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Preface

Early classification of time series is valuable in many real-world applications where data

is generated over time. The aim of early classification is to predict the class label of

incoming time series as early as possible before observing its complete sequence. In

general, whenever early prediction time improves, the prediction accuracy decreases.

In other words, one can achieve better accuracy by waiting for more data points in the

series, but it will delay the response time. In time-sensitive applications, it is worth

sacrificing some classification accuracy in favour of early predictions, preferably early

enough for taking actionable decisions. Thus, there exists a trade-off between earliness

and accuracy. However, existing approaches do not consider trade-off optimization well

in their decision criteria.

Time Series Classification (TSC) is one of the major research areas that developed

over the past few years, mainly due to its practical applicability in various domains

such as agriculture, healthcare, medicine, finance, and industries. The main objective

of TSC is to maximize prediction accuracy. In contrast, an early classification of time

series has two conflicting objectives, i.e., accuracy and earliness. Nowadays, the early

classification of time series attracts researchers more due to its useful applications in

various domains such as early disease prediction, early gas leakage prediction, drought

prediction, etc.

This thesis focuses on the problem of early classification of time series by learning

optimal decision criteria. The problem of early classification has been identified as



xx Preface

the composition of two sub-problems. The first one is to design the early classifier

that can label the incomplete time series. The second is to define the decision criteria

that can estimate the right time for making an online decision. Initially, we propose

an early classification model for Univariate Time Series (UTS), which relies on two

factors (i) a set of probabilistic classifier and (ii) a confidence threshold. The confidence

threshold ensures the reliability of class prediction defined by measuring the uncertainty

in predicted output. In this method, decision policy is more inclined toward accuracy

and does not take trade-off optimization into consideration. In this regard, a further

optimization-based approach has been adapted for early classification and defines the

early stopping rules for optimal decision making, which have been learned through

optimization between accuracy and earliness simultaneously.

Furthermore, this optimization-based approach has been extended for Multivari-

ate Time Series (MTS), which is more challenging than UTS because of the multiple

variables involved in decision making. An ensemble-based system has been designed

to label the incomplete MTS, and collective output from all the variables has been

utilized for decision making. These proposed methods are highly effective for small

training data sets, but feature transformation is required for training the classifiers.

Finally, a deep learning-based hybrid classifier has been proposed that can capture the

temporal information from the raw sensory data effectively to perform the classification

task. Moreover, the optimal confidence threshold has been defined by balancing the

trade-off between accuracy and earliness. The proposed approaches have been evalu-

ated on publicly available datasets and they demonstrated effective solutions for early

classification on time series.


