
Chapter 5

Early classification on time series

by using deep learning approach

In previous chapters, we addressed the problem of early classification on univariate as

well as multivariate time series. The proposed models are adaptive to missing values

by developing a series of probabilistic classifiers, namely GP. Earlier models also work

immensely well for small datasets. However, the limitation of these works is that they

need feature transformation to perform classification. To overcome this limitation, we

developed a hybrid deep learning classifier that capture hidden temporal information

from raw time series data without any feature transformation. Further, the optimal

reliability threshold is defined for early decision-making. Specially we considered the

problem of early transportation mode detection based sensory time series data.

5.1 Introduction

Nowadays smartphones embedded with a rich set of sensors such as accelerometer,

magnetometer, gyroscope, proximity, etc. These sensors act as a portable sensors and

provide flourishing support in the development of various useful applications such as

physical activity recognition, human fall detection, patients monitoring and so on. In
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recent times, the applicability of these sensors also utilized in automation of trans-

portation systems that leads to construct the Intelligent Transportation System (ITS)

applications [114]. One of the valuable application of ITS is to know the movements

of users in a particular area or region. Thus, transportation modes are the essential

elements of ITS in the development of its various applications from the user’s context

that signify how the users are moving around. By considering transportation modes,

the movements are classified as stationary, walking, running and traveling with a bike,

bus, train, or car [115]. Transportation Mode Detection (TMD) is considered as a

sub-field of activity recognition which aims to automatically recognize the mode of

transportation that a person uses [116]. TMD provides valuable support in various ITS

applications, such as driving behaviour monitoring [117, 118], human activity monitor-

ing [119], urban transportation planning [120], road environment and traffic prediction

[121][122], etc.

Most of the existing methods for TMD heavily depend on handcrafted features ex-

tracted from raw sensor data [123, 124]. These methods are shallow in nature and

require human expertise. However, recent developments in deep learning (DL) for fea-

ture extraction has been adopted in a variety of challenging real-world applications

[2, 3, 125]. Thus, it has influenced the researchers of ITS and other fields to use the DL

model to overcome the above mentioned issues. A Deep Neural Network (DNN) based

model has been proposed to learn transportation modes from three sensors data and

it outperformed the feature-based methods [115]. Liang et al. [116] proposed a state-

of-the-art energy efficient TMD through a deep Convolutional Neural Network (CNN)

model using the magnitude of 3-axis accelerometer sensor data. Nawaz et al. [126]

introduced a convolutional Long Short Term Memory (LSTM) model for identifying

the transportation mode from GPS trajectory data, by considering four transportation

modes only. Finally, Wang et al.[127] presented a combined residual and LSTM Recur-

rent Neural Network (RNN) based method for TMD using smartphone’s light-weight
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sensors data.

The above study informs that the TMD problem has been addressed using tra-

ditional data-driven approaches based on finite length time series data. However, in

time-sensitive applications such as driver activity recognition, it is recommended to

take early decisions based on partially observed data to overcome the accident prob-

lem. Therefore, In this chapter, we have proposed an early classification approach for

transportation modes detection as depicted in Figure 5.1.

Figure 5.1: Classification model for sensory time series data.

5.2 Motivation and significant contributions

This work addressed the problem of early classification of transportation mode based

on time series data. The significant contributions of this work are as follows:

• We propose an Early Transportation Mode Detection (ETMD) model that focuses

on classifying the transportation modes as early as possible based on partially

observed time series data. The learning of ETMD follows the two-fold process.

• In the first fold, ETMD exploits the capability of DL models such as CNN, RNN,

and DNN for developing the hybrid-DL classifier, which mines the hidden tem-



94 5.3. Preliminaries

poral information from the time series to classify the transportation modes effec-

tively. This base classifier is trained by considering accuracy only as an objective.

• In the second fold, ETMD utilizes the capability of a base classifier to classify

the time series at successive time points and defines the confidence threshold

by keeping balance between accuracy and earliness. Moreover, this confidence

threshold works as a decision policy for making a reliable prediction based on

incomplete time series data.

• Finally, the proposed ETMD model is evaluated on two real-world time series

datasets that have been collected using a smartphone for the TMD problem [116]

[128]. The performance of ETMD is analyzed by considering accuracy, earliness,

and confusion matrices as evaluation measures.

