
Chapter 3

Early classification on UTS

In the previous chapter, we have provided a basic overview of TSC approaches and

thoroughly reviewed existing early classification methods. This chapter focuses on

developing an early classification model for UTS that provides reliable class prediction

early in time.

3.1 3.1 Introduction

The advent of the early classification attracted the researchers more, and that is rising

yearly due to its usefulness in a wide range of time-sensitive applications, such as gas

leakage prediction [17], electricity demand prediction [18], early disease prediction [67],

etc. In such time-sensitive situations, people tend to know the results as early as

possible to take necessary actions. However, developing classification methods that can

provide early prediction without sacrificing classification accuracy is difficult.

In this direction, the notable works [9, 66, 77, 60, 11], developed for UTS, got much

attention in the area of TSC. These works have tried to predict the class label early while

maintaining an adequate level of accuracy as desired in time-sensitive applications. A

classifier performing early prediction is expected to fulfill two conditions. First, the

classifier should provide a reliable prediction as early as possible so that the prediction

32 3.2. Preliminaries

can be useful for taking further actions. Second, the classifier needs to acquire an

accuracy equivalent to an accuracy on full-length time series or defined by the user.

However, the main idea is neither to maximize the accuracy nor to minimize the earliness

but achieve a good trade-off between them.

In this chapter, we have proposed two early classification approaches. The first

method defines the early decision criteria as reliability threshold by discriminating the

classes over time. The second method develops the early decision policy by considering

trade-off optimization between accuracy and earliness.

3.2 Preliminaries

This section provides basic definitions and notations used in this study.

Definition 3.1 (Dataset) It is defined as D =
{

(X i, yi)1≤i≤M
}

where X i denotes the

ith time series in the dataset, yi ∈ Y denotes the corresponding class label, Y denotes

a set of class labels and M is the number of time series in the dataset. Moreover, Dt

represents the truncated dataset, in which each X ∈ Rt.

Definition 3.2 (Traditional classification) The classifier (H) learns the mathemat-

ical function Ffull(·) form training set D that predicts class label of complete sequence

XT such that H : Ffull(XT)→ Y.

Definition 3.3 (Early classification) The early classification of time series learns

the function Fearly(·) from training set D which provides the reliable class prediction of

X at some time point t∗ such that H : Fearly(X)→ {Y , t∗}.

Definition 3.4 (Entropy) Let P = (p1, p2, . . . , pn) be a finite discrete probability

distribution, that is, suppose pk ≥ 0 for (k = 1, 2, . . . , n) and
∑n

k=1 pi = 1. The

amount of uncertainty of the distribution P , usually measured by the quantity E (P, b) =

3.3. Early classification by measuring uncertainty 33

E ([p1, p2, . . . , pn], b) [89], and defined by

E (P, b) =
n∑
k=1

pklogbpk (3.1)

where b indicates the possible outcomes. If all probabilities in P are equally probable,

then E(P, b) will be near to one, which indicates the highest uncertainty in prediction.

If the probabilities in P are highly discriminated then E(P, b) will be near to zero, which

indicates the highest certainty in prediction.

3.3 Early classification by measuring uncertainty

The basic framework for the early classification of time series has two components,

i.e., an early classifier and a decision policy, as explained in the background section

of Chapter 2. In this view, we proposed an early classification model by developing a

series of Probabilistic Classifiers (PCs) that make the model adaptable to incomplete

time series. Moreover, the decision policy is defined by estimating the uncertainty in

the probabilistic output of the classifier.

The primary motivation of our proposed model is the recent work [60], in which

decision policy has been defined by considering two factors: i) Safeguard points that are

estimated based on user-defined parameter. ii) Confidence thresholds that are defined

as the difference between the highest and second-highest conditional class probabilities.

Hence they did not consider the information of all the classes in decision making. In

addition to this, our proposed model has the following significant contributions.

• Select the lenient safeguard point compared to [60], where authors have chosen

strict safeguard point for each class separately.

• Define the class-wise confidence thresholds by measuring the uncertainty in the

predicted output of classifier.

• The performance of various PCs has been analyzed in the proposed model.

34 3.3. Early classification by measuring uncertainty

3.3.1 Model description

There are two critical aspects of our proposed approach. The first one is to determine

the safeguard point for each class, and the second one is to define the class-wise confi-

dence thresholds at each time point separately. After learning these criteria, the model

classifies the new time series when the safeguard and confidence threshold are satisfied

simultaneously. The proposed model has two phases: a learning phase and a prediction

phase which are explained in detail in the following subsections.

3.3.1.1 Learning phase:

The learning phase is accomplished in three steps. The first step identifies the discrim-

inative time point for each class. This step aims to determine the safeguard points so

that after these points, it makes sense to predict the class label and avoid false pre-

diction. The second part deals with uncertainty in decision-making. In this step, we

learn the confidence threshold that minimizes the uncertainty in prediction. Finally,

when the safeguard points and confidence thresholds for respective classes have been

obtained, a set of PCs are trained to classify the new incoming time series. The steps

for learning model is provided in Algorithm 3.1.

Step 1: Learning safeguard points

In this step, the proposed model analyses behavior of sequence data to identify the

class-wise safeguard points so that the time series belonging to a particular category

will be classified with acceptable accuracy. Moreover, this step also helps in avoid-

ing unnecessary calculations while classifying incomplete time series. For defining the

safeguard point for each class, the steps are as follows:

• First compute the intraclass accuracies from labeled training set D by adopting

K-fold cross-validation process. At each time point t, ad-hoc PCs are trained

using (K-1) folds samples and computed intraclass accuracies for another fold.

This process is repeated R times to avoid the over-fitting problem.

3.3. Early classification by measuring uncertainty 35

Algorithm 3.1: Model Training Phase

Input: D = {X i, yi}1≤i≤m, training dataset,
Pacc = {p1, p2, . . . , pK}, accuracy %age for each class,
K is the number of classes

Output: τ , boolean matrix to store safeguard points,
δ, real valued matrix for threshold,
H, a set of PCs

1 for t← 1 to T do
/* K-fold cross-validation with repitations */

2 foreach fold do
3 Xtest, ytest ← training data in current fold
4 Xtrain, ytrain ← all training data except current fold
5 ht ← trainmodel(Xtrain[1 : t], ytrain)
6 classes ← predictClass(ht, Xtest)
7 probabilities ← predictProbabilities(ht, Xtest)
8 for k ← 1 to K do
9 intraAcct,k ← intraclass accuracy for each class k

10 Save in vector intraAcc
11 probs← probabilities for correctly classified samples for k
12 Save in matrix correctProbst,k

/* Find reliable safeguard points Setp 1 */

13 for k ← 1 to K do
14 for t← 1 to T do
15 accuracy[t][k]← mean(intraAcct,k)

16 desAcck ← Pacc[k] ∗ accuracy[T][k]
17 for t← 1 to T do
18 if accuracy[t][k] ≥ desAcck then
19 t∗k ← t
20 break

21 τ [k][t∗k : T] ← True

/* Learn the confidence threshold Setp 2 */

22 for t← 1 to T do
23 for k ← 1 to K do
24 probs ← correctProbst,k, entropy ← []
25 for P in probs do
26 entropy.append(E(P,K)) // from Eq. (3.1)

27 δ[k][t] ← max(entropy)

/* Train the classifiers Step 3 */

28 for t← 1 to T do
29 if True in τ [1 : K][t] then
30 ht ← trainModel(Dt)
31 Append the trained model ht in H

36 3.3. Early classification by measuring uncertainty

• Next, at each time point t class-wise mean accuracy is calculated using intraclass

accuracies generated under all repetition and fold as shown at line number 17 in

Algorithm 3.1. Furthermore, a class-wise desired acceptable accuracy is computed

based on user defied parameter (Pacc) with respect to accuracy on full length

sequence data (accuracy [T]) which is defined as:

accDesk = Pacc[k] ∗ accuracy[T]

Now this accDesk is used to learn the safeguard points.

