DESIGN OF SOME AERODYNAMIC FLEXIBLE STRUCTURES FOR RELIABLE PERFORMANCE

Thesis submitted towards the partial fulfillment of the requirements towards the Award of Degree of

Doctor of Philosophy

by

MAHENDR PRATAP

Under the supervision of

Prof. Anil Kumar Agrawal Mechanical Engineering Department Indian Institute of Technology (BHU) VARANSI-221005 **Dr. Subhash Chandra Sati** Distinguished Scientist and DRDO Chair Res. & Dev. Establishment (Engrs.) PUNE - 411014

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BHU), VARANASI VARANASI – 221005

Roll No. 14101002

January 2021

CERTIFICATE

It is certified that the work contained in the thesis titled **'Design of Some Aerodynamic Flexible Structures for Reliable Performance''** by **''Mr. Mahendr Pratap** (Roll No. 14101002)" has been carried out under our supervision and that this work has not been submitted elsewhere for the award of any degree or diploma. It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy, State of Art seminar and Open seminar for the award of Ph.D. Degree.

Supervisor

External Supervisor

Prof. Anil Kumar Agrawal Mechanical Engineering Department Indian Institute of Technology (BHU), Varanasi VARANSI-221005 **Dr. Subhash Chandra Sati** Distinguished Scientist and DRDO Chair Res. & Dev. Establishment (Engrs.) PUNE - 411014

DECLARATION BY THE CANDIDATE

I, Mahendr Pratap, certify that the work embodied in this thesis is a bonafide research work carried out by me, under the supervision of Professor Anil Kumar Agrawal and Dr Subhash Chandra Sati from July 2014 to January 2021, at the Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted elsewhere for the award of any other degree or diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites, and have not included them in this thesis and have not cited as my own work.

Date: September 21, 2021

Place: IIT (BHU) Varanasi

(Mahendr Pratap)

CERTIFICATE BY THE SUPERVISORS

It is certified that the statement made above by the student is correct to the best of our knowledge.

Supervisor

External Supervisor

Prof. Anil Kumar Agrawal Mechanical Engineering Department Indian Institute of Technology (BHU), Varanasi VARANSI-221005 **Dr. Subhash Chandra Sati** Distinguished Scientist and DRDO Chair Res. & Dev. Establishment (Engrs.) PUNE - 411014

Prof. Santosh Kumar

Head Department of Mechanical Engineering Indian Institute of Technology (BHU), Varanasi VARANSI-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:	Design of Some Aerodynamic Flexible Structures for Reliable Performance	or
Name of the Student:	Mahendra Pratap	

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *DOCTOR OF PHILOSOPHY*.

Date: September 21, 2021

Place: IIT (BHU) Varanasi, India

Mahendr Pratap

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

ॐ तत्पुरुषाय विद्महे महादेवाय धीमहि तन्नो रुद्रः प्रचोदयात ।

Om, let me meditate on the great God of God Lord Shiva, Oh, greatest God, give me higher intellect, and let God Shiva illuminate my mind

First and foremost, I would like to express my deep sense of gratitude and appreciation to my supervisors **Prof. Anil Kumar Agrawal**, Department of Mechanical Engineering and **Dr. Subhash Chandra Sati**, Distinguished Scientist and DRDO Chair (R & D Engineers, Pune) for their esteemed guidance, invaluable encouragement, moral support, and also for providing enough space to work on my ideas as well as for scholarly inputs from the early stage of the present research work. It has helped in building confidence in me for carrying out the present research work and also for publication of papers. This research work would have not been possible without their valuable guidance, moral support and continuous encouragement.

I would also express my heartiest thankfulness to the members of my Research Progress Evaluation Committee (RPEC), **Prof. S. K. Sharma**, External Expert from the Department of Mining Engineering, and **Prof. Prabhash Bhardwaj**, Subject Expert from the Department of Mechanical Engineering, for their kind co-operation, useful suggestions and insightful comments throughout the period of the research work. The same has been instrumental in successful completion of the present thesis work.

I am also highly obliged to **Prof. Santosh Kumar**, the Head, and Dr. R. K. Gautam, Convener (DPGC), Department of Mechanical Engineering, for their constant encouragement towards expediting the thesis work.