5.3 Preliminaries

Definition 5.1 (Confidence) It measures the reliability of class prediction to deter-

mine whether the partially observed data points in time series, are sufficient for classi-

fication or not. At any time step t, the δ̂t = F conft (ŷ) represents the confidence of X to

predict ŷ ∈ Y, where ŷ = H(Xt). The Xt is classified only if δ̂t ≥ δ, where δ represents

the confidence threshold.

Definition 5.2 (Accuracy) It is the performance measure of classifier H. It defines

the proportion of correctly classified time series to the total number of time series. It is

computed as:

Hacc =
‖ {X i} |H(X i) = yi ‖

N
, i ∈ [1..N ] (5.1)

where N is the number of testing samples.

Definition 5.3 (Earliness) It is the performance measure of early classifier H which
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defines the average prediction time of time series. It is computed as:

Hear =
1

N

N∑
i=1

ti∗

T
, i ∈ [1..N ] (5.2)

where ti∗ is the prediction length of X i, used for classification.

5.4 Model description

This section provides the complete description of the proposed ETMD model which is

shown in Figure 5.2. The ETMD comprises of training phase and prediction phase.

The training phase deals with the learning of ETMD model and accomplishes it in two-

folds. The objective of first fold is to trained the base classifier H with labelled training

set D that can provide accurate prediction for incoming time series. The second fold

objective is to learn the decision criteria as confidence threshold to make early reliable

prediction. Thus, second phase takes the trained classifier H as a pre-trained model

and learns the decision criteria for ETMD. The following subsection explain the training

and prediction phases in more details.

5.4.1 Training phase

5.4.1.1 Build the base classifier

Time series data generated over the time and as an effect, the temporal relationship

among the values exists. Specifically, in sensor data, each value in time series does not

hold significant useful temporal information. Therefore, the sequential DL classifiers

like RNN are unable to provide acceptable results [116]. Thus, the proposed work ex-

ploits the properties of CNN, RNN, and DNN to mine the noteworthy hidden temporal

information at different scales from the time series [129], as shown in Figure 5.2(a).

Initially, X is presented to a convolution block that consists of Lc ∈ N layers. Each

Lc layer is composition of 1-D convolution layer and pooling layer. The feature map
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Figure 5.2: The Block diagram of the proposed ETMD model is divided into two
phases: training and prediction. Part (a) denotes the training process of base classifier
H and its architecture. Part (b) represents the confidence threshold selection for early
decision making. Part (c) represents the prediction process on incoming time series
data.

generated after the last operation of the convolution layer is given to Lr ∈ N, where

Lr is a RNN layer. In the proposed architecture of the H, a special kind of recurrent

block, i.e., LSTM cell, is specifically chosen due to its capability of learning the long

term relationship in the temporal sequence. After the LSTM layer operation, the out-

put is transferred to Lf ∈ N, where Lf represents the fully connected layer. Finally, the

output layer has q neuron to perform classification task where q = |Y| is the number of

classes in the training set.

Convolutional block : The layers present inside this block works as a feature ex-

tractor by reducing the temporal variation in data [129]. In particular, sparse weights

are the characteristic of CNN and it supports to capture the informative feature by

applying convolution filters, which are small in size as compared to the length of an
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input sequence. For given input sequence X, the feature maps Z l
k are obtained with

application of convolution operation for lth layer, and it is defined as:

Z l
k = F

(∑
i∈Nk

Z l−1
i ∗ wlik + blk

)
(5.3)

where wlik and blk denote the weight and bias of kth convolutional filter, respectively and

Nk is the input feature maps. The output of each convolutional layer is followed by a

pooling layer that reduces the dimension of data by preserving useful information and

it is presented as:

Z̃ l
k = F

(
βlk.ψ(Z l−1

i ) + blk
)

(5.4)

where βlk, b
l
k, and ψ(·) denote the weight, bias, and pooling function, respectively.

The convolutional block consists of four sequential combinations of convolutional

and pooling layers. Former two layers use 64 feature maps and later two layers use 32

feature maps. The filters of 5 × 1 size are operated on each convolutional layer with

stride 1 except the first layer, which employs a filter of size 15×1. This helps in getting

higher-order approximations from the raw input sequence. In each layer, max-pooling

strategies are adopted without overlapping. The first three layers use the pooling size

of 2 and the fourth layer uses a pooling size of 4 in the proposed architecture.