• Finally, class-wise safeguard points are identified, which are defined as:

t∗k = min (t ≤ T |accuracy[t][k] ≥ accDesk)

Our safeguard point detection policy is lenient compared to ECDIRE [60]. In

ECDIRE, authors have chosen strict class-wise safeguard points, which ensure

that after this point, all intraclass accuracy on timeline must be greater than or

equal to the desired accuracy. However, in our approach, this is not mandatory.

Therefore our proposed criterion helps in improving earliness by ignoring some

outlier conditions. For example, in Table 3.1, the lenient safeguard point and

strict safeguard point will be t3 and t8, respectively, where the desired accuracy

is 0.85. In this scenario, strict safeguard point select t8 due to one noisy/outlier

accuracy at t7. As a result, most of the sample may miss the chance to be classified

at point’s t3, t4, t5, t6 and t7. The learning steps of safeguard point are provided

Table 3.1: Intraclass accuracy at different time points

Timepoint t1 t2 t3 t4 t5 t6 t7 t8
accuracy 0.67 0.78 0.88 0.90 0.87 0.86 0.83 0.85

3.3. Early classification by measuring uncertainty 37

in Algorithm 3.1 from line number 15 to 23. The time complexity of selecting

class-wise safeguard points is O(T), where T is the length of the complete time

series.

Step 2: Learning confidence threshold

This step presents the learning procedure of confidence threshold, which ensures the

reliability of class prediction made by the classifiers. It is also a second crucial aspect of

our proposed model. Similar to the previous step, PCs are used to generate conditional

class probabilities for entire training set. Further, These class probabilities are used

to learn the confidence threshold. Here, the confidence threshold has been defined by

computing entropy for each sample. The following steps are performed to compute the

confidence threshold:

• Firstly, PCs are used to generate conditional class probabilities for each sample

in training set using cross-validation process.

• Next, the conditional probabilities for correctly classified samples are grouped

class-wise and then calculate the uncertainty information for each sample, using

the Eq. (3.1).

• Finally, the confidence threshold is selected as a max value in each class group.

The selected threshold is more relaxed because max value is taken based on all

correctly classified samples in the group. The other choices can be mean, median,

or quartile value based on specific domain knowledge and requirements.

The steps for leaning of confidence threshold are provided in Algorithm 3.1 from

line number 24 to 30.

Step 3: Training the classifiers

In this final step, the complete training set D has been used for training the series of

PCs. This process first identifies the initial safeguard point on the timeline to avoid the

unnecessary training of classifiers. For example, if the initial safeguard point is the last

38 3.3. Early classification by measuring uncertainty

Algorithm 3.2: Model Prediction Phase

Input: X ′, time series
τ , Boolean matrix contains safeguard point
δ, Matrix contains confidance threshold
H, a set of PCs

Output: predClass, predProbs
1 for t← 1 to T do
2 predClass ← predictClass(H[t], X ′)
3 if τ [predClass][t] == True then
4 predProbs ← predictProbabilities(H[t], X ′)
5 entropy ← Entropy(predProbs,K)
6 if entropy ≤ δ[predClass][t] then
7 return (predClass, predProbs)

8 return (NA,NA)

time point in the timeline, only one classifier needs to be trained. Next, by including

this initial safeguard point, PCs are trained at each time point throughout the timeline

and saved for use in the prediction phase. The steps for training the classifiers are given

in Algorithm 3.1 from line number 31 to 34.

3.3.1.2 Prediction phase:

This phase uses the trained model to predict the class of a new time series X ′. In

this process, X ′t at time t is assigned to corresponding classifier ht which predict the

class ŷt at time t. The model checks the first criterion, safeguard point for ŷt. If this

criterion is satisfied, then the model predicts the class probabilities and calculates the

uncertainty in probabilistic output using Eq. (3.1). Now check the second criterion

confidence threshold. If evaluated uncertainty is lie under the confidence threshold,

then the model halt and return the predicted class ŷt and time point t. Otherwise, the

model waits for more data to be added and repeats the process. The pseudo-code for

prediction phase is provided in Algorithm 3.2.

3.3. Early classification by measuring uncertainty 39

3.3.2 Experimental evaluation

We have implemented the proposed model in python on a personal computer with Intel

Core i7 @ 3.6 GHz CPU and 16 GB main memory.

3.3.2.1 Dataset

The proposed model has been evaluated on publicly available time series datasets under

the UCR time series classification archive [24]. This repository contains synthetic and

real-world datasets. Moreover, it provides a separated training set and testing set

split for each dataset. We have used the dataset partitions according to the repository

without any preprocessing. Fifteen datasets have been considered for evaluation, in

which each dataset includes at least five samples per class in the training set.

3.3.2.2 Parameter setting

In this section, we define the parameter settings that are used in experimental work.

The model needs to be trained at each time point or defined by the user based on domain

knowledge. In this experiment, we have considered n = 20 equidistant time points for

training a set of classifiers which are defined as ti = b T
20
∗ ic where i ∈ [1, 2, . . . 20] and

T is length of complete time series. Next user can define the acceptable percentage of

full-length accuracy for each class according to their requirement. In this experimental

work, we have considered the desired accuracy as 100% of full-length accuracy for each

class. Finally, training of the early classification model has been performed by using

5-fold cross-validation to overcome the over-fitting problem.

3.3.2.3 Performance measures

Two performance criterion accuracy and earliness are used to evaluate the proposed

model.

Accuracy: It is a performance evaluation measure that is the proportion of correct

40 3.3. Early classification by measuring uncertainty

predictions and total predictions, formally defined as:

Accuracy =
1

N

N∑
i=1

(yi == ŷi) (3.2)

where N is the total number of samples; yi and ŷi are the true and predicted class

labels respectively for ith sample. Here Eq. (3.2) considers 1 when yi and ŷi are equal,

0 otherwise.

Earliness: It measures the average prediction time at which test samples are clas-

sified. It is formally defined as:

Earliness =
1

N

N∑
i=1

t∗i
T
× 100 (3.3)

where t∗i is the time point at which prediction is made and T is the length of complete

time series.

3.3.2.4 Results analysis

In this section, we have evaluated our proposed model based on two performance mea-

sures, accuracy and earliness which are defined earlier in Eq. (3.2), Eq. (3.3) respec-

tively.

Effect of classifiers:

In the proposed early classification model, any PCs can be used. Therefore we have

analyzed the effect of different classifiers and its variants which includes: Gaussian Pro-

cess (GP) [90] with two kernels (DotProduct, rbf), Support Vector Machine (SVM)[91]

with two kernels (linear, rbf), and Näıve Bayes [92].