[v]

My special thanks are due to my former Directors from ADRDE, Agra—Dr Balraj Gupta, Shri Debashis Chakraborti and present Director Shri A. K. Saxena–for their continuous support and extended hands of cooperation. We had frequent discussions on research problems, various decision-making techniques, advanced tools and methodologies that added values to my thesis work.

I am thankful to the office staff of the Mechanical Engineering Department, in particular, Mr. J.K. Sinha and Mr. Akash Mishra, for their constant help and support. Special thanks are due to the staff of Simulation and Optimization Laboratory of the Department, Mr. Anil Singh and Mr. Rajendra Kumar, for their enthusiastic support. With a lot of difficulty in expressing my emotions in words, I want to thank my colleagues and friends. I made herein, especially, Dr Bharat Singh Patel, Sh Harish Babu and Sh Sushil Kumar Yadav, for their support and co-operation.

I am thankful to all the respondents from the DRDO and other organizations, who responded to my questionnaire and participated in brainstorming sessions as a part of my research work. In this context, I would pay special thanks to Dr Murli Krishna, Project Director, NPOL, Kochin, Shri Swadesh Kumar, Shri Sandeep Kumar and my DRDO colleagues for their active support during the course of my research work.

I owe a lot to my parents, Late Shri Hori Lal Vishwakarma and Mrs. Basanti Devi, for their inseparable support and encouragement at every stage of my academic and personal life. They yearned to see this achievement come true one day. They are the people who showed me the joy of intellectual pursuit ever since I was a child. I thank them for sincerely bringing me up with care and love. I also feel proud to strongly acknowledge the support received from my elder brother, Mr. Rajendra Prasad, elder sisters, Mrs. Savitri Devi and Mrs. Gayatri Devi, and my younger sister, Mrs. Madhuri, in every possible way to see the completion of this doctoral work. They may not realize their contribution to this thesis but it would not been possible to complete this dissertation without those smiles they brought for me. I draw endless motivation from them. I am delighted to express my admiration to my son, Mr. Madhvan Sharma, and daughter, Ms. Shiksha Sharma, for being supportive and caring. Words would fail me to express my appreciation to my wife, Mrs. Shikha Sharma, for her understanding, patience and active cooperation throughout the course of my doctoral research work. She is my real stress-buster. I am highly thankful to her for bearing the inconvenience when I used to work in lab until late night.

I am grateful to **DRDO**, **Ministry of Defence**, **Government of India**, for the financial support provided during my tenure of stay at Indian Institute of Technology (Banaras Hindu University) Varanasi.

Mahendr Pratap

TABLE OF CONTENTS

CERTIF	ICATEii
DECLA	RATION BY THE CANDIDATEiii
CERTIF	ICATE BY SUPERVISORiii
COPYR	IGHT TRANSFER CERTIFICATEiv
AKNOW	/LEDGMENTvi
TABLE	OF CONTENTSviii
LIST O	F FUGURESxv
LIST O	F TABLESxix
PREFA	CExxii
СНАРТ	ER 1: INTRODUCTION1
1.1 Int	roduction to Parachute Deceleration System2
1.1.1	Challenges in Design for Operational Reliability
1.1.2	Problem Related to Design and Development of a PDS4
1.2 In	troduction to Tether7
1.3 R	elevance of the Present Work8
1.3.1	Related to Designing of Parachute Deceleration System
1.3.2	Related to Designing of Hybrid Tether9
1.4 R	esearch Objectives and Goals9
1.4.1	Related to PDS10
1.4.2	Related to Tether11
1.5 Or	ganization of Thesis11
1.6 Su	mmary16