LSTM block : LSTM is an advanced RNN architecture introduced to mitigate the

drawback of vanishing gradient problem of RNN. Thus, it has the capability to capture

long term temporal relationships and, hence it is appropriate for modeling sequence

data [130]. LSTM cell controls its state with the assistant of three gates (input, forget

and output) that helps in preserving long term dependencies. Let us consider at each

time step τ , LSTM cell outputs hτ as the hidden state, cτ as cell state then computation
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of hτ and cτ is expressed by following equations:

iτ = σ(Wi · [hτ , zτ ] + bi)

fτ = σ(Wf · [hτ , zτ ] + bf )

oτ = σ(Wo · [hτ , zτ ] + bo)

cτ = fτ ~ cτ−1 + iτ ~ tanh(Wc · [hτ−1, zτ ] + bc)

hτ = oτ ~ tanh(cτ )

(5.5)

where zt is the feature map returned by the convolution layer. (Wi, bi), (Wf , bf ) and

(Wo, bo) represent the weights and biases of input gate, forget gate, and output gate,

respectively. In the proposed architecture, one layer of LSTM is designed with 100

nodes, which captures the temporal relationship among the features. These features

more likely represent the composite information of small sub-sequences at different

scales in X.

Fully Connected block : This block produces the higher-level feature representa-

tion that is more appropriate to discriminate the classes. In the proposed architecture,

one fully connected layer and one output layer are used of size 100 and |Y|, respec-

tively. Except for the output layer, all layers in the architecture uses Rectified Linear

Unit (ReLU) as a nonlinear function that provides fast convergence with stochastic

gradient descent (SGD)[131]. ReLU in its simple form is defined as f(x) = max(0, x).

The output layer used softmax function that provides the class label having highest

probability.

The proposed model contains over 2 lakh parameters and, therefore, to reduce the

problem of over-fitting, two dropout layers with a drop-rate of 50% each are employed.

The first dropout layer is placed before the LSTM layer, and the second dropout layer is

applied before the output layer. Finally, the model is trained through an SGD optimizer

with cross-entropy as a loss function. The model’s hyper-parameters, such as optimizer,
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Algorithm 5.1: Model Training Phase

Input: Training set D = {(X i, yi),1≤i≤M}, set of time steps Ts = {t1, t2, . . . , tn},
and threshold parameter α.

Output: Base classifier H, Classifiers performance
matrices{HP

t (y|ŷ)|y, ŷ ∈ Y , t ∈ Ts} and Confidence threshold δ.
/* Train the base classifier */

1 H ← trainModel(D)
/* Compute the performance of base classifier at different time step t */

2 for t in Ts do
3 Dt ← truncateData(D, t)
4 predictClasses ← modelPredict(H,Dt)
5 Calculate Hp

t (y|ŷ) using Eq. (5.6)

/* learn the confidence threshold */

6 for i=1 to M do
7 for t in Ts do
8 ŷit ← H(X i

t)

9 Calculate the δ̂it ← F
conf
:t (ŷit) using Eq. (5.9)

10 Append δ̂it into ∆

11 Store ŷit, and δ̂it

12 Sort and remove duplicate values of ∆
13 for j=2 to len(∆) do
14 δ′ ← mid(∆[i− 1],∆[i])
15 for i = 1 to M do
16 for t in Ts do

17 if δ̂it ≥ δ′ then
18 Store ŷit∗, t

∗

19 break

20 Calculate Fcost(δ′) using Eq. (5.1),(5.2),(5.10)

21 δ ← arg min
δ′∈∆

{Fcost(δ′)}

activation, learning rate, etc., are selected by initial testing on the validation set.

5.4.1.2 Learn confidence threshold for early classification

The objective of this phase is to learn reliable confidence threshold δ that works as

decision criteria for early TMD. For learning δ, we adopted similar approach as defined

in [12]. The pseudo-code for training the model is presented in Algorithm 5.1.



100 5.4. Model description

Let X is classified as ŷt′ and ŷt′′ at two successive time steps t′ and t′′ with 92%

probability each. In this scenario, generally the confidence is estimated based on class

probability. However, it is not sufficient for reliable early classification. For example,

ŷt′ and ŷt′′ have the same probability. Even the confidence of prediction may not be the

same because ŷt′′ may have higher precision, due to having more number of data points

at time step t′′ as compared to t′. Thus, for reliable TMD, the confidence at successive

time steps is evaluated by fusing classifier’s class prediction capability [12].