Results obtained from the experiment for different classifiers are presented in Table

3.2 and Table 3.3 for accuracy and earliness, respectively. In both tables, the best

classifier for each dataset is highlighted in boldface. Comparison based on accuracy is

defined as higher is the accuracy better is the model. In contrast, for earliness, lower is

3.3. Early classification by measuring uncertainty 41

Table 3.2: Accuracy of five classifiers on fifteen dataests: GP(DotProduct), GP(rbf),
SVM(linear), SVM(rbf), Naive Bayes

Dataset
GP

(DotProd)
GP

(rbf)
SVM

(linear)
SVM
(rbf)

Naive
Bayes

CBF 0.92 0.50 0.92 0.75 0.63
ChlorineConcentration 0.56 0.53 0.57 0.54 0.40
Coffee 0.93 0.89 0.89 0.86 0.93
ECG200 0.87 0.78 0.85 0.75 0.76
FaceAll 0.76 0.57 0.69 0.61 0.25
FISH 0.81 0.18 0.83 0.33 0.41
Gun Point 0.87 0.87 0.89 0.71 0.58
ItalyPowerDemand 0.92 0.90 0.90 0.92 0.90
MedicalImages 0.67 0.61 0.70 0.56 0.46
MoteStrain 0.85 0.84 0.83 0.81 0.65
SonyAIBORobotSurface 0.89 0.89 0.88 0.90 0.92
StarLightCurves 0.95 0.88 0.95 0.86 0.80
Two Patterns 0.88 0.27 0.89 0.29 0.26
wafer 0.95 0.97 0.96 0.89 0.97
yoga 0.85 0.71 0.77 0.61 0.50

win 8 1 7 1 3

Table 3.3: Earliness of five classifiers on fifteen dataests: GP(DotProduct), GP(rbf),
SVM(linear), SVM(rbf), Naive Bayes

Dataset
GP

(DotProd)
GP

(rbf)
SVM

(linear)
SVM
(rbf)

Naive
Bayes

CBF 28.29 6.39 26.53 24.34 20.47
ChlorineConcentration 11.23 5.00 9.67 5.56 31.69
Coffee 69.82 68.93 70.18 66.43 91.25
ECG200 44.95 14.10 50.55 20.05 11.95
FaceAll 36.69 10.07 50.55 43.41 12.74
FISH 43.63 6.46 54.91 12.69 16.60
Gun Point 29.33 25.00 34.83 14.50 14.77
ItalyPowerDemand 67.45 59.89 66.26 77.25 82.71
MedicalImages 11.32 8.32 15.67 5.70 18.56
MoteStrain 15.00 37.80 15.34 24.32 28.36
SonyAIBORobotSurface 44.66 53.46 44.65 38.82 22.75
StarLightCurves 37.87 30.53 30.00 30.00 10.32
Two Patterns 100 7.26 97.42 9.67 6.98
wafer 8.47 12.40 11.50 5.08 97.36
yoga 100 47.54 39.44 12.75 6.56

win 1 5 0 4 5

42 3.3. Early classification by measuring uncertainty

the earliness value, better is the model. In Table 3.2, GP(DotProd) and SVM(linear) are

the best performers with 8 and 7 wins respectively over 15 datasets, while GP(rbf) and

SVM(rbf) are the worst performers with only one win. The performance of classifiers

also varies from dataset to dataset; for example, on ItalyPowerDemand dataset, all the

classifiers attained nearly accuracy between 90% and 92%. On the other hand, the

accuracy for CBF varies from 50% to 92%, as shown in Table 3.2.

Similarly for earliness parameter, classifiers GP(rbf), NB and SVM(rbf) recorded

5, 5, and 4 wins, respectively, as shown in Table 3.3. GP(DotProd) and SVM(linear)

recorded 1 and 0 wins respectively. The results are according to the expectation because

accuracy and earliness are conflicting objectives. When accuracy increases, earliness

also increases and vice-versa. As a result, GP(DotProd) and SVM(linear) are good

choices because our objective is to predict early in time while maintaining good accu-

racy. However, for a specific application, the choice may vary.

Table 3.4: Accuracy values on fifteen datasets for ECTS, EDSC , RelClass, ECDIRE
and Proposed method

Dataset EDSC EDSC RelClass ECDIRE Proposed

CBF 0.85 0.84 0.64 0.89 0.92
ChlorineConcentration 0.62 0.52 0.82 0.56 0.56
Coffee 0.75 0.75 0.89 0.96 0.93
ECG200 0.89 0.85 0.89 0.91 0.87
FaceAll 0.76 0.66 0.69 0.87 0.76
Fish 0.75 0.68 0.79 0.81 0.81
GunPoint 0.87 0.94 0.91 0.87 0.87
ItalyPowerDemand 0.94 0.82 0.85 0.93 0.92
MedicalImages 0.68 0.60 0.67 0.74 0.67
MoteStrain 0.88 0.78 0.58 0.80 0.85
SonyAIBORobotSurface 0.69 0.80 0.79 0.83 0.89
StarLightCurves 0.15 - 0.95 0.95 0.95
TwoPatterns 0.86 0.80 0.93 0.87 0.88
wafer 0.99 0.99 0.99 0.97 0.95
Yoga 0.81 0.71 0.83 0.85 0.85

Win 3 2 4 7 5

3.3. Early classification by measuring uncertainty 43

Table 3.5: Earliness values on fifteen datasets for ECTS, EDSC, RelClass, ECDIRE
and Proposed.

Dataset EDSC EDSC RelClass ECDIRE Proposed

CBF 71.50 31.85 23.08 28.55 28.29
ChlorineConcentration 66.07 33.33 97.59 14.42 11.23
Coffee 83.94 54.23 38.44 82.14 69.82
ECG200 60.11 23.24 68.81 90.1 44.95
FaceAll 63.85 38.94 96.27 56.49 36.69
Fish 60.94 47.70 85.42 55.17 43.63
GunPoint 46.92 45.58 71.33 32.37 29.33
ItalyPowerDemand 79.33 67.08 35.92 70.16 67.45
MedicalImages 53.87 31.95 88.96 21.20 11.32
MoteStrain 79.06 38.08 90.94 12.10 15.00
SonyAIBORobotSurface 68.49 47.03 57.70 62.26 44.66
StarLightCurves 82.25 - 90.02 53.10 37.87
TwoPatterns 86.52 64.04 91.82 98.76 100
wafer 44.38 27.99 30.75 10.87 8.47
Yoga 69.41 38.57 87.28 100 100

Win 0 3 3 1 8

Comparisons with other methods:

In the previous section, five classifier’s performance have been analyzed based on both

the parameters accuracy and earliness. We have found that GP(DotProd) performed

slightly better as compared to SVM(linear). Therefore, it is selected as the probabilistic

classifier in our proposed model. We have compared our proposed model with baseline

methods (ECTS[9], EDSC[66], RelClass[77] and ECDIRE[60]), based on two measures

accuracy and earliness as shown in Table 3.4 and Table 3.5. These tables highlighted

the best model in boldface for each dataset. Table 3.4, based on winning rules, demon-

strated that ECDIRE got the first position and EDSC got the last position by scoring

7 and 2 wins, respectively. Our proposed model got the second rank in this line. The

critical difference (CD) diagram also depicts that our method is second best in terms

of accuracy, as shown in Figure 3.1.

When the proposed model is compared based on the earliness parameter, it outper-

formed the other baseline methods, as shown in Table 3.5. The proposed model got the

first rank with eight wins, while ECDIRE got the fourth rank with one win. It is clearly

44 3.3. Early classification by measuring uncertainty

Figure 3.1: Models Comparison: CD diagram for accuracy using Nemenyi post-hoc
procedure (α = 0.05). The goodness of models is considered as best to worse (left
to right). The bold line shows that methods do not yield statistically significance
differences.