CIII	APTE	ER 2: REVIEW OF LITERATURE ON PARACHUTE DECELERATION SYSTEM	18
2.1	Int	roduction	18
2.2	Apol	llo's Crew Module Earth Landing System	20
2.	2.1	Design Feature	21
2.	2.2	Parachute Specification	23
2.3	Soy	yuz Parachute Landing System	24
2.	3.1	Sequence of Operation	25
2.	3.2	Parachute Specification	26
2.4	Or	ion's Crew Module Recovery Parachute System	27
2.5	Spa	ace Module Recover Experiment (SRE)	28
2.6	Otl	her Types of Parachute used in Space Missions	30
2.7	Su	mmary	31
СНАР	TER	3: SUSPENSION-LINES AND RISER LENGTH	
		DETERMINATION FOR AVOIDING WAKE EFFECT	
	T (
5.1	Intro	oduction	33
3.2	Intro Mod	el Design and Fabrication	33
3.2 3.2	Intro Mod 2.1	el Design and Fabrication	33 37 37
3.2 3.2 3.2	Intro Mod 2.1 2.2	el Design and Fabrication Forebody Parachute Model	33 37 37 37
3.2 3.2 3.2 3.2 3.2	Intro Mod 2.1 2.2 Inst	el Design and Fabrication Forebody Parachute Model trumentation and Data Acquisition System	33 37 37 39 40
3.2 3.2 3.2 3.2 3.2 3.2 3.2	Intro Mod 2.1 2.2 Inst 3.1	el Design and Fabrication Forebody Parachute Model trumentation and Data Acquisition System Load Cell Calibration	33 37 37 39 40 40
3.2 3.2 3.3 3.3 3.3 3.3	Intro Mod 2.1 2.2 Inst 3.1 3.2	el Design and Fabrication Forebody Parachute Model trumentation and Data Acquisition System Load Cell Calibration Six-Component Strain-Gauge Balance Calibration	33 37 37 39 40 40
3.1 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.4	Intro Mod 2.1 2.2 Inst 3.1 3.2 Win	el Design and Fabrication Forebody Parachute Model trumentation and Data Acquisition System Load Cell Calibration Six-Component Strain-Gauge Balance Calibration nd Tunnel Test Setup	33 37 37 39 40 40 40 40
3.1 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.4 3.4	Intro Mod 2.1 2.2 Inst 3.1 3.2 Win 4.1	oduction el Design and Fabrication Forebody Parachute Model trumentation and Data Acquisition System Load Cell Calibration Six-Component Strain-Gauge Balance Calibration ad Tunnel Test Setup Experimental Setup	33 37 37 39 40 40 40 41
3.1 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.4 3.4 3.4 3.2	Intro Mod 2.1 2.2 Inst 3.1 3.2 Win 4.1 Test	oduction el Design and Fabrication Forebody Parachute Model trumentation and Data Acquisition System Load Cell Calibration Six-Component Strain-Gauge Balance Calibration and Tunnel Test Setup Experimental Setup Experimental Setup	33 37 37 39 40 40 40 41 41

3.5.	2 Effect of Parachute
3.5.	3 Test Results for a Single Parachute Behind the FB45
3.5.4	4 Test Results for a Cluster of Two Parachutes Behind the FB46
3.5.5	5 Dynamic Stability Analysis for a Single and Cluster of Two Parachutes.48
3.6	Summary50
CHAF	TER 4: DETERMINATION OF SHAPE AND SIZE OF CANOPY OF MAIN PARACHUTE52
4.1 I	ntroduction53
4.2 N	Iathematical Modeling56
4.2.1	Basic Equilibrium Equations56
4.2.2	Point Mass Trajectory Model57
4.2.3	Drag Area Variation of Parachute58
4.3	Parameters Influencing the Selection of Parachute59
4.3.	1 Canopy Filling Time59
4.3.2	2 Parachute Sizing
4.3.3	Angle of Oscillation63
4.3.4	Parachute Opening Shock Load64
4.3.5	5 Peak Deceleration
4.4	Summary69
CHAP	TER 5: PARACHUTE DECELERATION SYSTEM DESIGN AND TESTING71
5.1	Introduction73
5.2 S	equence of Operation74
5.3 (General Design Philosophy of Parachute Deceleration System77
5.3.	1 Estimation of Parachute Opening Force78
5.3.2	2 Parachute Inflation Time