Let us consider that HP (y|ŷ) denotes the performance of classifier H that measures

the possibility of having actual class label y while predicted class label is ŷ. It is defined

as:

HP (y|ŷ) =
‖ {X i|yi = y & H(X i) = ŷ} ‖

‖ X i|H(X i) = ŷ ‖
, i = 1, 2, . . . ,M (5.6)

Thus, if a sample X is classified as ŷ at time step t then the confidence of prediction

ŷ is measured as:

F conft (ŷ) = HP
t (ŷ|ŷ) (5.7)

Similarly, if sample X is classified as ŷt1 = Ht1(X) and ŷt2 = Ht2(X) at two suc-

cessive time steps t1 and t2, respectively, then composite confidence at time step t2 is

computed by the following expression:

F conf:t2 (ŷt2) = 1− (1−HP (ŷt2 |ŷt1))(1−HP (ŷt2|ŷt2)) (5.8)

Eq. 5.8 considers the confidence of prediction ŷt2 at two different time steps t1 and

t2. As a result, two cases are possible. (i) When prediction at two time steps are

same ŷ = (ŷt1 = ŷt2), then composite confidence will be high as compared to individual

prediction confidences F conft1 (ŷ) and F conft2 (ŷ), because ŷ is predicted two times. (ii) If

ŷt1 6= ŷt2 , the classifier H predicts ŷt1 at time step t1, even though there is a possibility

of prediction ŷt2 at time step t1, and it is computed as HP (ŷt2|ŷt1). Thus, intuitively,

in this case, the composite confidence will be lower as compared to the first case.



5.4. Model description 101

Generally, sensor data X is collected over the time, and as a result, the multiple

output labels at different time steps are obtained. Thus, the composite confidence of

X at time step tn is computed as:

F conf:tn (ŷtn) = 1−
n∏
k=1

(1−HP
tn(ŷtn|ŷtk)) (5.9)

where tn ≤ T is the nth time point and the confidence score of X at any time point

t is bounded as F conf:t (H(Xt)) ∈ [0, 1]. Now, for providing the reliable early TMD, the

value of δ is essential. One way is to set δ with empirical knowledge of data that needs

high expertise because infinite values are possible. Another way, adopted in ETMD is

to select an optimum value of α by minimizing the cost of earliness and accuracy such

that,

Fcost(δ) = α ∗ (1−Hacc) + (1− α) ∗ Hear (5.10)

where α ∈ [0, 1] is the balancing parameter and thus higher value of α assign higher

weight to accuracy and vice-versa. Therefore, the following steps are performed to learn

the optimum δ value.

• Compute the performance of H at each time step t by considering the base classi-

fier as pre-trained model. To achieve this task, at each time point t, Xt is padded

with its current mean to make full-length sequence.

• Besides, determine the confidence δ̂ for each X ∈ D at each time step t. Further,

to learn the optimal δ, all M ∗ T confidence values are sorted and then eliminate

the duplicate values. Next, compute the mean of every two nearest pair that

works as a candidate for confidence threshold.

• Further, calculate the accuracy and earliness for each candidate δ′ using Equs.

(5.1) and (5.2), respectively. Finally, select the best threshold candidate δ that

minimizes the total cost for the training set.



102 5.5. Experimental evaluation

5.4.2 Prediction phase

The prediction phase of ETMD is discussed in this section and demonstrated in Figure

5.2(c). At time t, the partially observed series Xt is presented to H for predicting the

class label ŷt and it is defined as ŷt = H(Xt). Based on ŷt, the model computes the

confidence δ̂t by using the Eq.(5.9). The δ̂t value is compared with δ at time t, and if δ̂t

is found to be equal or grater than δ, then the proposed model classifies the series with

ŷt (corresponding transportation mode). If the condition fails, then the model waits

for more data points to be added in X and repeats this process until δ̂t satisfies the

confidence threshold criteria.

It is important to note that δ is a crucial parameter in ETMD model that is assisted

by parameter α in achieving the trade-off between accuracy and earliness. Moreover,

ETMD accepts raw sensor data directly with minimal preprocessing and provides early

decision in realtime.