Figure 3.2: Models Comparison: CD diagram for earliness using Nemenyi post-hoc
procedure (α = 0.05). The goodness of models is considered as best to worse (right to
left). The bold line shows that methods do not yield statistically significance differences.

depicted by the CD diagram in Figure 3.2. As explained in the introduction, accuracy

and earliness are two conflicting objectives that need to be balanced. Therefore, while

taking both evaluation measures into account, the proposed model performed signifi-

cantly better than other baseline methods and got the best position in earliness and

second-best in terms of accuracy.

3.4. Early classification by learning optimal decision rule 45

3.4 Early classification by learning optimal decision rule

The previous method defines the decision criteria based on user-defined parameters to

get the desired accuracy. Moreover, the decision criteria are not optimized by consid-

ering trade-off optimization. As the early classification’s main objective is to optimize

the trade-off between accuracy and earliness, we proposed Early Stopping Rules (ESRs)

that consider both the objectives in decision making in this second approach.

The motivation behind our proposed method is the recent work [11] that introduced

an optimization-based early classification model by considering both the objectives

accuracy and earliness. Basically, this model combined a series of PCs and stopping

rules and learn the rules through a genetic algorithm (GA).

3.4.1 Model description

This section presents the model description of the proposed early classification method.

The proposed method consists of two phases, i.e., training and prediction. The block

diagram of the proposed early classification model is presented in Figure 3.3. In the

training phase, the model learns the two components ESRs and PCs. For learning the

ESR, the model first generates the posterior class probabilities for each sample in the

training set. This is achieved by K-fold cross-validation. The model trains the ad-hoc

classifier using K-1 folds and generates the class probabilities for a remaining fold. This

process is repeated for K times at each time point t for generating the class probabilities

for the complete training set. Next, the model learns the parameters of ESR using the

optimization method and saves them to future use in the prediction phase. For learning

the PC, the model truncates the training set at each time point t and trains the classifiers

using the corresponding truncated training set. In the prediction phase, the incoming

time series is presented to the corresponding classifier at time t that returns the class

probabilities and class label. Further, the model checks whether ESR is satisfied or not,

and based on the result; the next step is taken. A detailed description of the phases is

46 3.4. Early classification by learning optimal decision rule

Figure 3.3: Block diagram of the proposed early classification model

provided in subsequent subsections.

3.4.1.1 Training phase

In this phase, the step by step training process of model is described using labelled

training set D. The training phase is divided in four steps. Step 1 describes the

training process of a series of PCs. Step 2 and Step 3 define the ESRs and cost

function respectively, used in this model. Finally, Step 4 explains the learning process

of these ESRs.

Step 1: Classifier training

This step explains the training process of a series of PCs H = {ht}1≤t≤T by considering

all the time steps or a subset of time steps, defined by the user. Each classifier ht is

trained using a truncated training set Dt at time point t. The illustrative example of

training a series of classifiers is shown in Figure 3.4.

Step 2: Early stopping rules

3.4. Early classification by learning optimal decision rule 47

Figure 3.4: Learning of classifier using truncated training set at every time point t

In this step, Three ESRs (ESR1, ESR2 and ESR3) are defined which are the key steps

in the decision process of early classification. The first proposed ESR is defined by the

following linear equation

ESR1ρ(πt,ρ, t) =

0 if ρ1π

t
1 + ρ2π

t
2 + ρ3

(
πt1 − πt2

)
+ ρ4

t
T
≤ 0

1 otherwise

(3.4)

where the parameter ρ = (ρ1, ρ2, ρ3, ρ4) takes the real values between -1 and 1; πt

is the vector of posterior class probabilities, provided by corresponding classifier ht,

over a set of classes K; πt1 and πt2 are the two highest posterior probabilities. The

ESR defined in Eq. (3.4) is based on the two highest posterior probabilities and the

difference of these probabilities at time t. The two highest probabilities (πt1, π
t
2) are

useful for discriminating the classes over time t [60]. The classes are discriminated

well if the differences between πt1 and πt2 is high. Hence, the prediction becomes more

48 3.4. Early classification by learning optimal decision rule

reliable. Besides, prediction time is also a crucial factor in decision-making because

increasing the data points enhances prediction reliability but simultaneously increases

the delaying decision cost. Therefore the prediction time is taken into consideration.

Thus, we included these four terms in ESR. Moreover, the parameter ρ of ESR is

learned using a cost function Cf so that relevance to each term in ESR will be given

based on a corresponding ρi value.

In the second rule, all the posterior probabilities and difference of the two highest

posterior probabilities are included and it is defined as:

ESR2ρ(πt,ρ, t) =

0 if ρ1π

t
1 + · · ·+ ρkπ

t
k + ρk+1

(
πt1 − πt2

)
+ ρk+2(t

T
) ≤ 0

1 otherwise

(3.5)

The design of the third ESR is influenced by one of the sequential decision making tech-

niques known as Wald’s Sequential Probability Ratio Test [93] that uses the likelihood

ratio of two probabilities in the binary classification problem. This ESR includes four

components; highest posterior probability πt1, second highest class probability πt2, the

ratio of two highest probabilities (
πt

1

πt
2
) and normalized time delay t

T
.

ESR3ρ(πt,ρ, t) =

0 if ρ1π

t
1 + ρ2π

t
2 + ρ3

(πt
1

πt
2

)
+ ρ4

t
T
≤ 0

1 otherwise

(3.6)

Step 3: Cost function

The aim of the proposed model is to find an optimized ESRs that takes account of

earliness and accuracy. In this section, we define a cost function Cf which is required

to learn the parameter ρ of ESR through optimization. The proposed cost function is a

3.4. Early classification by learning optimal decision rule 49

variant of cost functions, defined in [11] where authors presented cost function with l0,

l1 regularizations. Here we have presented cost function with l2 regularization because

it is non-sparse in nature and provides the relevance to each term in ESR [94, 95].

Cf (D, ESR) =
1

|D|
∑
X∈D

(αCmiss(X,ESRρ) + (1− α)Cdelay(X,ESRρ)) + λ ‖ρ‖2 .

(3.7)

In the above cost function, α ∈ [0, 1] parameter is considered to provide the weight

to each objective: accuracy and earliness, and λ is used as a regularization parameter.

Cmiss and Cdelay are the cost functions for miss-classification and delaying decision

respectively. These functions can be defined in many ways. In this, the cost of accuracy

is evaluated using (0 − 1) loss function, where the miss-classification cost of a sample

is considered 0 if the predicted class label (ŷ) matches with the true class label (y) and

1 otherwise. The cost of delaying the decision is defined as (t
∗

T
) where t∗ is the earliest

time point at which ESR is satisfied.

Step 4: ESR parameter (ρ) learning

The goal of this step is to learn the ESR parameter ρ by minimizing the cost function

Cf defined in Eq. (3.7) through the optimization method. The nature of the Cf is non-

convex or unknown; therefore population-based optimization method PSO has been

explicitly used to learn the parameter ρ. In this process, the cost is computed for each

time series and summed up as the complete cost of the training set, which needs to

be minimized. For each X in training set, the posterior probabilities are obtained by

classifier ht at time point t and passed it to ESR with parameter ρ. If ESR returns 0

(unsatisfied), then repeat the process by adding the next data point in the X. If the

output of ESR is 1 (satisfied), then the current time point t∗ and current predicted

class at this time point (ŷ = arg maxi∈1,...,k{πt∗i }) are used to evaluate Cmiss and Cdelay.