5.	3.3	Design Factor	82
5.	3.4	Estimation of Load on Parachute Components for Material S	election84
5.	3.5	Material Selection Criteria	86
5	3.6	Parachute Testing and Evaluation	86
5.4	Desi	gn of Parachute Deceleration System	87
5.4	l.1	TCS Chute	87
5.4	1.2	Pilot Chute	98
5.4	1.3	Drogue Parachute: First Stage Decelerator	101
5.4	1.4	Main Parachute: Second Stage Decelerator	117
5.5	Sum	nary	
СНА	PTER	8 6: RISKS AND HAZARD ASSOCIATED WITH PARA	CHUTE 130
(1	T 4-		120
6.1	Intr	oduction	
6.1 6.2	Intr Risk	oduction	139
6.16.26.3	Intr Risk Risk	oduction and Hazard Analysis Analysis of Parachute Deceleration System	
 6.1 6.2 6.3 6.3 	Intr Risk Risk 3.1	oduction	139 139 140 143 144
 6.1 6.2 6.3 6.3 6.3 	Intr Risk Risk 3.1 3.2	DECELERATION STSTEM	
 6.1 6.2 6.3 6.3 6.3 6.3 	Intr Risk Risk 3.1 3.2 3.3	DECELERATION STSTEM roduction x and Hazard Analysis x Analysis of Parachute Deceleration System Hazard-Risk Assessment Matrix for TCS/Pilot Chute Hazard-Risk Assessment Matrix for Drogue Parachute Hazard-Risk Assessment Matrix for Drogue Parachute Hazard-Risk Assessment Matrix for Main Parachute	
 6.1 6.2 6.3 6.3 6.4 	Intr Risk Risk 3.1 3.2 3.3 Acci	DECELERATION STSTEM	
 6.1 6.2 6.3 6.4 6.4 	Intr Risk 3.1 3.2 3.3 Acci 4.1	DECELERATION STSTEM roduction x and Hazard Analysis x Analysis of Parachute Deceleration System K Analysis of Parachute Deceleration System Hazard-Risk Assessment Matrix for TCS/Pilot Chute Hazard-Risk Assessment Matrix for Drogue Parachute Hazard-Risk Assessment Matrix for Main Parachute Hazard-Risk Assessment Matrix for Main Parachute TCS Chute	
 6.1 6.2 6.3 6.4 6.4 6.4 	Intr Risk Risk 3.1 3.2 3.3 Acci 4.1	DECELERATION STSTEM roduction and Hazard Analysis x and Hazard Analysis x Analysis of Parachute Deceleration System Hazard-Risk Assessment Matrix for TCS/Pilot Chute Hazard-Risk Assessment Matrix for Drogue Parachute Hazard-Risk Assessment Matrix for Drogue Parachute Hazard-Risk Assessment Matrix for Main Parachute Hazard-Risk Assessment Matrix for Main Parachute TCS Chute Pilot Chute	
 6.1 6.2 6.3 6.4 6.4 6.4 6.4 6.4 	Intr Risk 3.1 3.2 3.3 Acci 4.1 4.2 4.3	DECELERATION STSTEM roduction	
 6.1 6.2 6.3 6.4 	Intr Risk 3.1 3.2 3.3 Acci 4.1 4.2 4.3 4.4	DECELERATION STREEN. roduction	
 6.1 6.2 6.3 6.4 6.5 	Intr Risk 3.1 3.2 3.3 Acci 4.1 4.2 4.3 4.4 Miti	DECELERATION STSTEM	

CHAPTER 7: FAILURE MODE AND EFFECTS ANALYSIS AND FAULT TREE ANALYSIS OF PARACHUTE DECELERATION SYSTEM		
7.1 Int	roduction	156
7.2 FM	IEA Approach	158
7.2.1	FMEA Rating Scale	158
7.2.2	Risk Priority Number	158
7.3 FI	MEA of Parachute Deceleration System	162
7.3.1	TCS Chute	163
7.3.2	Pilot Chute	165
7.3.3	Drogue Parachute	166
7.3.4	Main Parachute	168
7.4 Ov	verall Analysis of Failure Modes	169
7.4.1	Distribution of Failure Modes Based on Severity Rating	170
7.4.2	Distribution of Failure Modes Based on Occurrence Rating	170
7.4.3	Distribution of Failure Modes Based on Detection rating	171
7.4.4	Ranking of Failure Modes with "Corrective Action Required"	172
7.5 Li	mitation of FMEA	173
7.6 Fa	ault Tree Analysis	174
7.6.1	TCS/Pilot Chute	175
7.6.2	FTA of Drogue Parachute	176
7.6.3	Main Parachute	177
7.7 Pr	oposed Integrated FTA-FMEA Model	178
7.7.1	FTA-FMEA Framework	179
7.7.2	FTA-FMEA Working Steps	
7.7.3	Integrated FTA-FMEA Approach for Failure Analysis of PDS	