5.5 Experimental evaluation

This section presents the analysis of the results using both the datasets. Firstly, it is

vital to examine the confidence learning step of the training phase. Two parameters

are associated with confidence learning, a set of time steps and trade-off parameter α.

For experimental analysis, twenty equi-length time steps of time series are considered

with step value of 5%, and a set of values of α are considered in the range of 0.1 to 0.9

at the interval of 0.1.

5.5.1 Datasets description

Two publicly available datasets are utilized to examine the effectiveness of the proposed

model. The significant difference between both the datasets is the experimental condi-

tions of the data collection process. In the case of ”The University of Sussex-Huawei
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Locomotion and Transportation (SHL) Dataset” [132, 128], the orientation and loca-

tion of a smartphone are fixed while TMD dataset [116] is free from this restriction.

The brief descriptions of datasets are as follows:

• Smartphone sensing data for transportation mode detection (TMD) [116]: The ac-

celerometer sensor of the smartphone is utilized to develop a supervised dataset.

A particular android-application has been developed and installed into smart-

phones for the purpose of collecting the data under seven transportation modes.

These modes are walking, bicycling, moving via bus, driving a car, traveling in

a train or subway, and being in still position. In the collection process of data,

transportation mode activity of each traveler has been recorded and labeled man-

ually. The sampling frequency of the data collection was 50 Hz, and the duration

of each transportation mode activity was 2 hours. During the complete process,

travelers were not restricted from carrying the smartphones in some specific posi-

tion or orientation. This unrestricted environment of the data collection process

makes the dataset challenging to detect the different transmission modes. How-

ever, the data collected from the accelerometer has put into 3-dimensional vectors

and each data point represents the x-y-z coordinate system of smartphone.

• The SHL dataset [132, 128]: The SHL dataset was recorded in the United King-

dom. Three participants assisted in recoding the dataset. Each participant carries

smartphones, which have specially designed android application for data record-

ing. The multimodality is the noteworthy characteristic of SHL dataset. More-

over, the synchronized multimodal data have been recorded for different modality

including accelerometer, magnetometer, gyroscope, GPS, and others. Each par-

ticipant carries four smartphones, and they were placed in four different positions:

in hand, at the torso, in the hip pocket, and in a bag. The data collection process

was performed for 2812 hours in 703 days, and each day, only 4 hours of data was

captured. The eight different transportation modes were considered in the pro-
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cess, and they are Still, Walk, Run, Bike, Car, Bus, Train, and Subway. In our

experiment, we have considered accelerometer sensor data with a Bag position.

Data preparation:

It is important to note that most of the TMD application has been designed and

developed by utilizing the accelerometer data only, due to its ability to carry significant

information about modes [133]. This work also considers accelerometer data to evaluate

the ETMD model. In the pre-processing step of the proposed method, the magnitude

of 3-axis accelerometer data is employed due to its robust characteristics with respect

to smartphone orientation [116]. The magnitude of sensor data xt = (xtx , xty , xtz) is

computed by following expression:

|xt| =
√ ∑

v=x,y,z

x2
tv (5.11)

In addition, the dataset is prepared by considering the sliding window of size 512

with 75% overlapping for evaluating the performance of the model [115, 116].

5.5.2 Results analysis

5.5.2.1 Effect of α parameter

The parameter α plays a crucial role in achieving a decent trade-off between accuracy

and earliness. Figure 5.3 illustrates the relationship between accuracy and earliness

for both the datasets. It is observed that with increasing the α value, classification

accuracy increases and simultaneously reduces the earliness effect. Besides, it is noted

that the trend of α is somewhat similar for both the datasets. The accuracies are almost

constant for α ranging from 0.1 to 0.4 that are 42% and 19% respectively for TMD and

SHL datasets. Likewise, the identical stable characteristic is seen in the case of TMD

dataset for α ∈ {0.7, 0.8}, and the accuracy is around 95%. However, the accuracy

of the model gradually improves by changing the α value from 0.4 to 0.9 for both the
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Figure 5.3: Accuracy vs. earliness curve for α.

datasets. Thus, for better achievement of earliness, low value of α is preferred whereas,

in need of high accuracy, the value of α should be considered high. It is also observed

that, for α ≥ 0.6, change in the accuracy value is very low as compared to earliness

value. For example, the differences in accuracy and earliness values are around 5% and

14% respectively for the TMD dataset, as shown in Figure 5.3(a). Similarly, for the

SHL dataset, differences in accuracy and earliness are 5% and 18%, respectively, as

shown in Figure 5.3(b).