To provide more generality in training of ESRs, K-fold cross-validation has been

50 3.4. Early classification by learning optimal decision rule

Algorithm 3.3: Generation of class probabilities for training samples

Input: D = {(X i, yi)1≤i≤m}, training dataset
TP = {t1, t2, . . . , tn}, set of time point
K, number of set of class labels

Output: P ∈ Rm×|TP |×|K|, class probabilities
1 for t in TP do

/* 5-fold cross-validation */

2 foreach fold do
3 Xtest ← training data in current fold
4 ytest ← training data labels in current fold
5 Xtrain ← all training data except current fold
6 ytrain ← all training data labels except current fold
7 ht ← modelTraining(Xtrain[1 : t], ytrain)
8 probs ← predictProbabilities(ht, Xtest[1 : t])
9 for i in fold do

10 P[i,t] ← probs[i]

Algorithm 3.4: Cost Evaluation

Input: D = {(X i, yi)1≤i≤m}, training set
TP = {t1, t2, . . . , tn}, set of time point
P , class probabilities generated using Algorithm 3.3
ρ, ESR parameter
α, balancing factor between accuracy and earliness
λ, regularization parameter

Output: Cf , total cost
1 for i in range(M) do
2 t∗ ← T
3 Cmiss ← 0
4 Cdelay ← 0
5 for t in TP do
6 πt ← P [i, t]
7 flag ← ESR(πt, ρ, t)
8 if flag == 1 then
9 t∗ ← t

10 break

11 ŷ ← arg maxj∈1,...,K{πt∗j }
12 Cmiss ← Cmiss + C(ŷ 6= yi)

13 Cdelay ← Cdelay + C(t
∗

T
)

14 Cf ← 1
M

(α ∗ Cmiss + (1− α) ∗ Cdelay) + λ ∗ ‖ρ‖2

3.4. Early classification by learning optimal decision rule 51

used as explained initially in Section 3.4.1. In K iteration process, ht has been trained

using all (K-1) subsets of training data and generate class probabilities for another

unseen subset of training data at corresponding time step t. In this way, at each time

step t, class probabilities for each time series in training data is generated as explained

in Algorithm 3.3. Further, these probabilities are used to evaluate the Cmiss and Cdelay

costs for each sample in the training set. Finally, the total cost needs to be minimized

to learn the ESR parameter (ρ). The steps for cost evaluation is provided in Algorithm

3.4.

3.4.1.2 Prediction phase

In this phase, the trained model is used to predict the class of incoming time series X

at a reliable time point t∗, as shown in Figure 3.5. Firstly, the incoming time series

at time point t is passed to the classifier ht that has been trained using the complete

training set D as explained in Step 1. Next, the output of ht is passed to the ESR. If

ESR returns 1, the model halt and predicts the class label; otherwise, wait for more

data points to be added in the incoming time series.

Figure 3.5: Prediction Process

3.4.2 Classification and optimization method

This section provides a brief introduction of the PC and population-based optimization

method specifically used in the proposed early classification model.

52 3.4. Early classification by learning optimal decision rule

3.4.2.1 Gaussian process classifier

A Gaussian Process (GP) is a collection of random variables (RV) such that every finite

collection of RV has a joint Gaussian distribution [96]. GP is parameterized by its mean

µ(x) and covariance function cov(x, x′):

f(x) ∼ GP(µ(x), cov(x, x′)) (3.8)

In machine learning, GPs are defined over functions and used as priors for Bayesian

interference. The prior specifies some properties of function and does not depend on

training data. GPs can be used for regression or classification [90]. For classification,

first define a continuous latent variable f(x) (eg. f(x)= mx + c) with GP priors. In the

next step, the output of the latent function mapped onto [0,1] using some link functions

such as probit or logistic. Finally, the resultant function J is used for prediction. For

a given training data D = (X ,Y) , the prediction of test instance (x*, y*) is calculated

[90] as:

J ∗ = p(y∗ = +1|D,x∗)

=

∫
σ(f ∗)p(f ∗|D,x∗)df ∗ ,

(3.9)

where

p(f ∗|D,x∗) =

∫
p(f ∗|X ,x∗, f)p(f |D)df , (3.10)

and f ∗ is the latent variable.

3.4.2.2 Particle Swarm Optimization (PSO)

PSO is a population-based stochastic global optimization technique[97]. In this method,

the population set of particles is considered as a swarm. Each particle in the swarm

3.4. Early classification by learning optimal decision rule 53

collaboratively exchanges the information to attain the collective goal. Every particle

updates its trajectory towards the local best position and global best position, attained

by any particle in the neighborhood. In this way, PSO takes advantage of a range

of potential solutions, named as population, and detects the optimum solution via

cooperation and competition among the population.

Suppose that the search space is d -dimensional and the number of particles in the

swarm is s, then every particle in the swarm P = (p1, p2, . . . , ps) has corresponding

d -dimensional vector for position and velocity. The position and velocity of ith particle

can be represented by pi = (pi1, pi2, . . . , pid), vi = (vi1, vi2, . . . , vid) respectively. At

each iteration, PSO updates the particle’s velocity and position using Eq. (3.11) and

Eq. (3.12) respectively based on particle’s best solution pbi = (pbi1, pbi2, . . . , pbid) and

global population’s best solution pgi = (pgi1, pgi2, . . . , pgid) [97]:

vn+1
i,j = wvni,j + c1r1j

(
pbni,j − pni,j

)
+ c2r2j

(
pgnj − pni,j

)
(3.11)

pn+1
i,j = pni,j + vn+1

i,j (3.12)

where i = 1, 2, . . . , s; j = 1, 2, . . . , d; w is inertia weight; c1 and c2 are the positive real

number, known as acceleration constant ; r1, r2 are the random values between 0 and

1; and n = 1, 2, . . . , determines the iteration number.

3.4.3 Experimental evaluation

This section provides the details of evaluation metrics, datasets description, various

parameter settings for analyzing the results. The simulation of the proposed model

is conducted on a personal computer with the Intel i7 processor with 3.6 GHz clock

frequency and 16 GB main memory.

54 3.4. Early classification by learning optimal decision rule

3.4.3.1 Datasets description

The proposed model is evaluated using publicly available datasets on the UCR Time

series classification archive [24]. This archive provides separated training and testing

set split for each dataset. We have used the dataset partitions according to the reposi-

tory without any preprocessing. In this experiment, thirty datasets selected randomly,

having at least five samples per class in the training set. These datasets include the

cases of binary and multi-class both.

3.4.3.2 Parameter settings

In this early classification model, GP has been used with kernel type (linear inner

product) and convergence threshold (1e−8) [98]. A simple way to use a GP classifier

is to feed the raw time series as an input vector directly. In the proposed model,

distance-based features are used as input to GP, which has shown good performance in

[50, 60]. The distance-based feature vector of the raw time series contains the pairwise

distance from all the time series in the training set. This transformation enriches the

model to use different distance measures inside the model and supports different length

time series problems while training the model. For example, a particular time point t,

train and test sets are defined as Dttrain ∈ RM,t , Dttest ∈ Rn,t respectively then Dttrain

is transformed into M ×M distance matrix by using some distance measure and Dttest

is converted into N × M . Thus, the distance measure is another parameter to the

GP classifier that is the euclidean distance in our experiments. Next, the optimization

method PSO is used by considering population size (100), max iteration (150), and

inertia weight (0.9)[99].