7.8	Sun	nmary	
СН	APTE	R 8: RELIABILITY ANALYSIS OF PARACHUTE DE SYSTEM	CELERATION
8.1	Intro	duction	188
8.	1.1	Uncertainty Related to Parachute	189
8.	1.2	Factors for Poor Reliability of Parachute	189
8.2	Deve	elopment of the Reliability Model	
8.2	2.1	Stress-Strength Method	192
8.2	2.2	Operational Reliability	195
8.2	2.3	Components Reliability and Confidence Level	196
8.3	Com	putation of Reliability of Parachute Deceleration System	a197
8.	3.1	Reliability Block Diagram	197
8.	3.2	Allocation (Target) of Reliability	201
8.	3.3	Reliability Estimation of TCS/Pilot Chute	202
8.	3.4	Reliability Estimation of Drogue Parachute	205
8.	3.5	Reliability Estimation of Main Parachute	207
8.	3.6	Overall Reliability of Parachute Deceleration System	212
8.4	Sum	mary	212
CHA	APTE]	R 9: RELIABILITY BASED OPTIMIZED DESIGN OF TETHER	' HYBRID 215
9.1	Intro	duction	216
9.2	Prob	abilistic Design Model	216
9.3	Class	ical Design Approach	218
9.4	Prob	abilistic Design Approach	221
9.5	Sumi	nary	

СНА	APTER 10: CONCLUSIONS AND SCOPE FOR FURTHER WORK2	227
10.1	Introduction	227
10.2	Summary of Finding and Suggestions	229
10.3	Limitations of the Present Work2	230
10.4	Scope for Further Work2	231
REFE	CRENCES2	32
APPE	CNDIX 'A'2	42
LIST	OF PUBLICATIONS	44

LIST OF FIGURES

Figure 1.1:	Parachute performance-envelopes
Figure 1.2:	Construction details of hybrid tether
Figure 1.3:	Flowchart representing the thesis structure
Figure 2.1:	Worldwide human space recovery systems
Figure 2.2:	Sequence of deployment of Apollo parachute system
Figure 2.3:	Abort sequence of Apollo parachute system
Figure 2.4:	Soyuz main parachute prior to landing25
Figure 2.5:	Deployment sequence of CPAS nominal and high-altitude ascent abort27
Figure 2.6:	Orion's parachute system returning from space
Figure 2.7:	Sequence of recovery system operation of SRE
Figure 3.1:	Mounting scheme of FB and parachute model
Figure 3.2:	Wind tunnel test setup (a) single parachute with and without FB (b) a cluster of two parachutes with and without FB
Figure 3.3:	Parachute drag coefficient (SP_R1) in deployment mode at 40 m/s44
Figure 3.4:	Effect of variation in the riser's length (single parachute without FB)45
Figure 3.5:	Wind axis forces and moments of single parachute with FB at riser length R=1.26 m ($\beta = 0^{0}$ to 15 ⁰)
Figure 3.6:	Wind axis forces and moments of cluster of two parachutes with FB at riser Length R=1.26 m ($\beta = 0^0$ to 15 ⁰)49
Figure 4.1:	Commonly used canopies in planetary exploration missions
Figure 4.2:	Flight path trajectory of re-entry module
Figure 4.3:	Drag Area variation for slotted and solid canopy59
Figure 4.4:	Size and filling time of various parachutes ($C_D S = 100m^2$)61
Figure 4.5:	(a) Drag area variation vs time plot and (b) Opening load variation vs time plot for ringsail, aero-conical and conical ribbon parachutes (500 kg payload)

Figure 4.6: Average angle of oscillation vs drag coefficient for slotted and solid Canopies
Figure 4.7: Opening load variation of different parachutes for 500 kg payload65
Figure 4.8: Opening load variation of different parachutes for 3500 kg payload65
Figure 4.9: Velocity reduction of different parachutes for 500 kg payload66
Figure 4.10: Velocity reduction of different parachutes for 3500 kg payload66
Figure 4.11: Deceleration of different parachutes for 500 kg payload67
Figure 4.12: Deceleration of different parachutes for 3500 kg payload67
Figure 4.13: Top view of the proposed canopies
Figure 4.14: Gore layout view
Figure 4.15: Flow field in steady descent
Figure 5.1: Proposed architecture of the PDS75
Figure 5.2: Sequence of operation of proposed PDS75
Figure 5.3: Force-time profile of a parachute across its deployment stages78
Figure 5.4: Parachute-payload forces in streamline at terminal speed
Figure 5.5: Parachute force-time graph
Figure 5.6: Major components of a parachute
Figure 5.7: Module and forward heat shield separation chutes
Figure 5.8: Constructional details of ringslot canopy
Figure 5.9: Load profile of single chute at speed of 106 m/s100
Figure 5.10: Load profile of cluster of two chutes at speed of 106 m/s100
Figure 5.11: Pilot chute and drogue parachute in deployment condition102
Figure 5.12: Constructional details of conical ribbon parachute104
Figure 5.13: Peak deceleration of drogue parachute
Figure 5.14: Wind tunnel test setup (a) single parachute with & without FB (b) a cluster of two parachutes with & without FB114
Figure 5.15: Deployment of pilot and drogue parachute behind the CM in track test115