Further, Figure 5.4 shows the impact of α parameter on different transportation

modes. Figure 5.4(b) and 5.4(d) demonstrate that the earliness value increases for all

the transportation modes as α changes from 0.6 to 0.9. However, the same trend is not

seen for accuracy. As shown in Figure 5.4(a), the accuracy for transportation modes

(Bicycle, Subway) improves by 5% and 27%, respectively, whereas accuracy improves

by 1% only for Walk, Bus and Car modes. Similarly, for the SHL dataset, the accuracy

improves for transportation mode Train from 0.73 to 0.87 whereas 0.98 to 0.99 for run,

as shown in Figure 5.4(c). It signifies that the impact of α is more on transportation

mode train and Subway as compared to Still, Walking, or Run. Interestingly, it is

notable that ETMD requires very fewer data points to classify the transportation modes

Run and Walking as compared to motorized modes Train and Subway. Thus, based on

the above analysis, it is identified that α = 0.8 provides a acceptable trade-off between

accuracy and earliness. As a result, 0.8 is considered as a default value of α for the rest
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Figure 5.4: Effect of α on accuracy and earliness over individual transportation mode.

of the analysis. However, in a practical scenario, the value of α will vary based on the

need of the ITS applications.

5.5.2.2 Model performance

The number of samples for each transportation mode is an imbalance in both the

datasets. The SHL dataset has a high imbalance ratio of minor and major class that

is (1:34) while the TMD dataset has a moderate class imbalance ratio (1:3). Thus

confusion matrix is a good measure to analyze the performance of the proposed model.

The confusion matrix for dataset TMD and SHL are shown in Figure 5.5(a) and in

Figure 5.5(b), respectively. The proposed model demonstrated its capability to detect

the transportation mode accurately. It is observed that the proposed model is able

to classify all transportation modes with decent accuracy (≥ 95%) except Subway.

It is challenging to classify the motorized transportation modes such as Bus, Car, and
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Figure 5.5: Confusion matrix (a) TMD dataset (b) SHL dataset

Subway accurately [116]. The proposed model demonstrates the acceptable performance

for the modes like Bus and Car for both the datasets. But, it is still a difficult task

to achieve the adequate categorization of the Train and Subway modes. However, the

higher value of α assists in attaining the high prediction reliability of the system.

5.5.2.3 Model comparison with the traditional approach

The applicability of the proposed ETMD model is testified by comparing it with tra-

ditional approach. The comparative results are displayed in Figure 5.6, and also the

average value of performance is calculated for both the datasets to perform the rela-

tive analysis of outcomes. The Figure 5.6(a) and 5.6(b) illustrate that ETMD utilizes

approximately 50% of data points of full-length activity to predict the transportation

modes (Stationary, Walk and Bicycle) with almost similar performance. It is also no-

ticed that the proposed model achieves 70.16% earliness by compromising roughly 3%

overall accuracy in comparison to average performance. For the SHL dataset, running

mode is detected at a very early stage by using about 45% of data points of full-length

activity while attaining the same accuracy as the traditional approach. It is also ob-

served that the motorized modes such as Train and Subway require more data points
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Figure 5.6: Comparison between proposed ETMD and traditional approach. The last
bar, named as average, denotes the mean accuracy or earliness over all transportation
modes.

as compared to walking and Run for reliable prediction. It is evident from Figures 5.6

(c)-(d) that the proposed model outperforms the traditional approach and achieves 80%

earliness while attaining almost similar accuracy. Based on the above observation, it

can be concluded that the proposed model is capable of classifying the transportation

modes at an early stage based on partially observed activity information.