Further, the parameter α, used in the cost function, needs to be decided to incor-

porate the effect of accuracy and earliness. Here we analyzed the behavior of α on four

values (0.6, 0.7, 0.8, 0.9). The value of α has been considered above 0.5 to give more

weight to accuracy. The effect of α is analyzed in Section 3.4.3.3. Furthermore, the

3.4. Early classification by learning optimal decision rule 55

Table 3.6: Parameter setting for other early classification models

Early classification models Parameter setting
ECTS OAE [11] SR2-CF2, α = 0.8
ECDIRE [60] acc parc=100%
RelClass [77] Gaussian Naive Bayes Box, τ = 0.5
EDSC [66] EDSC-CHE, k-0.5
ECTS [9] Strict, minimum support=0

next parameter λ in cost function Cf have considered the values (0.003, 0.001, 0.03,

0.01, 0.3, 0.1, 1,3). Finally, a set of time points are considered to train the model. As

we have used different types of datasets in our experimental work, having time-series

varying lengths from 60 to 570. Therefore, twenty equidistant time points have been

considered, that is (i ∗ T
20

) where 1 ≤ i ≤ T . In the real environment, the user can

choose any set of time points based on application data domain knowledge.

3.4.3.3 Results analysis

This section provides the analysis of the experimental results on thirty datasets con-

cerning different parameters setting of the proposed model. Also, results are compared

with other early classification approaches.

Comparison to other early classification methods:

To analyze the performance of the proposed early classification model, we have com-

pared the proposed strategies (ESR1, ESR2, and ESR3) with five state-of-the-art meth-

ods which includes ECTS [9], EDSC[66], RelClass [77], ECDIRE [60] and the best

method from [11], denoted by ECTS OAE. The codes of these methods are publicly

available and the summary of parameter setting is provided in Table 3.6.

Table 3.7 and 3.8 presents the experimental results for accuracy and earliness re-

spectively. In the tables, the best performing model for each dataset is highlighted in

boldface. The results of proposed ESRs are compared by considering α = 0.8. In Table

3.7, it is observed that ECDIRE and RelClass got the first and second place in terms

56 3.4. Early classification by learning optimal decision rule

Table 3.7: Accuracy values for ECTS, EDSC, RelClass, ECDIRE, ECTS OAE, and
Proposed (ESR1, ESR2, ESR3) methods.

Dataset ECTS EDSC
Rel

Class
ECDIRE

ECTS
OAE

ESR1 ESR2 ESR3

Beef 0.5 0.23 0.57 0.50 0.73 0.80 0.77 0.80
CBF 0.85 0.84 0.64 0.89 0.87 0.89 0.87 0.89
ChlorineConcentration 0.62 0.52 0.82 0.56 0.57 0.58 0.58 0.57
Coffee 0.75 0.75 0.89 0.96 0.93 0.93 0.93 0.89
Cricket X 0.56 0.52 0.61 0.57 0.52 0.54 0.52 0.55
Cricket Y 0.63 0.57 0.68 0.63 0.63 0.61 0.61 0.55
Cricket Z 0.59 0.50 0.66 0.60 0.58 0.60 0.58 0.57
ECG200 0.89 0.85 0.89 0.91 0.86 0.86 0.86 0.86
ECGFiveDays 0.62 0.74 0.52 0.60 0.59 0.64 0.59 0.59
FaceAll 0.76 0.66 0.69 0.87 0.88 0.87 0.88 0.88
fish 0.75 0.68 0.79 0.81 0.86 0.86 0.86 0.86
Gun Point 0.87 0.94 0.91 0.87 0.91 0.91 0.91 0.91
InlineSkate 0.33 0.18 0.27 0.26 0.26 0.27 0.25 0.28
ItalyPowerDemand 0.94 0.82 0.85 0.93 0.87 0.88 0.90 0.88
Lightning-2 0.70 0.80 0.62 0.54 0.67 0.67 0.68 0.67
MedicalImages 0.68 0.60 0.67 0.74 0.74 0.74 0.74 0.75
MoteStrain 0.88 0.78 0.58 0.80 0.79 0.78 0.80 0.76
OSULeaf 0.49 0.56 0.48 0.52 0.49 0.50 0.51 0.52
SonyAIBORobotSurface 0.69 0.80 0.79 0.83 0.80 0.80 0.80 0.80
SonyAIBORobotSurfaceII 0.85 0.81 0.88 0.74 0.77 0.77 0.77 0.75
SwedhLeaf 0.78 0.47 0.83 0.87 0.86 0.85 0.86 0.79
synthetic control 0.88 0.89 0.98 0.96 0.95 0.94 0.95 0.94
Trace 0.74 0.80 0.86 0.77 0.76 0.76 0.76 0.76
TwoLeadECG 0.73 0.88 0.72 0.81 0.76 0.76 0.76 0.78
Two Patterns 0.86 0.80 0.93 0.87 0.83 0.87 0.87 0.86
uWaveGestureLibrary X 0.73 0.54 0.75 0.77 0.75 0.75 0.73 0.74
uWaveGestureLibrary Y 0.63 0.37 0.68 0.70 0.67 0.68 0.65 0.68
uWaveGestureLibrary Z 0.65 0.52 0.71 0.71 0.71 0.71 0.71 0.71
wafer 0.99 0.99 0.99 0.97 0.98 0.98 0.98 0.98
yoga 0.81 0.71 0.83 0.85 0.78 0.78 0.78 0.77
Win 4 6 10 9 3 4 3 6

of accuracy with 10 and 9 winnings out of 30 datasets. The proposed ESR3 and EDSC

got third place with 6 winning each. However, the proposed ESR3 and ESR1 got the

first and second place with 12 and 7 wins respectively while considering earliness as

performance criteria as shown in Table 3.8. In this line, ECDIRE and ECTS are the

worst performers in terms of earliness by scoring 0 wins out of 30 datasets.

The comparison of these methods further analyzed using a CD diagram as shown in

Figures 3.6 and 3.7. These figures show the average ranking of methods and pairwise

significance differences among methods. To draw the CD diagram, this statistical Ne-

3.4. Early classification by learning optimal decision rule 57

Table 3.8: Earliness values for ECTS, EDSC, RelClass, ECDIRE, ECTS OAE, and
Proposed (ESR1, ESR2, ESR3) methods.