Figure 5.16: Measured load profile of drogue parachute116
Figure 5.17: Main parachute with reefed and disreefed in deployed conditions118
Figure 5.18: Typical inflation load vs. time profile of reefed and disreefed parachute118
Figure 5.19: Reefing arrangement in canopy for reefing-line
Figure 5.20: Reefing ratio vs reefing-line ratio for various parachutes
Figure 5.21: Constructional parameters for slotted solid canopy122
Figure 5.22: Opening shock force experience by the main parachute125
Figure 5.23: Peak deceleration of main parachute125
Figure 5.24: Stress distribution on parachute canopy127
Figure 5.25: Main parachutes with two risers in each parachute
Figure 5.26: Circular slotted solid canopy in wind tunnel test
Figure 5.27: Load profile of main parachute with reefed and disreefed canopy136
Figure 6.1: Hazard risk assessment matrix for TCS/pilot chute144
Figure 6.2: Hazard risk assessment matrix for drogue parachute145
Figure 6.3: Hazard risk assessment matrix for main parachute146
Figure 6.4: Accident scenario when forward heat shield is not opened147
Figure 6.5: Accident scenario in case of collision of forward heat shield with CM148
Figure 6.6: Accident scenario when TCS chute malfunction149
Figure 6.7: Vent line broken from Vent band150
Figure 6.8: Accident scenario related to pilot chute malfunctions
Figure 6.9: Suspension-lines broken near skirt band151
Figure 6.10: Accident scenario when drogue parachute malfunction152
Figure 6.11: Probable causes of malfunction of main parachute
Figure 7.1: Severity effect pie chart
Figure 7.2: Occurrence effect pie chart171
Figure 7.3: Initial detection effect pie-chart171

Figure 7.4: Ranking of failure modes	172
Figure 7.5: Common symbols used in FTA	175
Figure 7.6: FTA of TCS and pilot chutes	176
Figure 7.7: FTA of drogue parachute system	177
Figure 7.8: FTA of main parachute	178
Figure 7.9: FTA-FMEA integrated approach framework	180
Figure 7.10: Simplified cut-set example	181
Figure 8.1: Stress-strength distribution	193
Figure 8.2: RBD of TCS chute	197
Figure 8.3: RBD of pilot chute	198
Figure 8.4: RBD of drogue parachute	199
Figure 8.5: RBD of single main parachute and reefing-lines cutters	200
Figure 9.1: Damaged tether part towards the balloon end	219
Figure 9.2: (a) Tether epoxy joint with mild steel cap (b) Testing of tether sample on UTM	220
Figure 9.3: Reliability vs factor of safety of hybrid tether	224
Figure 9.4: Change of tether reliability w.r.t. diameter	225
Figure 9.5: Cost (per unit length) vs diameter of hybrid tether	226