5.5.2.4 Effect of optimizer

The effect of the two optimizers SGD and Adam are analyzed to learn the transportation

modes by the base classifier in the proposed approach. SGD and Adam are used with

default parameter settings except for the learning rate lr = 0.001. It is observed that

Adam optimizer is able to provide good accuracy after few hundred of the epoch, but
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Figure 5.7: Effect of optimizers SGD and Adam

as the learning of the model progresses for the higher number of epochs, SGD provides

a more stable solution as compared to Adam as shown in Fig 5.7 (a)-(b). Therefore,

SGD optimizer is chosen in ETMD model. It can be observed in Figure 5.8, that the

accuracy and loss graph for both the datasets is very smooth and stable.
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Figure 5.8: Accuracy vs. epoch and loss vs. epoch learning curve of hybrid-DL
classifier.
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Table 5.1: Comparison of base classifiers in ETMD model

TMD SHL
Accuracy Earliness (%) Accuracy Earliness (%)

DNN 0.56 09.50 0.41 60.80
LSTM 0.58 05.00 0.62 71.64
CNN 0.92 79.40 0.82 53.20

Proposed 0.95 72.40 0.92 83.80

5.5.2.5 Comparison of base classifiers in ETMD model

To verify the effectiveness of the proposed hybrid DL-based ETMD model, the famous

DL models such as CNN, LSTM, and DNN are used for the comparison. The architec-

ture of these models is considered similar to the proposed model. Table 5.1 illustrates

that the sequence model LSTM is unable to capture the temporal pattern and demon-

strates an unsatisfactory performance of 58% and 62% for both the TMD datasets.

CNN model achieves better accuracy as well as earliness in comparison to DNN and

LSTM. This effect is observed in CNN due to its potential of capturing the local pat-

terns from multiple transportation modes data. However, CNN is unable to remember

the temporal relationships among these local patterns and as a result, the proposed

hybrid-DL model mitigates the limitations of individual DL models like CNN, LSTM

and DNN. Hence, the proposed model outperforms them in terms of both accuracy and

earliness. It can also be seen from Figure 5.8, the hybrid-DL model is able to learn the

transportation modes accurately for both the datasets, as depicted by accuracy and

loss curves in Figure 5.8(a)-5.8(d).

5.6 Summary

The ease of sensors through smartphones has assisted in developing various meaningful

applications in multiple domains. Also, it has widespread usability for constructing

intelligent transportation applications. It is essential to determine the transportation

mode as early as possible to make adequate early decisions without waiting for complete
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series. In this Chapter, we have presented an early transportation mode detection model

based on smartphone sensor data. The proposed model is able to detect transportation

mode based on a partially observed sequence. The time series data carries the useful

hidden temporal pattern. As an effect, it is mined by exploiting the capabilities of

CNN, RNN and DNN and construct the hybrid DL classifier to achieve satisfactory

performance. The earliness is achieved by designing the decision policy on the top of a

classifier to predict reliable transportation mode.

The experimental results demonstrated acceptable performance on publiclly avail-

able supervised transportation datasets. It has been noted that the hybrid DL model

is able to capture the temporal features for better performance as compared to the

individual DL model. Moreover, the trade-off between accuracy and earliness depends

on the selection of the proper value of α. The proposed method provides a satisfactory

result in comparison to existing alternatives.





Chapter 6

Conclusion and Future Directions

This chapter summarizes the important conclusions obtained from the contributions in

this thesis. Additionally, it provides promising future directions to explore the problem

of the early classification further.

6.1 Conclusion

In this thesis, we studied the problem of early classification of time series data by

learning optimal decision criteria. The objective of early classification is to predict

the class label of time series as early as possible with acceptable accuracy. The early

classification problem is applicable in many domains, where data points are obtained

over time. Moreover, it is highly desirable, where either collecting data points are

expensive or timely decision is required.

In Chapter 2, we reviewed the existing literature on early classification of time series

to find the research gap and limitations of the existing works. Broadly early classifica-

tion approaches can be categorized into three groups: instance-based, shapelet-based

and model-based. Shapelet-based methods are highly interpretable to the user. How-

ever, they have some limitations. Firstly, they are highly computationally expensive.

Secondly, it is likely very hard to define the shapelet threshold if the time series be-
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long to different class groups and do not have distinguishable patterns. On the other

hand, model-based approaches are computationally moderate, but they are lacking in

interpretability.

The problem of early classification has been identified as the composition of two sub

problems. The first one is to design the early classifier that can label the incomplete

time series. The second is to define the decision policy that can estimate the right

time for making an online decision. Basically, the early classification problem has two

conflicting objectives, i.e., accuracy and earliness. Existing approaches consider that the

balancing between accuracy and earliness is essential for early classification problems.