Dataset ECTS EDSC
Rel

Class
ECDIRE

ECTS
OAE

ESR1 ESR2 ESR3

Beef 76.50 93.61 25.70 67.78 55.33 51.83 51.00 70.50
CBF 71.50 31.85 23.08 28.55 25.03 26.54 25.01 26.34
ChlorineConcentration 66.07 33.33 97.59 14.42 5.54 7.74 8.28 5.47
Coffee 83.94 54.23 38.44 82.14 35.36 35.35 35.18 33.75
Cricket X 71.80 52.57 78.68 47.98 30.50 26.87 30.19 27.92
Cricket Y 66.49 45.10 82.36 36.00 35.62 39.51 35.53 30.41
Cricket Z 67.86 56.12 80.36 45.99 30.49 29.24 29.97 35.6
ECG200 60.11 23.24 68.81 90.10 10.95 10.92 10.92 11.25
ECGFiveDays 63.82 53.6 15.84 21.07 7.38 16.03 7.34 7.37
FaceAll 63.85 38.94 96.27 56.49 30.79 30.04 30.86 30.84
fish 60.94 47.70 85.42 55.17 37.20 35.43 35.26 33.91
Gun Point 46.92 45.58 71.33 32.37 26.30 26.47 26.27 25.6
InlineSkate 85.08 46.69 87.31 33.83 20.95 16.64 23.26 20.50
ItalyPowerDemand 79.33 67.08 35.92 70.16 32.20 32.20 37.21 34.04
Lightning-2 89.01 55.14 61.16 9.07 5.00 5.00 9.67 5.00
MedicalImages 53.87 31.95 88.96 21.20 9.37 12.53 9.82 12.96
MoteStrain 79.06 38.08 90.94 12.10 8.79 7.94 8.67 6.88
OSULeaf 76.59 54.38 97.10 47.52 14.55 16.82 11.20 20.79
SonyAIBORobotSurface 68.49 47.03 57.7 62.26 5.66 5.73 5.64 5.63
SonyAIBORobotSurfaceII 54.54 35.51 70.86 17.66 9.84 10.31 10.20 9.38
SwedhLeaf 76.27 62.34 91.96 45.97 27.39 28.12 28.46 20.37
synthetic control 87.88 50.81 71.54 61.92 22.25 22.22 22.12 21.58
Trace 50.72 38.63 77.82 41.75 21.95 21.9 21.85 21.9
TwoLeadECG 64.43 46.85 83.63 69.38 17.5 18.06 18.04 21.74
Two Patterns 86.52 64.04 91.82 98.76 85.88 93.37 87.94 94.38
uWaveGestureLibrary X 85.98 64.30 90.09 74.03 47.84 43.65 41.47 43.51
uWaveGestureLibrary Y 86.29 70.14 81.96 97.09 47.33 50.85 45.79 52.92
uWaveGestureLibrary Z 85.03 61.18 91.80 75.56 42.13 44.39 42.74 44.42
wafer 44.38 27.99 30.75 10.87 6.38 6.96 6.97 6.80
yoga 69.41 38.57 87.28 100 10.44 10.44 10.45 10.23
Win 0 1 2 0 6 7 6 12

menyi post-hoc test is carried out using scmamp package in R by setting significance

level 0.05 [100]. Figure 3.6 shows that ECDIRE and EDSC are the best and the worst

respectively in an average ranking of accuracy. Also, these two methods are different

significantly and statistically. In this line, ESR1 and ESR2 are got second and fourth

place in average ranking. Further, while considering second objective earliness, ESR3

and ECTS are the best and worst performers respectively, as shown in Figure 3.7. It

can be seen that the proposed ESR1, ESR2 and ESR3 are significantly different from

other methods except for ECTS OAE. However, ESR3 and ESR2 are better in ranking

58 3.4. Early classification by learning optimal decision rule

Figure 3.6: CD diagram for accuracy. The goodness of the model is considered as best
to worse (left to right), and the bold line shows that methods do not yield statistical
significance differences.

Figure 3.7: CD diagram for earliness. The goodness of the model is considered as best
to worse (left to right), and the bold line shows that methods do not yield statistical
significance differences.

as compared to ECTS OAE. So, based on the above observation, It is found that all

the state-of-the-art methods except ECTS OAE are more centric toward accuracy and

did not optimize the trade-off between accuracy and earliness well. Thus, the compari-

son further analyzed between the proposed model and ECTS OAE, as it is near to the

proposed model. It is observed that ESR2 and ESR3 outperform ECTS OAE in terms

of both accuracy and earliness, as shown in Figures 3.6 and 3.7 respectively.

Furthermore, The proposed model has been compared with other methods from

the multi-objective perspective based on the Pareto optimality criterion. This crite-

rion states that one method dominated another method if it performs better in one

of the objectives without lacking in others. Based on this criterion, Table 3.9 clearly

3.4. Early classification by learning optimal decision rule 59

Table 3.9: Domination counts for the proposed ESR1, ESR2 and ESR3 compared
to other methods. The first entry tells about how many times the proposed model
dominates other methods, and third entry tells how many times others dominate the
proposed model. In between, second entry refers to the draw condition.

Method ECTS EDSC RelClass ECDIRE ECTS OAE
ESR1 [18, 12, 0] [21, 9, 0] [16, 13, 1] [15, 14, 1] [10, 11, 9]
ESR2 [16, 14, 0] [21, 9, 0] [13, 17, 0] [11, 19, 0] [14, 7, 9]
ESR3 [16, 13, 1] [19, 11, 0] [15, 14, 1] [12, 18, 0] [8, 17, 5]

(a) (b) (c)

Figure 3.8: Accuracy and earliness plot for ESR1, ESR2, and ESR3

demonstrated that the proposed (ESR1, ESR2, and ESR3) dominated the other meth-

ods. ESR1 showed better domination counts over ECTS, RelClass, and ECDIRE, while

ESR2 showed better domination counts over the ECTS OAE method. It has been ob-

served that EDSC performs poorly and has zero domination count while ECTS OAE

dominated the proposed ESR1, ESR2, and ESR3 by counts 9, 9, and 5, respectively.

Thus, based on the above observation, it can be seen that the proposed model obtained

decent performance over the other state-of-the-art methods.

Effect of parameter α:

The parameter α is used to maintain the trade-off between accuracy and earli-

ness. Figure 3.8(a)-3.8(c) plots the average value of earliness and accuracy over all

the datasets for different value α ∈ (0.6, 0.7, 0.8, 0.9). It is observed that accuracy and

earliness are increasing by changing the value of α from 0.6 to 0.9. It implies that accu-

60 3.4. Early classification by learning optimal decision rule

Figure 3.9: Accuracy and earliness plot for five sample datasets includes Coffee,
ECG200, Gun Point, Synthetic Control and Wafer

racy improves and earliness worsens when the value of α increases. It is also observed

that accuracy and earliness gradually increase while α changing from 0.6 to 0.8, and

then earliness increases with the high rate compared to accuracy for α = 0.9. It im-

plies that the user needs to pay more delaying decision cost in terms of earliness while

selecting α ≥ 0.8. Thus, the selection of α depends on the requirement of the user.

If a high requirement of accuracy, the value of α should be taken high, and if a high

requirement of earliness, the value of α should be taken low. However, the behavior

of α also depends on the nature of the dataset. To analyze the behavior of α on the

individual dataset, we have plotted accuracy and earliness for five sample datasets, as

shown in Figure 3.9. For the coffee dataset, Accuracy and Earliness both are gradually

increasing while changing the value of α from 0.6 to 0.9. For ECG200 and synthetic

control datasets, there is no significant improvement in accuracy when α changes from

0.7 to 0.8. Moreover, earliness becomes high when α changes from 0.8 to 0.9. For the

Gunpoint dataset, accuracy and earliness both almost remain constant for all values of

3.4. Early classification by learning optimal decision rule 61

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Accuracy and earliness plot over different values of α for ESR1, ESR2
and ESR3

α ∈ (0.6, 0.7, 0.8, 0.9). Thus, it is concluded that the selection of α strongly depends on

the nature of application data and the user’s requirement.

Further, the behavior of α analyzed for accuracy and earliness separately. Figure

3.10 displays the accuracy and earliness trends over 30 datasets for α ∈ (0.6, 0.7, 0.8, 0.9).

In Figure 3.10(a)-3.10(c), dots indicate the extreme lowest accuracy obtained on one of

the datasets. It is observed that the proposed model achieves the accuracy above 0.50

for all the datasets and the median accuracy value is above 0.79. Even accuracy is more

stable for α ∈ (0.8, 0.9). In Figure 3.10(d)-3.10(f), dots indicate the extremely high ear-

liness value obtained on one of the datasets. Further, it is observed that earliness is

increasing for α while changing from 0.6 to 0.9. The proposed model achieves median

earliness 17%, 21%, 26%, and 32% approximately for α ∈ (0.6, 0.7, 0.8, 0.9) respectively.

