and solve most control problems, but
that involved many parameters, and symmetric positive definite matrices needed to be
adjusted previously. So, even though a solution might exist, it might not necessarily be
found. It’s a significant disadvantage when dealing with real-world problems. LMIs do
not suffer from these issues and require no modification of parameters.

An LMI is an expression of the form

E(Z) =Fky+2E1+- -+ 2By <O, (219)
where 21, 29, -+ , 2, are real variables, and known as a decision variables of the LMI (2.19);
2= (21,22, -+ ,2n)T € R™is a vector consisting of decision variables, which is called the
decision vector; and E; = EI € R™" §=0,1,---,m are given symmetric matrices.

The property of LMIs makes it possible to solve some LMI problems by methods

commonly used to solve convex optimization problems.

2.4.1 Standard LMI Problems

This section describes three generic LMI problems for which the MATLAB LMI toolbox
has solvers. Let I, F and G be symmetric matrix affine functions; and let ¢ be a given

constant vector.

LMI problem (LMIP): For the LMI E(z) < 0, the problem is to determine whether or
not there exists an z* such that F(z*) < 0 satisfies. This is called a feasibility problem.

That is, if there exists such an z*, then the LMI is feasible; otherwise, it is infeasible.

Eigenvalue problem (EVP): The problem is to minimize the maximum eigenvalue of
a matrix subject to an LMI constraint (or prove that the constraint is infeasible). The

general form of an EVP is:



Minimize A
subject to F(z) < A,

G(z) < 0.

EVPs can also appear in the equivalent form of minimizing a linear function subject

to an LMI:

Minimize ¢!z

subject to F(z) < 0.

This is standard form for the EVP solver in the LMI toolbox.
The feasibility problem for the LMI E(z) < 0 can also be written as an EVP:

Minimize A

subject to F'(z) — Al < 0.

Clearly, for any z, if A is selected large enough, (z,\) is a feasible solution to the above
problem. Thus, the problem certainly has a solution. If the minimum A, A\* satisfies

Ax < 0, then the LMI E(2) < 0 is feasible.

Generalized eigenvalue problem (GEVP): The problem is to minimize the maximum
generalized eigenvalue of a pair of affine matrix functions, subject to an LMI constraint.
For two given symmetric matrices F' and E of the same order and a scalar A, if there
exists a nonzero vector y such that F'y = AFy, then X is called the generalized eigenvalue
of matrices F' and E.

The problem of finding the maximum generalized cigenvalue of F' and E can be
transformed into an optimization problem subject to an LMI constraint. Suppose that
E is positive definite and that X is a scalar. If A is sufficiently large, F' — AE < 0. As
A decreses, F' — AE < 0 will become singular at some point. So there exists a nonzero
vector y such that F'y = AEy. This A is the generalized eigenvalue of matrices F' and F.

Using this idea, one can obtain the generalized eigenvalue of matrices F' and E by solving



the following optimization problem:

Minimize A

subject to FF'— AE < 0.

If F and FE are affine functions of z, the general form of the problem of minimizing the
maximum generalized eigenvalue of the matrix functions F(z) and E(z) subject to an

LMI constraint is
Minimize A
subject to F'(z) < AE(z),

>0,

< 0.

Q ™
— —
N N

It is important to note that, in this problem, the constraints are not linear in z and A

simultaneously.

2.5 Important Lemmas

This section presents essential lemmas, which are used in the upcoming chapters in order
to get the desired results. These lemmas are common to chapters. For this reason, we

have accumulated the lemmas here.

A B

Lemma 1 (Schur Complement [1]) For a given symmetric matiz M = MT = . ,
BY C

where A € R™" | the following conditions are equivalent:

1. M < 0;
2.A<0, C-—BTA'B<0; and
3.C<0, A—BC'BT.

Lemma 2 [1] For given matrices Q = QT, H, and E with appropriate dimensions,

Q+HFHE+ E'FT(t)H" <0



holds for all F(t) satisfying F*(t)F(t) < I if and only if there exists € > 0 such that

Q+e¢'HH" 4+ ¢ETE < 0.

Lemma 3 [1] Consider A,D,E,F, and Q to be real matrices with appropriate dimen-
sions and assume FTF < I and Q = QT > 0. Then, the following propositions are true:
(1) For any x,y € R™,

22"y < 2" Qu +y"Q7'y.
(2) For any x,y € R™ and any € > 0,
20T'DEFy < e '2"DDTx + ey ETEy.
(3) For any € > 0, satisfying Q — eDD* >0

(A+ DEF)Y'Q™'(A+ DEF) < e 'E"E + AT(Q — eDD") ™ A.

B
Lemma 4 (Jensen’s Inequality [6]) Consider L = [ g(t)z(t)dt, where « < 3, g : o, 8] €
[0,00), z(t) € R™ and the integration concerned isawell explained. Then, for any n X n

matriz R > 0, the above inequality satisfies

B B
L'RL < /g(p)dp/g(t)z'(t)Rz(t)dt. (2.20)
Lemma 5 ( [/3]) For a defined matrizx R > 0, the given inequality satisfies for all con-
tinuously differentiable function z(t) in [a,b] — R™

[ GRS 2 o (a(0) — 2(@) R(:(0) — 2(0)) +

a

3
b—a

' R® (2.21)

where ® = z(b) + z(a) — ﬁj{z(s)ds.

Lemma 6 [}2] Consider the autonomous system 2(t) = f(z(t), zn(t), d(t)) with z(t) € R"
and zp(t) € R™ is the system states, zp(t) = z(h +1t),—h < t < 0, d(t) € R™ is the
disturbance signal, f : R" x R" x R™ — R” is a continuously differential function. A

normal Lyapunov-Krasovskii functional V : R x W x Lo([—h, 0]; R") — Ry is said to be



1SS Lyapunov-Krasovskii functional for the above system if there exists a1, ay € Ky and

a, € € K such that

ar(|6(0)]) < V(t, 6, 0) < as([|¢]lw),
V(t.d,0) > £(ld®t)])) = V(t, ¢.0) < —aV(t,¢,9).

then the autonomous system 2(t) = f(z(t), zn(t),d(t)) is uniform globally ISS with v =

a;toé.