Even a very few methods have considered trade-off optimization between these two

objectives.

In Chapter 3, we addressed the problem of early classification on univariate time

series. A series of probabilistic classifiers have been developed to predict the class

label for incomplete time series. Then two different strategies have been designed

for decision making. The first method has been designed based on two critical aspects

safeguard point and confidence threshold. The safeguard point reduces the unnecessary

overhead of training the classifiers and ensures the desired accuracy. The confidence

threshold ensures reliability in class prediction defined by measuring uncertainty in the

predicted output. In the proposed approach, we have analyzed the impact of different

probabilistic classifiers such as Naive bays, SVM, and GP. The GP classifier provided

a good approximation of class labels as compared to others.

To achieve the trade-off between accuracy and earliness is a key challenge. However,

the proposed early decision criterion has not taken it into consideration and is inclined

toward accuracy only. Thus, the second method considered an optimization-based ap-

proach and designed the early stopping rules that have been learned by optimizing the

trade-off between accuracy and earliness. The proposed model demonstrated good bal-

ance between accuracy and earliness as compared to the other methods when evaluated
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on publicly available synthetic as well as real datasets. Moreover, the applicability of

the proposed approach has been validated for early malware detection on the publicly

available malware API call sequence dataset and demonstrated decent performance.

These two approaches have been validated on UTS problem.

The many real-world applications generate multivariate time-series data that is

more challenging compared to univariate time series. Thus we have extended the

optimization-based early classification approach for MTS data in Chapter 4. In the

proposed method, we have developed a series of probabilistic classifiers for each vari-

able separately to capture the variate-wise information and adopted an ensemble-based

classification approach to predict the class label for incomplete time series. Moreover,

ESRs have been proposed to perform early decision tasks. In the proposed method, the

trade-off between accuracy and earliness has been defined through α parameter. The

proposed approach has been analyzed on existing real-world datasets, and it is found

that the model is not generalized. In fact, the trade-off between accuracy and earliness

depends on the characteristics of application data. However, the proposed model is

able to maintain a good balance between earliness and accuracy.

The above methods have two limitations in terms of defining baseline classifier.

First, a series of probabilistic classifiers have been developed for labelling the incomplete

time series. Moreover, the number of classifiers depends on the number of data points

in a complete time series. Second, feature transformation is needed for training the

classifiers.

Therefore, in Chapter 5, we have proposed an early classification approach to over-

come these issues by developing a deep learning-based early classifier that can cap-

ture hidden patterns from raw sensory data directly. The proposed model adapted an

imputation-based approach for labelling the incomplete time series, and decision cri-

terion is defined as the reliability threshold. To test the effectiveness of the proposed

model, we have considered the problem of early transportation mode detection based
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on smartphone sensor data. The proposed model has been evaluated on two real-world

transportation data sets and demonstrated excellent performance. Besides, it has been

observed that the hybrid DL model is able to capture the temporal information from

the raw time series more effectively compared to the individual DL models.

6.2 Future directions

Based on the research work presented in this thesis, the following are promising future

directions to explore more.

• The problem of early classification has two sub-problems, (i) designing of the early

classifier and (ii) developing of good decision policy. The design of decision policy

is a crucial part of an early classification problem. In the future, more complex

weighted ESRs can be designed by assigning the higher weight to more informa-

tive components in MTS. Furthermore, the proposed model can be optimized for

specific applications such as early voice detection, and gait recognition.

• Interpretability is also a desirable parameter in many applications for making an

acceptable decision for the user in field, such as health, agriculture, etc. Therefore,

to tackle early classification problem, developing interpretable decision rules with

trade-off optimization between accuracy and earliness can be a potential future

direction.

• This work does not consider multimodal data; therefore, the development of

application-specific early classifier by considering multimodal data can be a good

research direction. For example, driving behaviour analysis is a potential problem

in ITS that can be monitored using multimodal data such as steering wheel angle,

acceleration pressure, and the gear shift position.

• Deep learning models have automatic feature extraction capabilities. Therefore,

in the future, domain-specific early classification approaches can be developed by

adding the capability to handle unseen class labels while making an early decision.

In this line, transfer learning and federated learning could be helpful.