Thus, it can be said that the proposed model also able to classify the time series by

utilizing the very little data points in time series approximately 26% for α = 0.8.

Effect of an optimization method:

In this section, we analyzed the effect of PSO over GA, as used in a previous

62 3.4. Early classification by learning optimal decision rule

study[11]. GA is considered with default parameter setting available in R [101]. Figure

3.11 demonstrates the comparative analysis for accuracy, earliness and execution time

over 30 datasets by considering ESR3 and α = 0.8. It is observed that no method

is a straightforward winner when considering accuracy and earliness as a performance

measure as shown in Figure 3.11(a)-3.11(b). If the method is superior in accuracy then

it is inferior in earliness and vice-versa for most of the datasets, for example, beef,

cricket y, medicalimages, etc. However, PSO is computationally highly effective as

compared to GA. Figure 3.11(c) plotted average execution time over the regularization

parameter λ. It is observed that PSO is approximately 2 times faster as compared to

GA over all the datasets.

3.4.3.4 Application to early malware detection

Malware is one of the major cyber security threats in the digital world and is on the

rise every day. It is malicious programs that were deliberately designed to undermine

computer security or harm the computer system like a virus, worm, adware, spyware,

Trojan etc. According to AV-TEST [102] report, 15.66 million new malware specimens

are reported in November 2019 and in total, 985.12 million specimens for malware are

reported by 2019 worldwide. Malware analysis or detection can be done in two ways:

static malware analysis and dynamic malware analysis [103].

The static malware detection process analyses the code without actually running

the code. In addition, static malware detection aims to infer the semantics of a piece of

code to determine whether it can perform a malicious activity or not. It can be done

quickly by comparing a set of handcraft features from a piece of code to previously iden-

tified malware features or signatures. This process makes the static malware analysis,

vulnerable to code obfuscation techniques employed by metamorphic and polymorphic

malware [104]. Static malware analysis is becoming less effective day by day due to

powerful transformation techniques such as manifest cheating, call graph obfuscation,

3.4. Early classification by learning optimal decision rule 63

(a)

(b)

(c)

Figure 3.11: Effect of accuracy, earliness, and execution time for PSO and GA

64 3.4. Early classification by learning optimal decision rule

polymorphism, metamorphism etc. [105] and also not suitable for detecting zero-day

malware [106].

On the other hand, behavior analysis (dynamic analysis) during the execution of a

file is likely to be very difficult to obfuscate. The dynamic malware detection process

monitors the behavior of malicious code at runtime and examines suspicious activi-

ties during its interaction with the system. These activities either can be observed in

real-time while malicious code is running on a real system or in an isolated closely mon-

itored virtual environment. Moreover, dynamic malware analysis based on behavioral

data such as API call sequence is more effective towards the vulnerability of code trans-

formation and also has the capability to detect the zero-day (completely new) malware.

However, behavioral data collected during program execution takes a relatively long

time as compared to static analysis [107]. Thus, early malware detection in a dynamic

environment is highly useful. Thus, our proposed method for early classification on

time series is well suited for this problem. Also, as per the best of our knowledge, this

is the first work to detect malware early in time-based on the API call sequence.

The model proposed in section 3.4.1 is utilized for the early detection of malware

by considering the publicly available malware API call sequences dataset [25]. In this

dataset, API call sequences are captured by using open-source malware analysis systems

(Cuckoo Sandbox), while running in an isolated virtual environment. These API call

sequences are extracted from the parent process to analyze the dynamic behavior. This

dataset has considered 307 unique API calls, and each sequence contains only the first

100 non-consecutive repeated API calls. Moreover, it contains malware and goodware

API call sequence of 42797 and 1079 samples respectively.

In this experiment, the balanced dataset is obtained by random undersampling of

the majority class containing 1079 samples for each class of malware and goodware.

Further, training and testing set partition is performed at a ratio of 70% and 30% of

the balanced dataset, using stratified splitting. Finally, training and test set contains

3.4. Early classification by learning optimal decision rule 65

Table 3.10: The performance of the proposed early classification model (ESR3) on
malware dataset by considering different values of α

.
α Accuracy Precision Recall F1-Score Earliness
0.60 0.8349 0.8182 0.8611 0.8391 5.24
0.70 0.8349 0.8201 0.8580 0.8386 5.42
0.80 0.8380 0.8230 0.8611 0.8416 7.23
0.90 0.8380 0.8230 0.8611 0.8416 7.23
0.95 0.8812 0.8665 0.9012 0.8835 40.73

the pair of goodware and malware samples of (755, 756) and (324, 325) respectively.

The proposed model is tested exhaustively by considering the parameter α (0.60, 0.70,

0.80, 0.90, and 0.95) and the performance are evaluated based on Accuracy, Precision,

Recall, F1-Score and Earliness. The high recall value means a small number of false

negatives that can be perceived as a high rate of malware detection. Moreover, the

high precision value indicates a small number of false positives that is less critical as

compared to a false negative, but desirable for malware detection.

Table 3.10 presents the values of performance measures for different values of α.

It can be seen that all performance measures are improving by changing the value of

the α parameter from 0.60 to 0.95. Moreover, the proposed model is able to detect

the malware by utilizing the initial few API call sequences. It is also observed that the

proposed model is able to achieve high recall value that further implies the ability of the

proposed model to detect the malware effectively at an earlier stage. As it can be seen,

at α = 0.6, the model achieves 0.86 recall value while utilizing approximately 5.24% of

the API call sequence. Also, for α = 0.95, the model provides higher accuracy and recall

values 0.88 and 0.90 respectively but with the cost of earliness, approximately 40.73%

of API call sequences length. Thus, the proposed model shows decent performance

for the early detection of malware. Therefore, the proposed method could be a more

effective solution for malware detection in a hybrid model.

66 3.5. Summary

3.5 Summary

This chapter addressed the problem of early classification on UTS. Specifically, we have

proposed two early classification models with different decision policies. The first model

has been developed based on a set of PCs and confidence thresholds. In this model,

decision policy has two critical aspects, i.e., safeguard points and confidence thresholds.

The former criterion reduces the unnecessary overhead of training classifiers and also

ensures the user-defined prediction accuracy. The latter criterion checks for prediction

reliability at different time points and predicts the class label if the decision criterion

satisfies, otherwise discard the prediction and wait for more data points. The confidence

threshold has been defined by measuring the uncertainty in the predicted out of correctly

classified samples. The proposed model has been evaluated with five PCs on publicly

available datasets, and GP with dot product kernel provided the best results. Further,

the model has been compared to other state-of-the-art baseline methods. The results

demonstrate that the proposed model outperformed the other methods in terms of

earliness with comparable accuracy. This method is more inclined towards accuracy and

does not take trade-off optimization between accuracy and earliness into consideration.

Therefore, in the second method, the optimization-based approach has been used

to learn the optimal decision criteria. The model has been defined based on PCs with

ESRs. These ESRs have been learned by minimizing the cost between miss classification

costs and delaying decision costs simultaneously. Moreover, GP probabilistic classifier

and particle swarm optimization have been used for training the model. The proposed

model outperformed the state-of-the-art methods on publicly available thirty datasets

and provided a decent balance between earliness and accuracy. Further, we considered

the problem of early malware detection to validate its applicability. The proposed model

demonstrated excellent performance on the publically available malware dataset having

API call sequences. The model was able to classify the malware with 88% accuracy by

using approximately 40% of the API call sequence.