LIST OF TABLES

Table 5.7:	Track test results of pilot chute and drogue parachute with CM	.115
Table 5.8:	Comparison of planned and achieved performance parameters of drogue parachute	.117
Table 5.9:	Component mass, materials and MoS of main parachute	.135
Table 5.10:	Design outcome of parachute deceleration system	138
Table 6.1:	Hazard severity classification	.141
Table 6.2:	Classification based on occurrence of hazard	.141
Table 6.3:	A sample hazard risk assessment matrix	.142
Table 7.1:	Severity rating scale for PDS	.159
Table 7.2:	Occurrence rating scale for PDS	.160
Table 7.3:	Detection rating scale PDS	.160
Table 7.4:	FMEA of TCS chute	.163
Table 7.5:	FMEA of pilot chute	.165
Table 7.6:	FMEA of drogue parachute	.166
Table 7.7:	FMEA of main parachute	.168
Table 7.8:	Value of <i>w</i> acording to number of failure per million	.182
Table 7.9:	Weights of critical components	.183
Table 7.10): RPN from traditional FMEA and weighted RPN from intergrated FTA- FMEA model for critical failure models	184
Table 8.1:	R_o for selected confidence level & number of failures from a series of trials	.196
Table 8.2:	Approximate confidence coefficient for given number of components	.196
Table 8.3:	Allocated reliability for the TCS/Pilot chute	.201
Table 8.4:	Allocated reliability for the drouge parachute	.201
Table 8.5:	Allocated reliability for the main parachute	.202
Table 8.6:	Test data on stress-strength of components of TCS/pilot chute	.203
Table 8.7:	Test data stress-strength of components of drogue parachute	.205

Table 8.8: Test data stress-strength of components of main parachute 20
Table 8.9: Failure probability for various factors working on reefing-line cutter
Table 8.10: Reliability matrix of TCS/pilot chute system
Table 8.11: Reliability matrix of drogue parachute system
Table 8.12: Reliability matrix of main parachute system
Table 9.1: Estimated and measurement tether tension during limited trials conducted (without safety factor)
Table 9.2: Tether sample test results with epoxy joint
Table 9.3: Factor of safety and corresponding reliability
Table 9.4: Effect of tether diameter on weight and reliability 22

PREFACE

India's plan for human space program calls for a first time to send two to three crew members in LEO for 7 days and safe landing on earth. These goals require the development of a spacecraft, launch & recovery systems and survival accessories which is based on the many studies carried out by India in past. This research is one of the pre-project activities of recovery system (i.e., parachute deceleration system) and can be reference for the future proposed mission.

The Crew Module provides a safe habitable volume for the crews during launch, spaceflight, and return through the atmosphere with help of decelerators called flexible Parachute Deceleration System (PDS). Function of PDS is to retard the module from high altitude to the sea level at reduced required velocities in stages. In the deceleration system, module speed is reduced in two stages by using two stage deceleration systems. These deceleration systems are deployed in air by pilot chutes and drogue parachute. At low atmospheric altitude, Top Cover Separation (TCS) chute take away the Forward heat shield of module and open the way to deploy other parachutes. Drogue parachutes diminish the damping of module oscillations and drag to slow down the speed for successful deployment of main parachutes. The proposed recovery parachute sequence is presented in Figure 5.1 and Figure 5.2, Chapter 5. The CM falls under the recovery parachute system in both conditions, during nominal re-entry and descent after an abort from a failed launch. First, mortars are fired and deploy two forward chutes which remove the forward heat shield from CM. Then, a mortar deploys two pilot chutes pulls out the two drogue parachutes. The drogue parachutes are retard the CM as a first stage deceleration and then jettisoned from the CM at pre-define altitude and in turn pull out two large main parachutes. The main parachutes passed through one reefing stage before they are fully opened and slow the CM for a water landing. The investigation on parachute design analysis, failure modes, risk and hazard analysis, reliability analysis are the part of the focus of this research.

Parachute system and tether reliability analyses are carried out and their related terms are the important factors in the parachute packing, development, production, operation, and maintenance of such complex system. An analysis of a design for reliability can identify critical failure modes and cause of unreliability and provide an effective tool. Application of design evaluation techniques can provide a sound basis for determining spare parts requirements, required part improvement programs, and needed redesign efforts, reallocation of resources and other measures to assure specified reliability requirements will be met.

The primary objective of this research is to identify the weakness of the design, risk analysis, failure and reliability analyses to improve the parachute performance and optimized design of tether, so that, final product would be more reliable and requires maintenance free for human rated applications. Each Chapter contains its own specific introduction, analysis, methodologies and at the end thesis conclusions and further scope of work are proposed. Since this system has lot of sub systems, parts, components, sub components, therefore, only reliability of critical components have been considered for analysis. Potential failure parts have been identified before manufacture and accordingly corrective action suggested.

In the end of the research work (Chapter 10) covers the research conclusions from the work carried out related to parachute deceleration system and a hybrid aerostat tether. This chapter complies and summarizes the present research work and its limitations. This chapter also provides the recommendations for future research work in this field.